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Abstract: Limitations regarding process design, optimization, and control often occur when using
particular process simulators. With the implementation of connection methodologies, integrated
tools could be made by coupling popular process simulation software with each other or with
programming environments. In the current paper, we summarized and categorized the existing
research regarding the application of multi-software engineering in the chemical industry, with an
emphasis on software connections. CAPE-OPEN, COM, OPC, and native integration were discussed
in detail, with the intention to serve as a guide for choosing the most suitable software combination
and connection. These hybrid systems can handle complex user-defined problems and can be used
for decision support, performing custom unit operations, operator training, process optimization,
building control systems, and developing digital twins. In this work, we proposed the use of process
simulator Aspen HYSYS linked together with the numeric computing platform MATLAB to solve a
reaction kinetic parameter identification problem regarding the production of γ-valerolactone.

Keywords: CAPE-OPEN; multi-software engineering; software linking; co-simulation; parameter
identification; process system engineering

1. Introduction

Using process simulation software for designing and optimizing chemical technologies
is an active part of developing such processes from the 1980s [1,2]. Several engineering
hours and laborious experiments could be spared using computer-aided methods, as they
are capable of simulating whole chemical plants in a user-friendly graphical environment.
There are many commercial simulation software available on the market today with only a
few bigger vendors, but it is mainly individual companies providing that software [3,4].
The variety suggests that those programs are developed for niche parts of the chemical
industry, based on valuable information coming from industrial data and experiments
provided by the company developing them [5].

Today, a process simulator expected to handle the design of an entire chemical plant
has to cover many areas; starting from the reaction stage, it has to include vast databases of
components, binary interactions, thermodynamic methods [6], and unit models [7–9]. It
should be able to use detailed equipment design and scale up [10] and it should be able
to perform parameter estimation [11], data regression, sensitivity analysis [12], optimiza-
tion [13–15], and the design of control systems [16–18] with the expectation of simulating
the real systems precisely.

It is too much of a request for a single tool to provide models of such a large application
range and perform all of these requirements properly. Therefore, engineers have to face
several limitations regarding their performance and capacity. Individual process simulators
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can perform excellently in the field where they were developed, but struggle with complex
problems requiring different fields of knowledge to solve them [19].

The use of equation-based numerical environments based on programming languages
has the advantage of building custom models, although it often requires advanced pro-
gramming skills to build user-defined equation systems and utilize algorithms or built-in
toolboxes. For example, in performing single unit operations or estimating parameters,
user-defined functions come in handy for unique and complex problems, but designing
entire chemical plants with user-formulated scripts is unnecessarily laborious work.

Commercial process simulators have these unit operations built-in [1,20,21], where the
mathematical equation systems are behind easy-to-use graphical interfaces. That way, the
mathematical models are ready-made with the right algorithms already chosen. However,
the manipulation or customization of such objects is often restricted. The programming
environments have the advantage of containing more complex numerical methods than
process simulators, this means that optimization algorithms and response surface methodol-
ogy can also be used to achieve a wider application range with normal sensitivity or limited
optimization [22]. Those limitations led to the demand of utilizing only parts of these
environments—which are missing from the others—to solve the problem in cooperation
with each other.

Those limitations led to the demand for developing methods that utilize different
parts of these environments in cooperation with each other. That way there is no need for
new, complex software; engineers can select and work with multiple software that are best
for solving the actual problem, without making compromises in limited areas within a
single environment. One possibility is to build connections between existing software, to
utilize the parts that the problem requires, or to develop simulators by different companies
with the same framework to be interchangeable, as the development continues and they
have to adapt new features from other software.

Our aim with this study was to summarize the existing research around multi-software
engineering and showcase the connection possibilities between different commercial pro-
cess simulators and numerical tools.

From the early 2000s [6,7] to this day, multi-software engineering developed from
the idea of utilizing multiple software for a single problem, to the demand of precisely
describing the code and considering different linking methodologies based on complex
tasks that cannot be executed with a single tool. Nowadays, the adequate literature focuses
on the connection of the simulation software rather than the problem itself and, based on
that, differentiates between their performances [13,23,24].

In 2020, Abril [25] published a freeware on interface linking between MATLAB and
Aspen Plus that made the connection process more widely available. Therefore, most of the
newly-described systems focus on this software and, as Bartolome and Van Gerven [24]
mentioned in their work, Aspen Tech is the leading process simulator provider for the
chemical industry.

Besides those, another important solution to this software linking problem started to
develop in the early 2000s and that is the concept of CAPE (Computer Aided Process Engi-
neering), more specifically CAPE-OPEN [26]. It is based on the fact that the existing process
simulators, developed for specific areas of modeling, have limitations regarding capability,
although over time they are expanding their simulation packages, mainly with experimental
information from companies in the field or from other simulation environments [27]. The
success of adapting those changes depends on the simulation environment, how it is built,
and how open it is to modifications. The CAPE-OPEN Interface Standard defines a set of soft-
ware interfaces that allow plug-and-play inter-operability between a given process modeling
environment (PME) and a third-party process modeling component (PMC) [26].

In this sense, another computer-aided method has to be mentioned and that is CAMD
(Computer-Aided Molecular Design) [6]. The CAPE concept targets mainly the design
and modeling of equipment and processes, while CAMD deals with the design of com-
pounds and properties estimation on a molecular level [28]. It is fundamental to study
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materials down to the level of atoms and charges, as the more accurate our models are in
the earliest stages of design, the closer we are to modeling industry-scale processes that
describe real life well. Until the development of rigorous computational resources, the
molecular design almost exclusively relied on experimental-based trial-and-error methods
and knowledge-based frameworks [29]. With the rise of machine learning, especially deep
learning techniques, the optimization and characterization of molecules improved, due
to the reduced computational cost, easy incorporation within mathematical models, and
invertibility [30]. Today’s challenges in molecular design with deep learning techniques
include molecular representations, major deep generative architectures, benchmarking,
and evaluation metrics [31].

If we take a look at the last decades of published research on the overall topic in
the Scopus database [32] from 2000 to 2022, based on the keywords “co-simulation”,
“multi-software”, “software linking”, “software coupling” paired with “hybrid model”,
and “machine learning”, the following can be seen in Figure 1. The number of published
articles in chemical engineering have been exponentially increasing for the last five years
based on this data, meaning it is a current topic to study. Moreover, the co-occurrence of
keywords in the corresponding articles are multifaceted; several different fields benefit from
software connecting methods. Besides the keywords mentioned above, process simulation,
optimization, and control appeared the most.
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Figure 1. Research interest in multi-software engineering between 2000 and 2022.

It is worth mentioning that, although the ideas behind connecting process simulation
software with each other or an external tool have existed for two decades [6,7], there is still
no collective name for them. Software linking, software coupling, software integration,
co-simulation, hybrid model, or multi-software modeling are often used to describe such
processes. Therefore, finding adequate literature on the topic of chemical engineering
is quite challenging sometimes; in the current paper we proposed the use of the term
multi-software engineering.

We present an application example where the shortcomings of commercial process
simulators with restricted reaction kinetic structures can be solved, where we identify
simpler reaction kinetics for γ-valerolactone (GVL) production, so the reaction system can
be calculated. The product itself was derived from biomass, of which valorization is a highly
researched topic in today’s era of food, fuel, and economic crisis [33]. γ-valerolactone in this
case was produced from butyl-levulinate with catalytic hydrogenation, the kinetics of which
are rather complex. For the identification of a directly implementable reaction kinetics, we
implemented the dynamic simulator of the GVL production reactor using Aspen HYSYS,
and we identified the reaction kinetic parameters using a MATLAB optimization algorithm.
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A major shift in process development has been happening for the last few decades with
the appearance of reliable data-driven models. Process simulators that are inherently based
on first-principle models are reaching a limit of accurately representing more complex
problems, not to mention the factor of time and cost. Multi-software engineering is a
novel tool for connecting a priori and a posteriori models, in the form of robust process
simulators and statistical solvers to keep up with the evolution of information technology.
Our contribution to the current state-of-the-art of this research field and the road-map of
this paper is as follows:

• We systematically organized the available novel research regarding the application of
multi-software engineering in the chemical industry (see Section 2).

• We presented various process simulation software, numerical solver tools, and their
connection methodologies applied to a wide range of complex engineering problems
to serve as a reference guide for their utilization, suitable both for academic and
industrial use.

• We identified future challenges and the fields in which multi-software engineering
can be beneficial, but not utilized yet (see Sections 2 and 3).

• We showed the importance of the CAPE-OPEN standard in the interoperability of
different process simulator tools (see Section 4).

• Finally, in a case study, we developed a framework linking Aspen HYSYS with the
MATLAB environment for kinetic identification, presenting the advantage of building
a model in Aspen’s graphical interface, but also utilizing the computing capacity and
custom operations that a MATLAB environment could provide (see Section 5).

2. Literature Overview

In this section, we attempted to collect some of the most significant research in the
field of multi-software engineering. Showing the utilization of various software linking
systems to solve complex and diversified problems in the chemical industry, in the hope of
shedding light on this developing research area of Computer Aided Process Engineering.
The following articles were chosen to showcase the most used simulation environments
and numerical tools, their linking possibilities and to highlight the fields of application in
four categories; process modeling, process design and optimization, process control and
safety, and data-driven methods.

2.1. Process Modeling

If we take a look at the earlier literature on this topic, in the work of Fontalvo et al. [7],
multi-software modeling was presented as a tool for calculating the behavior of a membrane
unit. An Aspen Plus distillation tower model was connected with a MATLAB subroutine,
that was used to attach the model to a membrane unit. No descriptions were made of the
connection between these two software or the implementation because the focus was on
solving the actual modeling problem, rather than presenting the framework used for the
software connection. Later on, one could notice a shift in the literature, where software
linking will be more and more showcased, rather than just mentioned as a tool for problem-
solving [10,23,24].

As a continuation of the early idea of linking process simulators with coding environ-
ments, in Fontavlo’s [34], a decade later, the principles of the process were finally described.
An Aspen Plus and MATLAB hybrid system was created with an MS Excel connection, that
was used in a distillation and vapor permeation process case study to show the protocol of
utilization. In this case, the Excel spreadsheet worked as a mediator, which organized and sent
information regarding stream results and additional parameters between the two software.

Kiss et al. used MS Excel, not only as a mediator but as a visualization tool. They
studied an industrial sulfuric acid plant implemented in a dynamic simulation model with
process simulator gPROMS and a graphical user interface created in Microsoft Excel [35].
They could quickly develop an operator screen presenting the process flowsheet in Excel,
while the data are exchanged between gPROMS and the spreadsheet. The developed dy-
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namic model was capable of detecting changes in product quality, convenient for operator
training and scenario evaluation.

In earlier software linking approaches, MS Excel was often used as middle-ware;
mostly for data reading and organization. In later works, the use of a third software was
less desired, as most commercial software vendors improved their connection methods,
as could be seen in the following subsections. That way, a third software tool was only
limiting the process, giving more space for errors.

In a recent study, Samei and Raisi tried to overcome the scarcity of commercial process
simulation software regarding membrane units, with custom gas separation models [36].
A code was first developed for mass transfer calculations, using the solution–diffusion
mechanism in the FORTRAN programming language. Integration of this outside calculation
to the flowsheeting simulator is made possible by the Aspen Custom Modeler (ACM) unit.
This is a built-in feature of the Aspen Tech software, where additional equations could be
described and implemented in the software without using outside tools.

Overall, the advantage of the direct relation between two software without the use
of middle-ware includes; the reduction in computational resources, because there is no
storing limit, avoidance of data loss, and the possibility to use the obtained database for
data mining. Although, the use of a middle-ware could be necessary when working with
multiple dynamic simulators.

In the works of Mikkonen et al. [37], the dynamic co-simulation of multiple units
were studied; a circulated fluidized bed boiler, air separation unit, and a CO2 purification
unit, all communicating through MATLAB. For the boiler and turbine side, the software
Apros was used, which is a tool for dynamic modeling power plants and turbine islands.
For the air distillation and CO2 purification side, Aspen Plus Dynamics was used. The
challenge in connecting different dynamic models is the delay in their numerical integration
times. Therefore, a mediator tool is needed, in this case in the form of MATLAB Simulink.
This way a master program keeps the two simulators clock’s synchronized. Data transfer
between two dynamic simulators is only possible while their clocks are in sync and the
models can be reloaded.

However, many more studies can be found in which the reduction of energy consump-
tion [15], equipment comparison [9], or properties estimation [38] was discussed using
multi-software tools for modeling.

Another field of software in modeling that often utilizes software linking is computa-
tional fluid dynamics (CFD). However, these cannot be labeled as typical process modeling
simulators, rather as an expansion to observe and calculate transport phenomena inside a
system. Zuhang et al. approached the municipal solid waste incineration (MSWI) process
with numerical simulation methods and CFD software with their many difficulties [23].
The investigated process is quite complex due to the different characteristics of the many
subprocesses, therefore it is not feasible to perform the modeling with a single simulation
tool. They reviewed the current research progress in the field and analyzed the proposed
software coupling methods. The two main paths are based on self-developed or commer-
cial software. In the latter, the combinations of FLUENT, Aspen Plus, MATLAB, Phoenics,
Visual Studio, Flash, IMMS, Gaebed-ss, and ANSYS CFX can be found. They also men-
tioned that the development of a digital twin model is a possibility based on these software
combination methods.

Da Rosa and Braatz [39] used the open-source CFD software OpenFOAM for the multi-
scale modeling of crystallization and the 3D design software SolidWorks was used to generate
the computer-aided design (CAD) model and to set and describe boundary conditions.

Egedy et al. [40] used the CFD software COMSOL Multiphysics with a Livelink connec-
tion to MATLAB to study spatial and temporal changes of the viscosity and the density along
the reactor geometry. Usually, optimization could be interpreted only as a comparison of
scenarios [41] in the case of CFD. However, with the use of external numerical environments,
many black-box optimization algorithms are available. The connection with MATLAB made
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it possible to perform objective function-based optimization on the system to optimize critical
parameters; initial catalyst concentration, process temperature, and pressure.

Finally, the most diverse tool for software linking has to be mentioned. Morales-
Rodrıguez et al. investigated the integration of a set of diverse computational tools employ-
ing CAPE-OPEN, combining different Process Modeling Environments (PMEs) and Process
Modeling Components (PMCs) to show the interoperability of the different computational
tools [42] by at first linking Simulis Thermodynamics as the graphical interface PME with
ICAS-MoT as the PMC through a DLL file as the middleware. In another case study, they
used a multiscale approach, with built-in unit operations found in the PME—ProSimPlus.
The variables were obtained and calculated by the CAPE-OPEN unit operation using the
ICAS-MoT solver. COFE as a different PME was also used in the calculations for the
comparison of interoperability.

In this sense, another unique tool has to be showcased, which supports the inter-
operability between different coding environments. MOSAIC is a web-based modeling
environment with a unique modular equation-based modeling tool, using the concept
of symbolic mathematical language and code generation [43]. It allows the re-usability
of models and model parts. The functionality of code generation is that mathematical
content is documented with standard and widely used languages (e.g., LaTeX), then the
specified model’s program code can be directly rendered to different languages. This makes
them suitable for integration into many different numerical environments, without prior
knowledge of them.

Tolksdorf et al. implemented a model-driven approach for customized code generation
for simulation and optimization purposes [8]. The many case studies were carried out in
an equation-based flowsheet simulation using CAPE-OPEN interfaces, to highlight the
strength and variety of these methods. First, a simplified membrane module was described
with MOSAIC modeling and Python code. An integrated mixer and splitter unit operation
with two outlets was created with the code generated by MOSAICmodeling and SciLab’s
“fsolve” function was used as a solver. Using CAPE-OPEN, SciLab unit operations can also
be solved inside COFE and Aspen Plus flowsheeting simulators, showing the versatility of
the software linking. A final example of a differential-algebraic equation system describing
a system of two reactions and three compounds was investigated using MATLAB for code
generation and as a solver.

As shown by the collected research data in this section, one of the most applied fields
for multi-software engineering regarding the chemical industry is modeling. Software
linking is often utilized in modeling complex unit operations, where the model is built in
a commercial simulator and an external numerical solver is connected, in which custom
equation systems are solved to support the development of an adequate model. In Table 1,
we organized and categorized the above-mentioned works by application.
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Table 1. Collected and categorised research on modeling regarding multi-software applications.

Research Focus Software Connection Ref.

Custom unit operations

Membrane unit modeling Aspen Plus, MATLAB n.a. [7]
Use and comparison of rubbery and glassy membranes in
a multi-stage gas separation process for separation of the
CO2/CH4 mixtures

Aspen Plus, FORTRAN Aspen Custom Modeler (ACM) [36]

Simplified membrane module, integrated mixer and split-
ter unit operation with two outlets; differential-algebraic
equation system describing a system of two reactions and
three compounds

CAPE-OPEN, SciLab, Python,
MOSAICmodeling, COFE, As-
pen Plus, MATLAB (fsolve, fmin-
con)

n.a. [8]

Paraffin wax deposition in longer wells and pipelines Aspen HYSYS, MATLAB n.a. [38]
Hybrid distillation and vapor permeation system for the
partial dehydration of ethanol

Aspen Plus, MATLAB MATLAB User Model (Mediator:
Ms Excel VBA)

[34]

Heat Integrated Distillation Column Aspen Plus, MATLAB ActiveX (Mediator: Ms Excel
VBA)

[9]

Dynamic modeling of Circulated Fluidized Bed Boiler, Air
Separation Unit and CO2 Purification Unit

Apros, Aspen Plus Dynamics,
MATLAB Simulink

OPC (Mediator: MATLAB
Simulink)

[37]

Design of a SIDEM unit; triple effect desalination plant
coupled with thermo-vapor compressor

Aspen HYSYS, MATLAB (frnin-
con)

n.a. [44]

CFD

Spatial and temporal changes of the viscosity and the den-
sity in a Vegetable Oil Carbonation Reactor

COMSOL, MATLAB LiveLink [40]

Combined antisolvent-cooling crystallization of lovastatin
with methanol as solvent and water as antisolvent

openFOAM (openCrys), Solid-
Works

n.a. [39]

Municipal solid waste incineration process with numerical
simulation methods based on mechanical grates

FLUENT, Aspen Plus, MATLAB,
Phoenics, Visual Studio, Flash,
IMMS, Gaebed-ss and ANSYS
CFX

n.a. [23]

Kinetic parameter identification Fitting of industrial sulfuric acid plant kinetic parameters
to the real plant data for modeling

gPROMS, MS Excel n.a. [35]
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Table 1. Cont.

Research Focus Software Connection Ref.

Multiscale modeling

Reynolds-Averaged Navier–Stokes model with variable
properties for macromixing with a multi-environment PDF
model for micromixing; using a spatially varying popula-
tion balance equation, energy balance and scalar transport
equations

openFOAM (openCrys), Solid-
Works

n.a. [39]

Steam process drive sizing methodology to replace a con-
densing steam turbine by a backpressure one

Aspen Plus, MATLAB ActiveX [10]

Direct Methanol Fuel Cell modelled through multiscale
approach; thermodynamic property model generation, fu-
gacity and activity coefficient calculations for methanol,
water and methane

CAPE-OPEN, COFE, ICAS-MoT,
ProSimPlus, Simulis Thermody-
namics

DLL file [42]

Scenario modeling Dynamic modeling of a sulfuric acid production plant gPROMS, MS Excel n.a. [35]

Reduce energy consumption
Propane pre-cooled mixed refrigerant LNG plant Aspen HYSYS, MATLAB (GA) ActiveX [15]
Separation of a benzene-toluene mixture Aspen Plus, MATLAB ActiveX (Mediator: Ms Excel

VBA)
[9]
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2.2. Process Design and Optimization

In the previous section, we could see a plethora of application examples for multi-
software engineering, mostly single-unit modeling and solving custom operational problems.
This method is powerful enough to be applied to whole chemical plants and processes with
multiple different unit operations. In this subsection, we focused on showing the application
to mainly optimization problems, which include multiple equipment and processes.

For example, Bayoumy et al. took a step further and, instead of optimizing a single
unit, applied the previously mentioned Aspen HYSYS and MATLAB connection to an
extensive green-field saturated gas plant with numerous components and operational
units [12]. In their case, a steady-state simulation was optimized using a merge between
sensitivity analysis and stochastic optimization techniques.

Zhu et al. took an in-depth look at a multiple gas feed sweetening process and aimed
to develop a superstructure using a simulation-based framework [13]. They also collected
literature data from the past 5 years of simulation-based optimization methods and software
used, focusing on the algorithm in each case.

Aspen HYSYS linked together with MATLAB is often used in various optimization
problems regarding the oil industry, namely, genetic algorithm (GA) [14,45] and particle
swarm optimization (PSO) [12,46] techniques are used mostly in plant optimization tasks
as the following works describe.

For process optimization and structure comparison with the same software framework,
a PSO algorithm could be used [47,48], but GA provides greater confidence than PSO in
optimization with wider ranges of constrained bounds [12].

Li et al. used the SADDE algorithm in a MATLAB and Aspen Plus environment for an
ethylbenzene and styrene separation distillation unit [49]. Ruiz-Femenia et al. developed a
Generalized Disjunctive Programming (GDP) framework for a bi-objective problem, which
aims to minimize the Total Annual Cost (TAC) and the Dow’s Fire and Explosion Index
(F&EI) for process safety while finding the optimal values for the continuous variables and
the best flowsheet configuration in a superstructure [50]. The synthesis was simulated in
Aspen HYSYS and the modeling framework was built in MATLAB and solved by the TOM-
LAB optimization environment. Superstructure optimization was also investigated for CO2
capture, linking Unisim Design with MATLAB using a GA algorithm [51]. Multi-objective
optimization problems also utilize Aspen Tech software and the MATLAB environment
using GA [52,53] and NSGA-II [54] algorithms.

These works are great examples that show the many software that have to be involved
in building and optimizing processes with multiple different operational units. One can
also notice the importance of choosing the right connection method between software.
With the use of metaheuristic algorithms instead of gradient-based ones, the problems of
obtaining derivative information through the numerical noise can be avoided [12].

Reducing energy consumption [9,15], improving economic performance [16,55], and
optimizing emission values [56–58] are other applications that often utilize multi-software
engineering for the optimization task.

Mounaam et al. investigated an industrial sulfuric acid plant with a contact process
and developed dynamic models for simulation and optimization purposes [55]. The
simulation was provided by Unisim Design; its graphical interface made it possible to use
the developed model for operator training or digital twin technology for the real plant. It
was connected with the programming language Python, where data reading and writing
from the simulation were possible, and performed optimization with a parametric study
for cost and SOx emission minimization.

Brambilla et al. [16] performed an unconventional real-time optimization (RTO) with
an offline simulation model built in UniSim Design. The optimal setpoints were obtained
analytically, as a function of the feed, products, and energy price fluctuation.

Alabdulkarem and coworkers studied the optimization of a propane pre-cooled mixed
refrigerant LNG plant to reduce power consumption [15]. The optimization of the refriger-
ant mixture was carried out in MATLAB with Genetic Algorithm (GA), that communicated
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through the actxserver command which was used to create the HYSYS COM server to
access the plant model and its variables.

Radó-Fóty et al. used Aspen Plus and MATLAB coupling for the optimization of
a coke oven gas purification process based on gas composition requirements [56]. The
steady-state model in Aspen Plus sent the results to MATLAB, which was used to provide
operational parameters for the technology. The validation of the model was carried out
using industrial data.

Briones-Ramírez et al. focused on the procedure of linking Aspen Plus and MATLAB
in an example of minimizing the number of stages in a Petlyuk sequence with a detailed
multi-objective optimization [59].

Furda et al. developed a steam process drive sizing methodology with the use of Aspen
Plus and the MATLAB environment, in a case study to replace a condensing steam turbine
with a backpressure one [10]. As they found, previous utility system optimization problems
mainly focused on process-side modeling, while the proposed method considered coupled
stream- and process-side modeling and also implemented the real operational parameters
of the industrial case study system [60–62]. They also mentioned the lack of information
regarding the interface linking methodologies and their capabilities and provided a detailed
description to set up the Aspen Plus-MATLAB link via a local ActiveX server.

Batolome and Van Gerven also found the lack of description for linking software; there-
fore, they studied different connection methodologies for the popular process simulator As-
pen HYSYS [24]. They described four interconnection approaches for data exchange—direct,
indirect, internal spreadsheets, and data tables. A test was carried out with AspenTech
example simulation files, both steady state and dynamic, to test the different connection
methods to the different external tools—Microsoft Excel VBA, MATLAB, Python, and
Unity respectively. Based on the evaluation of the results, the following three criteria were
created—average connection time delay, accuracy of input connection, and overall consis-
tency of output. The authors found that the internal spreadsheet connection performed
properly in all cases, but found severe limitations in each case.

Optimization algorithms are usually not part of the process simulators, or their ca-
pacity is severely limited compared to the wide variety of algorithms implemented in
coding environments (such as MATLAB/Python). Applying a suitable connection method,
an external solver for these problems can be applied to use an appropriate and reliable
optimization algorithm. Table 2 contains the articles collected in this subsection with regard
to optimization and sensitivity analysis.
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Table 2. Collected and categorized research on design regarding multi-software applications.

Research Focus Software Connection Ref.

Optimizing operating conditions

Whole green-field saturated gas plant optimization Aspen HYSYS, MATLAB (GA,
PSO)

ActiveX [12]

Split ratios of sour gas streams to different feed stages and
circulating flow rate of the lean solvent

Aspen HYSYS, MATLAB (PSO) ActiveX [13]

Post-combustion CO2 recovery unit utilizing the absorption
refrigeration system

Aspen HYSYS, MATLAB (GA) ActiveX [14]

Crude oil distillation systems with preflash units Aspen HYSYS, MATLAB (GA) ActiveX [45]
Heavy hydrocarbon removal process that reduces the heat-
ing value of LNG to meet desired specifications

Aspen HYSYS, MATLAB (PSO) ActiveX [46]

LNG plant optimization on optimum composition of refrig-
erant mixtures and pinch temperatures

Aspen HYSYS, MATLAB (GA) ActiveX [15]

Coke oven gas purification process based on gas composi-
tion requirements; minimizing energy consumption, H2S
and NH3 content

Aspen Plus, MATLAB (fmincon) ActiveX [56]

Multi-objective optimization

Sulfur recovery units using detailed reaction mechanism Chemkin Pro, Aspen HYSYS,
MATLAB (GA)

n.a. [52]

Natural gas liquefaction process Aspen HYSYS, MATLAB (GA) ActiveX [53]
Operation of the product separation process in a methanol
to propylene plant

Aspen Plus, MATLAB (NSGA-II) ActiveX [54]

In a Petlyuk sequence minimizing the number of stages in
a pre-fractionator, the number of stages and the heat duty
in the main column

Aspen Plus, MATLAB (GA) Local OLE automation server [59]

Biobjective optimization of minimizing the Total Annual
Cost and the Dow’s Fire and Explosion Index in the
processes of benzene chlorination and the production of
methanol

Aspen HYSYS, MATLAB,
GAMS, TOMLAB

n.a. [50]
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Table 2. Cont.

Research Focus Software Connection Ref.

Process structure optimization

Coupled stream- and process-side modeling for utility sys-
tem optimization

Aspen Plus, MATLAB ActiveX [10]

Four distillation-based configurations in propylene-
propane separation process

Aspen HYSYS, MATLAB (PSO) ActiveX [48]

Cryogenic distillation and membrane separation in a he-
lium extraction processes integrated with nitrogen removal
units

Aspen HYSYS, MATLAB (PSO) ActiveX [47]

Double-effect distillation and self-heat recuperation tech-
nology in an ethylbenzene/styrene separation process

Aspen Plus, MATLAB (SADDE) ActiveX [49]

Comparison between a classic distillation column and a
Heat Integrated Distillation Column

Aspen Plus, MATLAB ActiveX (Mediator: Ms Excel
VBA)

[9]

Superstructure optimization

CO2 capture configuration and four different types of struc-
tural modifications

UniSim desig, MATLAB (GA) n.a. [51]

Multiple gas feed sweetening process Aspen HYSYS, MATLAB (PSO) ActiveX [13]
Benzene chlorination and the production of methanol Aspen HYSYS, MATLAB,

GAMS, TOMLAB
n.a. [50]

Sensitivity analysis

Number of stages of a debutanizer and deethanizer tower;
amount of recycled lean oil and split ratio

Aspen HYSYS, MATLAB (GA,
PSO)

ActiveX [12]

The effect of membrane selectivity on membrane area and
reboiler duty for the partial dehydration of ethanol

Aspen Plus, MATLAB Matlab User Model (Mediator:
Ms Excel VBA)

[34]

Steady state simulation of a sour water stripper and dy-
namic simulation of a depropanizer; varying the input tem-
perature, pressure and molar flows of three components

Aspen HYSYS, Matlab, Python,
Unity

ActiveX, (Mediator: MS Excel) [24]

Analysis on parameters that can be changed and that are
fixed during operation in a coke oven gas purification pro-
cess

Aspen Plus, MATLAB ActiveX [56]
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Table 2. Cont.

Research Focus Software Connection Ref.

Dynamic optimization

Real time optimization of a propane-propylene critical dis-
tillation unit

UniSim Design n.a. [16]

Maximizing the amount of energy produced and the
amount of SO2 converted into products, minimizing the
total amount of SOx released to the atmosphere

gPROMS, MS Excel n.a. [35]

Industrial sulfuric acid plant with contact process; minimiz-
ing emissions, maximizing production performance and
revenue

Unisim Design, Python n.a. [55]
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2.3. Process Control and Safety

In the previous sections, we talked about equipment modeling, design, and process
optimization applied to both dynamic and steady-state systems. Dynamic simulation
models could be utilized to investigate process control and apply safety measures with the
help of multi-software engineering too.

Tuan et al. designed the control system of a depropanizer column using the Aspen
HYSYS and MATLAB-SimuLink co-simulation setup, where the control objective was to
reduce the variation in product quality [17]. The dynamic model of the distillation column
was built in Aspen HYSYS, whereas MATLAB-Simulink was used for designing the model
predictive control (MPC) for the multivariable process. The connection was made through
MATLAB with the HYSYSLIB toolbox, which uses HYSYS spreadsheets to read and write
data for system identification and MPC tuning.

Chinprasit et al. also developed a model predictive control (MPC) for a vinyl chlo-
ride monomer process by integrating the concept of plant-wide control and subsystem
partitioning to reduce the complexity of the control system optimization [63]. Aspen Plus
Dynamics was used to model the thermal cracking, quench, and distillation processes;
while in MATLAB-Simulink, the partitioned two squared linear systems were built by
the MPC controller block. The connection between the software was built through the
AMSimulation block in Simulink which utilizes COM technology.

Other simulators were connected with the use of MATLAB-SimuLink in multi-variable
automation problems in the works of by Ryu et al. [18] and Dos Santos Vidal et al. [64]. Bram-
billa et al. [16] implemented hierarchical controlling using MPC [65] and real-time optimization
tools for a distillation process, where the simulator was developed in UniSim Design.

From the above examples, it can be seen that MATLAB-SimuLink is a common tool for
solving various control problems, as it includes many built-in toolboxes that can connect
different flowsheet simulators with customizable control panels.

The following works are examples of applying multi-software engineering to safety
problems. Mizuta et al. performed a detailed safety analysis regarding a runaway reaction
during methyl ethyl ketone peroxide (MEKPO) production, where venting from a safety
valve was constructed [66]. Dynamic computer simulations were carried out in Aspen
Plus Dynamics and the safety valve model was built in the Aspen Custom Modeler block.
The model was validated by comparing the results against experimental data, using the
Advanced Reactive System Screening Tool (ARSST).

Kummer and Varga demonstrated the use of the multi-software framework, applying
dynamic HAZOP to a vacuum distillation column [67]. They used Aspen HYSYS as the
dynamic simulator of the process with OPC connection, which allows the reach of model
variables and modification of the operating parameters of the process with MATLAB, where
the data were being evaluated. The deviations to demonstrate controller failures were sent
from MATLAB. The Aspen OTS Framework hosted the OPC server, where MATLAB was
connected and the simulator was run. The OPC client used the server to access data from
the simulator and to send commands too.

Designing control systems and incorporating process safety is another important area
of the application field of multi-software engineering; we grouped these in Table 3. Dynamic
process simulators with control systems could be connected to external numerical solvers
through built-in toolboxes utilizing COM or OPC connections, where custom algorithms
are used for controller tuning and optimization.
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Table 3. Collected and categorized research on control and safety regarding multi-software applications.

Research Focus Software Connection Ref.

Control system design

Design of a condenser with two controllers to set the tem-
perature and the liquid level inside

MOSAICmo- deling n.a [43]

MPC control system design and optimization for a propane-
propylene super-fractionator

UniSim design n.a. [16]

MPC control system design and tuning for a deprotonizer
coloumn

Aspen HYSYS, MATLAB-
Simulink

HYSYSLIB toolbox (COM) [17]

Partitioned MPC control for a vinyl chloride monomer pro-
cess, containing cracking, quench and distillation processes

Aspen Plus Dynamic, MATLAB-
Simulink

AMSimulation block (COM) [63]

MPC based plantwide control structure for the separation
of off-gas from a polysilicon plant

Aspen Plus, Aspen Dynamics,
MATLAB-Simulink

n.a. (COM) [18]

Multivariable fuzzy logic-based control system and a classic
multi loop PID applied to a refrigeration system

Aspen Plus, Aspen Dynamics,
MATLAB-Simulink

n.a. (COM) [64]

Implementing control algo-
rithms

Cryogenic NGL recovery unit optimization framework to
maximize profit with a stable operation of the process

Aspen HYSYS, Phyton n.a. [68]

Safety-equipment modeling
Safety analysis for vent sizing regarding a runaway re-
action; comparison of the method developed to the ISO
omega safety valve design method

Aspen Plus Dynamic Aspen Custom Modeler (ACM) [66]

Process safety
Generalized Disjunctive Programming framework, that
aims to minimize the Total Annual Cost and the Dow’s
Fire and Explosion Index for process safety

Aspen HYSYS, MATLAB,
GAMS, TOMLAB

n.a. [50]

Dynamic HAZOP Controller failures of a cumene-hydroperoxide vacuum
distillation column to produce phenol

Aspen HYSYS, MATLAB OPC [67]
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2.4. Data-Driven Methods

Data-driven methods could be applied in any field with large data sets and are
developing rapidly. The chemical industry is no exception, as these methods have many
benefits compared to the classically used a priori model-driven methods. In the previous
section, we showcased various optimization problems; in this section, data-driven machine
learning tools are featured, which assist complex optimization and control problems applied
to process models. Mushin et al. [69] investigated the optimization of crude oil HDT
processes, where Aspen HYSYS models were built to simulate real plant data. The obtained
process data were used to develop bootstrap aggregated neural network models. They
were used in a multi-objective optimization framework, where the minimization of model
prediction confidence bounds as an additional optimization objective was added.

Zhu et al. developed an optimization framework for a cryogenic NGL recovery unit
using deep learning-based surrogate models [68]. Aspen HYSYS was used to simulate the
cold residue reflux process, which was based on industrial data, to construct a dynamic
simulation and implement control strategies. The objective was to maximize profit with a
stable operation of the process. An optimization framework, with the use of a differential
evolution algorithm, was built in Python to manipulate the operating conditions. For
validation, two case studies were created to simulate changing market conditions.

With complex optimization tasks, it is often challenging to maintain computational
time at a reasonable speed for obtaining solution convergence between steady-states. To
overcome this limitation, surrogate modeling of digital twins could lower the time of
convergence in process simulators by implementing machine learning methods in place of
model-driven methods [70].

Alhajeri et al. studied the performance of model predictive control (MPC) in an
ethylbenzene production process, comparing fully-connected and partially-connected
recurrent neural network (RNN) models [71]. The simulation of the process was carried out
in Aspen Plus Dynamics, while input signals were generated in MATLAB, linking the two
software with a local message passing interface (MPI). Similarly, a Python script was created
to send random control actions to the simulation for testing the open-loop prediction.

Reinforcement learning is a type of machine learning paradigm that is based on
reward and punishment mechanisms and is often used in optimization problems. Kim et al.
considered a deep reinforcement learning approach for the optimization of Single Mixed
Refrigerant cycles for the LNG liquefaction process [72]. The optimization objective was
the minimization of refrigeration power, subject to the constraint of minimum temperature
difference. The Deep Q-Network (DQN) framework was implemented in Python, while
the process model was built in UniSim Design and MATLAB was used for delivering
decisions. They also reported a similar computational performance between the DQN
and GA methods. Hedric et al. also utilized reinforcement learning for the online tuning
of MPCs in order to reduce nitrogen oxide emissions in an industrial selective catalytic
reduction unit [73]. The dynamic model was developed in the Aspen Custom Modeler
(ACM) unit.

However, in order to apply the outcome of the model predictions to the real system,
the used model/simulator should be an accurate representation of the fundamental system.
Without validating experimental or industrial data, the conceptual model is considered
invalid and the simulation model cannot be used reliably.

In this sense, the importance of data reconciliation has to be mentioned, as it could
filter out random error and improve the quality of measured data for further usage in, e.g.,
process simulation. The measuring equipment is inevitably laden with error, which affects
the data obtained, causing it to not satisfy balance equations [74].

Farsang et al. studied the online monitoring of catalyst deactivation, where the main
idea was to perform the simulator development and data reconciliation simultaneously [11].
Industrial data from an online measuring system were available, but the standard devi-
ation of the data set was large for the observed kinetic values. More accurate parameter
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estimation was possible with data reconciliation. The results could also contribute to the
validation of online analyzers [75].

Vaccari et al. used a geothermal power plant model built in dynamic simulator UniSim
to analyze the behavior of pollutants present in the process and estimate the changes based
on the current process conditions [57,58]. The model was developed based on real plant
data and data reconciliation was performed via optimization internal to the simulation
environments. Seman et al. utilized data reconciliation for the tuning of oil well models [76].
With the proposed methodology, automatic steady-state detection and re-estimating of
chosen parameters reflect the current operating conditions. Table 4 contains the above-
mentioned research on data-driven methods regarding multi-software applications.

Table 4. Collected and categorized research on machine learning regarding multi-software applications.

Research Focus Software Connection Ref.

Machine
learning

Process profit prediction using deep learning
based surrogate models

Aspen HYSYS, Python n.a. [68]

Optimization of crude oil HDT processes to
develop bootstrap aggregated neural network
models

Aspen HYSYS n.a. [69]

Performance of model predictive control in an
ethylbenzene production process, comparing
fully-connected and partially-connected recur-
rent neural network models

Aspen Plus Dynamic,
MATLAB, Python

Message
passing
interface

[71]

Optimization of the SMR natural gas liquefac-
tion process with Deep Q-Network

UniSim Design, MATLAB,
Python

n.a. [72]

Controlling nitrogen-oxide emissions in a se-
lective catalytic reduction unit with online dy-
namic tuning of MPCs

Aspen Dynamics Aspen Cus-
tom Modeler

[73]

Data recon-
ciliation

Online monitoring of catalyst deactivation used
for kinetic parameter estimation in C3 hydro-
genation system

Aspen Plus Microsoft Ex-
cel VBA

[11]

Automatic detection of steady-states in oil well
models for daily optimization

Marlim simulation model n.a. [76]

Emission control and detection in geothermal
power plants

UniSim Design n.a. [58]

2.5. Future Challenges of Multi-Software Engineering

There are a variety of engineering problems that multi-software engineering could
be applied to, and looking at the last few years of research, the future challenges of the
field can be identified. In this regard, the available literature is rather sparse when it comes
to equipment sizing and scale-up. It is an aspect that affects operation and controllability,
not to mention costs. Performing equipment scale-up is not an obvious operation, but a
rather complex problem, that could utilize multi-software modeling, taking advantage of
the ready-made unit setups that process simulators provide and the customization that can
be achieved with numerical tools.

Sustainable practices are more and more desired in the industry, which means that
the development of technologies based on recycled and/or nature-derived feedstocks is
in demand. Dealing with such feedstocks requires a more complex molecule system with
unique interactions and reactions to use that current process simulators are not ready to
handle yet, as our case study (Section 5) shows.

Another important terminology to mention is the Digital Twin technology that is
widely developing in the industry for the main purpose of supporting Operator Training
Simulations (OTS). A Digital Twin is a replica of a unit or process that can predict design
failures if it is applied in early planning. Additionally, a dynamic Digital Twin can be
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operated parallel to the real process supporting decision-making and intervention, or
simulate start-up and shutdown scenarios that are crucial in a process’ lifecycle. It is
another example where multi-software engineering tools can be beneficial for building a
robust dynamic simulator that is capable of handling such models.

The application of Machine Learning and Artificial Intelligence to chemical engineer-
ing problems through different software mediums is also more and more studied. Recently,
AspenTech released a new version of the simulation software Aspen Plus V12, which
includes basic neural network features. Incorporating data-driven methods inside commer-
cial process simulation environments could significantly reduce computational time.

Although more and more vendors try to accommodate these needs, by releasing new
features to their software, these commercially available simulators still cannot provide a
full solution for modern engineering problems on their own. Custom modifications are
often required by skilled engineers who must have extensive knowledge of other software
on the market, as well as programming.

In the following sections, we collected the methods and available software for multi-
software engineering use to serve as a guide for software connecting opportunities.

3. Linking Types for Multi-Software Applications

Depending on the application and the type of these flowsheet simulators, one can
perform different connections between them or with an external tool. The use of middle-
ware or specific built-in blocks is common. The main approaches are ActiveX (Component
Object Model (COM) and Object Linking and Embedding (OLE)) and OPC (Open Platform
Communication) connections.

ActiveX is considered an outdated framework for new development in software engi-
neering [77] but several process simulators put it to good use for external software linking
purposes [78]. It utilizes the earlier Component Object Model (COM) and Object Linking
and Embedding (OLE) technologies for software to communicate with each other using
scripting and perform data exchange with each other. It is designed for communication on
a single hardware or inside a network. The COM server and its scripting is available for
most commercial process simulators, such as Aspen Plus or HYSYS.

With OPC [79], one can create direct simulator-to-simulator connections; that way, run
time can be lowered and additional data loss can be avoided. However, a mediator tool is
advised to be used, if e.g., one would like to connect dynamic simulators, as in this case the
simulation clocks of each software run differently.

With some of the commercial process simulators native integration is also possible.
One example of this type of connection is gPROMS Object for MATLAB (gO:MATLAB),
which allows solving complex mathematical equations by calling a previously built model
from gPROMS within a function in MATLAB [80]. Similarly, gO:Run is a convenient tool
for non-advanced users, as it makes it possible to execute previously built gPROMS models
behind MS Excel VBA interfaces, where their standard functions can also be used.

Another example is Aspen Plus Dynamics (APD) and MATLAB-Simulink, where one
can add the Aspen Modeler Block to the Simulink model to design the control system of
a unit. When the APD model information is imported into Simulink, input and output
signals can be defined with the same variable names and sequence as in the Control Design
Interface (CDI) tool [81].

A similar connection possibility exists in Aspen HYSYS, which is called the Exten-
sion Container, with which custom objects can be added to the simulation such as Unit
Operations, Reaction Kinetics, and Property Packages. Those extensions become part
of the simulation and participate in the simulation calculations akin to regular built-in
HYSYS objects [20].

Interfacing COMSOL Multiphysics with several external software is also possible
via LiveLink [82].

Integrating the MATLAB environment and its toolboxes enables the use of its functions
while modeling. It allows you to call MATLAB functions from the COMSOL Desktop and
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import/export data from/to the MATLAB workspace. The MATLAB Simulink add-on
with the LiveLink connection can be used for control system design and performing
co-simulation of COMSOL Multiphysics models and Simulink diagrams. This kind of
connection is also possible with MS Excel, where parameters and variables that are defined
and modeled in COMSOL Multiphysics can be synchronized to an Excel worksheet creating
data libraries and parameter lists, which later can be used to load in the COMSOL Desktop.
For 3D designs, SOLIDWORKS and AutoCAD software can also be connected to COMSOL
Multiphysics, where the creation of model geometries and the integration of multiphysics
simulation are synchronized between the software for design optimization.

4. CAPE-OPEN Standard

For embedding models from external programs, another important tool has to be
mentioned and that is CAPE-OPEN. Computer Aided Process Engineering or Computer
Applications in Production and Engineering (CAPE) is a modeling approach to process
engineering problems that implies computer-aided methods and tools [83]. The CAPE-
OPEN project lists a series of specifications that define software interfaces for process
simulation environments. The CAPE-OPEN specifications are supported by the non-profit
organization CO-LaN [26]; the standard is uniform and available free of charge. Engineers
often come across complex modeling problems and the solutions for them lie in different
commercially available process simulation software. One can choose to develop a custom
model to solve these problems or try to integrate the existing models into their simulator.
Either way, it requires advanced programming skills and takes significant amounts of time
and effort, although it provides only a temporary solution. The development of new ver-
sions in the modeling environments makes it difficult to integrate the new components and
the difficulty of writing software interfaces is particular to the host modeling environment.

The standardization of interfaces that CAPE-OPEN provides for software vendors has
the advantage of interoperability. One can differentiate between the two main elements of
process simulation software, the Process modeling Environment (PME) and the Process
modeling Component (PMC). The PME means a simulation program with a buildable
process flowsheet and working thermodynamics. A PME equipped with a CAPE-OPEN
plug allows any CAPE-OPEN PMC, such as unit operations or thermodynamic models, to
be placed in the modeling environment without further interfacing needed. That means
any modeling environment with a CAPE-OPEN interface from any vendor would be
able to communicate with any CAPE-OPEN modeling component without the need for a
communication channel or additional programming involved.

To allow such accessibility between several users, the CAPE-OPEN project classified
standards for Business and Common interfaces as seen in Figure 2. The former are vertical
interface specifications, which are domain-specific and contain the main PMCs of a process
simulation environment, such as flowsheet monitoring, unit operations, numerical solvers,
thermodynamics, and physical properties. The common interface specifications are horizon-
tal and contain basic functions such as utilities, error handling, or identification. They are
general-purpose interfaces independent of business interfaces that support basic functions
fundamental for CAPE-OPEN development. Another important part of the CAPE-OPEN
structure is the communication platform, which allows interoperability between the soft-
ware components PME and PMC. The object-oriented middleware technology that each
object uses to communicate is Microsoft’s COM (Component Object Model) or the Object
Management Group’s (OMG) CORBA (Common Object Request Broker Architecture);
these models are described in the implementation specifications.

Figure 3 shows the classification of the assorted PMEs and PMCs that implement
the CAPE-OPEN standard. The diagram also helps to distinguish between dynamic and
steady-state simulation software. In addition, besides the commercial process simulators,
freeware and openware were highlighted. The various in-house thermodynamics engines
of bigger commercial vendors were excluded from this figure.
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Business Interface specifications Common Interface specifications

Implementation specifications

Process Modelling Environment Process Modelling Component

Object-oriented Middleware (COM, CORBA)

Custom Data
Flowsheet Monitoring
Partial Differential Algebraic
Equations
Numerical solvers
Thermodynamics and Physical
Properties interface specification 
Unit Operation interface specification
Petroleum Fractions
Chemical Reactions
Physical Properties Data Bases
etc.

Persistence Common Interface
specification
Error handling Common Interface
specification
Parameter Common Interface
specification
Identification Common Interface
specification
Collection Common Interface
specification
Utilities Common Interface specification
etc.

Simulation excecutioner Sequential modular specific tool

Physical property

Unit operation

Numerical solver

Figure 2. CAPE-OPEN architecture elements and relations (COM: Component Object Model, CORBA:
Common Object Request Broker Architecture).

CAPE-OPEN is implemented in programming languages with an open source license,
such as SciLab—developed for engineers and scientists—and also one of the most widely
used languages in any coding-required field—Python. It is also available in openware such
as DWSIM and freeware such as COCO simulator and MOSAIC modeling.

MOSAICmodeling is based on a LaTeX-style entry method for building custom
equation systems to use for optimization, steady-state, and dynamic simulation pur-
poses [8,43,84]. It uses symbolic notation for automatic code generation for specific plat-
forms (e.g., C++, FORTRAN, Python, SciLab, MATLAB, gPROMS, Aspen Custom Modeler,
GAMS, AMPL, Modelica) that support reusability and portability. It is not designed as a full
software; the web-based environment and the available database of models complement
solutions for various chemical engineering applications [85].

Another openware is DWSIM, which is a process simulator available on local com-
puters or recently as a web application. A commercial web-based version of DWSIM Pro
is also available [21]. It includes solvers for both dynamic and steady-state simulations
and various unit operations in both cases. It contains advanced property packages and
thermodynamic models, just as commercial simulators, and has the option for Excel and
Python plugins interface for thermodynamic calculations.
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Figure 3. Current process modeling environments with CAPE-OPEN standard specifications imple-
mented.

COCO (CAPE-OPEN to CAPE-OPEN) is a freeware simulation environment that in-
cludes a graphical user interface for flowsheeting (COFE—CAPE-OPEN Flowsheet Environ-
ment), thermodynamic library and property calculation methods (TEA—Thermodynamics
for Engineering Applications), a set of unit operations (COUSCOUS—CAPE-OPEN Unit-
operations Simple), and a kinetic and equilibrium reaction package manager (CORN—
CAPE-OPEN Reaction Numerics) [86].

The flowsheet simulator COFE is steady-state and belongs in the category of sequen-
tial modular flowsheeting engines, which means the sub-models, such as thermodynamic
and unit operation models, are considered black boxes and are solved by an iterative
function [87]. COFE comes with an Excel template add-in, that deals with the documenta-
tion in an Excel workbook. It allows access to all streams and unit operations data, and
thermodynamic property calculations can be performed too.

Unlike any other simulation environment, COCO was developed from the beginning
as CAPE-OPEN-compliant; it is modeled around CAPE-OPEN interfaces. That means
COCO does not use built-in sub-models that use the flowsheet engine’s proprietary in-
terface, nor does it provide the option of user-defined models. Its components (TEA,
COUSCOUS, COFE) are exchangeable to any other CAPE-OPEN component and work
exclusively with such complaint models; additionally, any other third-party CAPE-OPEN
compliant PME can utilize COCO’s PMCs.

Due to COCO’s unique structure and open access, it is often used for interoperability
testing against third-party products, which helps with constant development and error
detection, as well as the improvement of the CAPE-OPEN standard.

5. Case Study

The original task that inspired this case study was to build a dynamic model of a
hydrogenation reactor based on the already existing data of lab-scale experiments from
the work of Capecci et al. [88], to further investigate the process. As a process simulation
environment that is capable of dynamic simulation, Aspen HYSYS was available to us.
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The original kinetic experiments were carried out in a batch reactor under isotherm
and isobaric conditions, where non-competitive Langmuir–Hinshelwood kinetics with
no dissociation of hydrogen were considered. The described rate expression model is a
complex equation [88] and the software is lacking some of the main correlations needed to
precisely incorporate all the known data.

That is a common problem engineers and researchers have to face, when some of the
key elements are missing to solve even more simple problems with the available software.
Therefore, we needed to formulate new kinetics, based on the previous kinetic study,
that could be used in the HYSYS environment and perform identification of the already
available experimental data. In our case, an external numerical solver (MATLAB) was
used to re-identify the reaction kinetics implemented in HYSYS. A co-simulation setup was
chosen, as the integration of the two software give us the ability to run several simulation
models, perform parameter identification, and validate the data at the same time from a
main program, and that way obtain results in one go and organize the data in one place.

5.1. Simulator Development of the Case Study

This case study aimed to show the identification of kinetic parameters with software
linking for the production of γ-valerolactone (GVL) from butyl-levulinate (BL) in a two-step
hetero-catalytic reaction over Ru/C catalyst.

Figure 4 presents the reaction network of GVL production; the first reaction was a
catalytic hydrogenation reaction leading to the intermediate butyl-4-hydroxypentanoate
(BHP). The second reaction was the cyclization of this intermediate, leading to the product
γ-valerolactone and butanol (BuOH). For the second cyclization step, both non-catalytic
and catalytic pathways were possible, meaning the ring closure reaction happened on its
own, but in the presence of the catalyst, it was faster. γ-valerolactone was also used as a
solvent, as the reaction is considered irreversible in solvent GVL. The hydrogenation is an
exothermic reaction with an enthalpy of −38.6 kJ/mole. The catalytic cyclization reaction
took place in the liquid phase on a solid catalyst and was endothermic; the enthalpy was
+6.5 kJ/mole [89]. This cyclization reaction was the rate-determining step.

Butyl-levulinate (BL) Butyl-4-hydroxypentanoate (BHP)

γ-valerolactone (GVL)

Hydrogenation

Cyclization

Butyl-4-hydroxypentanoate (BHP)

Figure 4. The two-step catalytic hydrogenation reaction of butyl-levulinate to produce γ-valerolactone.
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When generating the simulation, kinetics were simplified to Arrhenius type for the
three reactions present in the system. Equations (1)–(3) are the new kinetics created to
describe the reaction system of the process. Equation (1) represents the rate expression
for the catalytic hydrogenation, and Equations (2) and (3) are the reaction rates for the
homogeneous catalytic and non-catalytic ring closure reaction, respectively, where k0 is the

pre-exponentinal factor, EA is the activation energy in
[

J
mol

]
, R is the ideal gas constant in[

JK
mol

]
, T is the temperature in [K], c is the concentration of the components in

[
mol
m3

]
and

ωcat. is the catalyst loading in
[

kg
m3

]
.

r1 = k01 exp
(
− EA1

RT

)
cBL cH2 ωcat. (1)

r2,cat. = k02,cat. exp
(
− EA2,cat.

RT

)
cBHP ωcat. (2)

r2,ncat. = k02,ncat. exp
(
− EA2,ncat.

RT

)
cBHP. (3)

The detailed description of the characteristics of the components as well as the setup
used for the experiments are written in the works of Capecci and Wang et al. [88–90]. Based
on this, four series of experimental data were available for use, where the experiments were
conducted under different conditions and the concentration change in time was measured
for BL and intermediate BHP. Initial ratios of the mixtures, catalyst loading, temperature,
and pressure values were collected in Table 5.

Experiment 2 is different, as there was no catalyst present during the experiment and
the intermediate was the starting material to investigate only the non-catalytic ring closure
reaction. We chose to include this experiment to improve the fitting of the second ring
closure reaction during the identification.

Table 5. Parameters of the experiments used for identification.

Exp.
pH2 T mcat [BL]0 [GVL]0 [BHP]0 [BuOH]0

[bar] [K] [kg] (50 %wt moisture) [mol/m3] [mol/m3] [mol/m3] [mol/m3]

1 22.30 427.15 0.0028 619 8827 0 0
2 23.3 423.15 0 59 6884 1586 189
3 16.30 373.15 0.0005 1893 6719 0 0
4 5.20 393.15 0.0010 1885 6720 0 0

Four dynamic HYSYS simulation files were built according to the experimental setup
in the aforementioned article, to be simulated in the HYSYS using the Soave–Redlich–
Kwong (SRK) thermodynamic model. Arrhenius kinetics were considered for each reaction
as mentioned before, where the pre-exponential factors and the activation energies could
be reached via an internal HYSYS spreadsheet. In each case, the input parameters were
varied based on the selected experiments in Table 5. Figure 5 shows the unit design that
contains a batch reactor equipped with a temperature controller to operate in an isotherm
mode. Isobaric conditions were obtained with a high-pressure H2 inlet stream, similar to
the experimental conditions.
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Figure 5. Process flowsheet diagram of the batch reactor built in Aspen HYSYS.

5.2. Multi-Software Based Identification Framework for Kinetic Parameter Identification

The kinetic parameters were identified by linking the HYSYS simulator to the MATLAB
environment, where the latter acted as the main program. The connection was made using
COM technology through the ’actxserver’. The previously built HYSYS models of the
experimental cases were run from MATLAB, where modification to the kinetic parameters
was made directly through HYSYS spreadsheets. The schematic identification framework
is represented in Figure 6.

Initial kinetic parameter values 
Arrhenius kinetics

 
 

Process simulations of the
experiments

Evaluation of Objective function
 
 
 

Estimated concentration
trajectories (BL, BHP, GVL)

1 2 3 4

Model parameter update

New kinetic parameter values 
 
 

Load/transfer experimental data

Experiments

Measured concentration
trajectories (BL, BHP, GVL)

1 2 3 4

MATLAB environmentAspen HYSYS flowsheet Lab-scale experiments

Optimization algorithm (fmincon)

ActiveX (COM)

1
2

3

4

5

6

7

8

Figure 6. Outline of the identification framework connecting Aspen HYSYS and MATLAB.

The identification framework within the MATLAB environment calculated the kinetic
parameters of the HYSYS files, where their value was varied in each iteration step to achieve
better fitting to the experimental data sets in each case.

Based on Figure 6 the framework works in the following way:

(1) The starting point of the sequence is running the MATLAB program, where, as a first
step, it sends initial k and EA values to a previously set up internal HYSYS spread-
sheet.

(2) Values overwritten in the spreadsheet modify the described Arrhenius kinetics in
the HYSYS reaction sets.

(3) Then all four of the HYSYS simulations run with the new kinetic values until a set
time (reaction time).
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(4) The simulation results; concentration trajectories of the raw material (BL), intermedi-
ate (BHP), and product (BL) are transferred to another internal HYSYS spreadsheet.

(5) In the meantime, MATLAB reads and organizes the experimental data from text files.
(6) MATLAB will then import the concentration trajectories from the HYSYS spread-

sheets and evaluates the objective function including the estimated concentration
trajectories from all four simulations and all four measured concentration values
from the experiments.

(7–8) Based on the normalized error values, in the next iteration step MATLAB will find new
kinetic parameter values and send them to HYSYS to run the simulation again.

Equation (4) represents the objective function, which is a minimum search with a
quadratic error function including all data sets. To find the optimal point of the objective
function, MATLAB’s nonlinear multivariable solver ’fmincon’ was used.

min
x ∑

k={BL;BHP}

nexp

∑
exp=1

(ck,exp − ck,calc)
2, (4)

where ck is the concentration of the components BL and BHP in
[

mol
m3

]
, indexed exp for the

measured data, meaning the experiments 1–4 in Table 5 and calc for the fitted data set from
the HYSYS simulations.

5.3. Results and Discussion

The results of the kinetic parameter identification for the process described in Section 5.2
are shown in Figure 7. It can be seen that the calculated concentration trajectories fit the
measured data well. The identified kinetic parameters are in Table 6.

Table 6. Results of the kinetic parameter identification.

Pre-exponential factors

k01 4.37 · 10−03 (m3)3 kg−1 mol−1 s−1

k02,cat. 1.01 · 10−06 J (m3)2 kg−1 s−1

k02,ncat. 1.94 · 10−03 m3 s−1

Activation energies

EA1 12 304 J mole−1

EA2,cat. 0 J mole−1

EA2,ncat. 14 490 J mole−1

To compare the performance of our simple kinetic model with Capecci’s work, the R2

of their fitting to the concentration trajectories is 0.976 while ours is 0.952. The predictive
ability of our simpler kinetic model is comparable with Capecci’s model based on the
R2 indicator.

The program was run with Aspen HYSYS V11 and MATLAB 2021b on an Intel(R)
Xeon(R) W-2245 CPU 3.90 GHz, 32 GB; the computation time was 11 h and 15 min. However,
it has to be mentioned that the computation time could be lowered with parallel computing.
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Figure 7. The concentration curve fittings resulting from the identification.

6. Conclusions

In this work, the various applications of multi-software engineering regarding the
chemical industry have been highlighted through adequate literature. We organized this
prominent research into four categories—process modeling, process design and optimiza-
tion, process control and safety, and data-driven methods. Custom unit operation modeling
and process optimization were found to be the most utilized aspects. The integration
methodologies that could link together multiple process simulation software and coding
environments were also collected and studied in detail. The CAPE-OPEN standard was
also showcased in detail, with a focus on presenting open-source software. Freeware and
openware are important parts of the developing process, because of their wide accessibility.

In a case study, parameter identification with multi-software engineering was per-
formed to illustrate one of the many application aspects of the technique. The problem was
chosen to showcase the reality when the available process simulator is missing an impor-
tant element for problem-solving. In our case, it was the lack of kinetics definition, which
is crucial for model building inside a simulator. Therefore, a link between the dynamic
process simulator Aspen HYSYS and the coding environment MATLAB was made utilizing
an ActiveX connection. We found that the method provided good results and performed
well in fitting the available experimental data.

Commercial process simulator vendors have to keep up with the rapidly developing
information technology and the demand for modeling more complex processes. In the
sense of connecting data-driven methods to this software, as for now, two main routes
were shown—the possibility of native integration, specific to software, with customizable
toolboxes, or improving the plug-ins to accommodate outside environments.
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