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Abstract: Identifying the gender of a person and his age by way of speaking is considered a crucial
task in computer vision. Itis a very important and active research topic with many areas of application,
such as identifying a person, trustworthiness, demographic analysis, safety and health knowledge,
visual monitoring, and aging progress. Data matching is to identify the gender of the person and

his age. Thus, the study touches on a review of many research papers from 2016 to 2022. At the
Er;)edcgtfgsr heart of the topic, many systematic reviews of multimodal pedagogies in Age and Gender Estimation

Citation: Younis, H.A.; Ruhaiyem, for Adaptive were undertaken. However, no current study of the theme concerns connected to

NIR. Badr, AA.: Abdul-Hassan multimodal pedagogies in Age and Gender Estimation for Adaptive Learning has been published.

AK.; Alfadli, LM.; Binjumah, W.M.; The multimodal pedagogies in four different databases within the keywords indicate the heart of
Altuwaijri, E.A_; Nasser, M. the topic. A qualitative thematic analysis based on 48 articles found during the search revealed four
Multimodal Age and Gender common themes, such as multimodal engagement and speech with the Human-Robot Interaction
Estimation for Adaptive life world. The study touches on the presentation of many major concepts, namely Age Estimation,
Human-Robot Interaction: A Gender Estimation, Speaker Recognition, Speech recognition, Speaker Localization, and Speaker
Systematic Literature Review. Gender Identification. According to specific criteria, they were presented to all studies. The essay
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compares these themes to the thematic findings of other review studies on the same topic such as
multimodal age, gender estimation, and dataset used. The main objective of this paper is to provide a

Academic Editors: Adel Ali Ahmed, comprehensive analysis based on the surveyed region. The study provides a platform for professors,
AbdulRahman Alsewari, Yousef researchers, and students alike, and proposes directions for future research.
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1. Introduction

With the world’s latest tremendous development, technological advancement, and

- information age, we started accessing this study which is referred to the main terms in the
study, i.e., each of Multimodal Age Estimation [1,2]. Typically, it is more challenging to
assume the age of a speaker based on their speech [3], Gender Estimation [4], and Human-
Robot Interaction [5-7]. The first term, Multimodal, refers to the theory of communication
between social auditors that represent communication between audiovisual, visual, and
spatial resources. The second term is age and gender estimation. Therefore, many studies
have presented Multimodal in meta-learning [8], English language [9], a comprehensive
presentation of Vocal sacs [10], deep learning fields of vision, language, and speech [11-15].
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One study [16] used three-dimensional image analysis using mandibular third molar
apices to estimate age which also includes gender, race, and age image style transfer [17].
The age and gender estimations were based on a large database [18], in which the Gen-
der determination was conducted based on pain [19]. Age and gender estimation were
conducted by sphenoid bone pterygoid processes [20] and the Deep Residual Learning
Network [21]. In addition, the analysis of race was conducted in [22] the Frequency do-
main [23]. Infants’ neural speech processing [24], brain aging [25,26], and old speakers’
ability to understand one another [27]. Emotion recognition [28-30]. The conversion of
audio to textured visuals to recognize speech emotions [31,32]. The third term of the
Human-Robot Interaction (HRI) is a promising technology in service, social, and industrial
perspectives. Therefore, developers of HRI systems should evaluate the effectiveness of
the proposed system in terms of its function and whether it will satisfy individual, group,
and production requirements (i.e., its quality). Engineering places a lot of emphasis on the
concept of quality, which generally indicates how well a system, service, product, or service
provider process complies with established requirements and operates within established
parameters and conditions. [33-43].

Physical human-robot interaction has emerged as a critical issue in many fields, includ-
ing human-robot collaboration learning by demonstration and rehabilitation [33,39-45].

Multimodal is a mode of communication that includes Sign Language, Writing, Typing,
Body Language, Sign Language, Speech & Vocalizations, Gestures, Facial Expressions, High
Tech AAC systems, Light Tech Devices, and Low-Tech boards.

Biometrics is used as an identifier for an individual using physiological data or be-
havioural attributes. Everyone is known to be unique, therefore, biometric identifiers are
permanently associated with the user. As a result, they are more trustworthy than token
or knowledge-based authentication techniques, as illustrated in Figure 1. There are three
classifications of biometric modalities such as:
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Figure 1. Various Biometrics.

1.1. Physical Biometrics

The unique modality of an individual includes face, fingerprints, iris scans, and hand
geometry (see Figure 1). [46].

1.2. Chemical Biometrics

One of the recent areas that involves the estimation of chemical components associated
with humans, such as odor and perspiration.
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1.3. Behavioral Biometrics

These are commonly temporal in nature and involve analyzing how a user accom-
plishes a specified task. Examples of modalities include speech, signature, functional
mobility, and keyboard dynamics.

This study represented a comprehensive presentation of the study of literature, with
48 discreet scientific articles within a specific period. It is a comprehensive guide and
assistant for researchers in the same field that included symptoms of technologies, data,
processing methods, analysis, and extraction of features in four important databases, Web
of Science database, IEEE Xplore, Science Direct, and Taylor & Francis Group, (25%, 12%,
56%, 6%), respectively.

This paper is outlined as the following, Section 2 Relevant Works represents and
compares our A Systematic Literature Review study to the existing literature studies.
Section 3 is the Method used in SRL and provides the concept of the study and Research
Methodology. Section 4 Results. Section 5, evaluation metrics includes the categories of the
studies and discusses a comprehensive and detailed, Section 6, challenges and limitations,
Section 7, view of the dataset used in this field; and Section 8 Conclusions of paper review.

2. Relevant Works

This section discusses the existing literature under the scope of multimodal age detec-
tion and gender estimation associated with our main research. The main topics included
are current systematic reviews, surveys, and reviews. In this work, statistics pertaining
to the use of the reviewed studies were also listed (e.g., features, research design, feature
selection, deep learning, dataset, speech-dependent, text-dependent, multimodal, language,
protocol, and feature direction). The authors also discussed a variety of age and gender
estimates and offered some recommendations for potential future research areas, although
only in part.

Table 1 represents and compares our A Systematic Literature Review study to the
existing literature studies.

Table 1. Comparison between the proposed survey and existing literature.
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Table 1 describes the significance of our work against other existing work in terms of
various metrics, such as features, research design, feature selection, deep learning, dataset,
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speech-dependent, text-dependent, multimodal, language, protocol, and feature direction.
The authors studied and reviewed the body of knowledge on age and gender estimation
before establishing these parameters. This work includes a comprehensive discussion of
the most recent developments in the field and is compared to 13 prior relevant studies. The
scope of the study shows that speech recognition is the extraction of data that represents
the identity of the speaking person, to become the person who can, through his voice, reach
a set of services, control systems, or databases.

3. Method

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

This study designed a group of questions. The study covered the review of inputs,
methods of treatment, analysis, and directing of features to the results. We also offered
some of the techniques and algorithms. The methods used in the process contribute to
each study. The methods were distinguished by the collection of properties and methods of
treatment and access, and the presentation of the offer is the most accurate result.

The requirements asserted in the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses must be fulfilled (PRISMA) [58-62]. The current study was carried
out, meanwhile, PRISMA advises against depending solely on a database. When doing
a systematic review, look for the literature because it is unlikely that any database would
include all pertinent references. Consequently, much study is practically required, and it
is possible to conduct an accurate and detailed survey on several databases to include a
variety of articles. This study covers five comprehensive questions for each:

e  RQI: What methods were used and what techniques in data analysis are age estimation
and gender knowledge?

e RQ2: Does the data depend on the multi-means of the species? What kind of data is
used to estimate age and known gender? Do you rely on multimedia?

e RQB3: What are the challenges? Types, methods of conclusion, challenge it, classify it.
Ways to overcome them, how to overcome the challenges?

e  RQ4: What essential features of the datasets employed in this investigation are there?
Do their traits seem to have an impact on the outcomes?

e RQ5: What are the probable difficulties that exist in the studies in developing an
adaptive human-robot interaction’s multimodal age and gender estimation?

The most pivotal keywords, which are listed below in italics, describe the scope of
this study. Multimodal, Multimodality, Multimedia, Multi-media, Combined, System
can recognize, Age and Gender Estimation, Gender Age and Estimation, estimate, rating,
assessment, appreciation, respect, Adaptive, Adapt, Adjust, fit, conform, Human-Robot
Interaction, interaction man-robot, Robot-Human Interaction, Data mining, Deep learning,
Speech, Voice, and sound. Specifically, our study is limited to English-language publications.
Our study included only selected digital databases such as Scopus, the Web of Science
(WoS) database, Taylor & Francis Group, IEEE Xplore, and Science Direct. This research
was conducted using our academic search engine accounts to gain access to all open and
closed access papers. The first iteration excluded all duplicated articles and selected only
articles published prior to the last five and a half years, from 2016 to 2022 (completed June
2022). In this study, the Mendeley-Desktop 1.19.4-win32 was used to collect the papers. The
second iteration sorted the articles by titles, abstracts, and articles outside of our domain.
The third iteration filtered all articles by reading the full text. Unrelated articles and those
that did not meet our research requirements were eliminated.

In this study, we searched the Web of Science (WoS) database, IEEE, Science Di-
rect, and Taylor & Francis Group, using the search string ((Multimodal OR Multimodal-
ity OR Multimedia OR Multimedia OR Combined and System can recognize) AND
(Age and Gender Estimation OR Gender Age and Estimation) AND (estimate OR rat-
ing OR assessment OR appreciation OR respect) AND (Adaptive OR Adapt OR Adjust
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OR fit OR conform) AND (Human-Robot Interaction OR interaction man-robot OR Robot-
Human Interaction) AND (Data mining OR Deep learning)) AND (Speech OR Voice OR
sound)). We could not find any Systematic Literature Reviews during our thorough in-
vestigation between 20162022 that focuses on Age and Gender Estimation for Adaptive
Human-Robot Interaction.

3.1. Properties Criteria Search (Eligibility Requirements)

We started to input keywords, and the words of their approach to them in the same
sense, to reveal all articles in the same field and within the specified period (see Table 2).
Any article does not apply to the conditions below. We included the papers in Figure 2
that matched our criteria based on our analysis. The primary goal is to address the overall
scope of the study. The coarse-grained taxonomy has two levels. Categories identified
by prior research in the unrestricted literature (only three categories were emphasized
in this study). We examined two websites to study the directions cited in the literature.
After that, we excluded the articles through three cycles in order to eliminate duplicate
papers across databases. When the items failed to fulfil our eligibility requirements for
filtering and screening, the following conditions had to be met in order for an article to
be disqualified: (1) it must be clear and focus on a single issue; (2) it must be written in
English; (3) it must be redundant with other research websites, one of which had to be
disqualified; and (4) it must concentrate on the overview. Therefore, we emphasize our
efforts on the domains discovered in Figure 2 since they include a wealth of information
relevant to the investigation.

Table 2. Original words and alternative words used extensively in the study.

Original Words Alternative Words
Multimodality
Multimedia
Multimodal Multi-media

Efficiently manage
Combined gdp
System can recognize

Age and Gender estimate,
Age and Gender rating,
Age and Gender assessment,

Age and Gender Estimation Age and Gender appreciation,

Age and Gender estimation,
Age and Gender respect,
Age appreciation and gender appreciation

Adaptive

Adapt
Adjust
Fit
Conform

Interaction man—robot.

Human-Robot Interaction
Robot-Human Interaction

The interaction between man is a robot.
The interaction between a human robot.

Speech Voice, sound
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/INDEX TERM, KEYWORDS \
(Multimodal OR Multimodality OR Multimedia OR Multimedia OR Combined and System can recog-
nize) AND (Age and Gender Estimation OR Gender Age and Estimation) AND (estimate OR rating OR
assessment OR appreciation OR respect) AND (Adaptive OR Adapt OR Adjust OR fit OR conform)
AND (Human-Robot Interaction OR interaction man-robot OR Robot-Human Interaction ) AND (Data
mining OR Deep learning)) AND (Speech OR Voice OR sound)).
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Figure 2. Study flowchart, query terms, and valuation standards.

3.2. Process for Gathering and Taxonomy of Data

The information was gathered from the four scientific websites—WOS, IEEE Xplore,
Science Direct, and Taylor & Francis—and secured using the authors’ user credentials. The
preliminary screening process was then carried out, consisting of the following three steps:
First, duplicates are eliminated, then titles and abstracts are examined, and finally, the full
texts are reviewed. Last but not least, the Mendeley-Desktop-1.19.4-win32 software, Word,
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Taylor &Francis Group I

Science Direct -

ieee xplore [

and Excel were used to establish initial classifications, summaries, and infographics based
on their materials after reading, evaluating, and summarizing the articles. All academic
articles that followed the taxonomy were divided into two groups. Then, it concentrated on
three major categories, including the 48 research papers, models, parameters, type, input,
output, average accuracy, and problems, that extensively addressed the issue of multimodal
Age and Gender Estimation. We will talk about the other categories in another article.

4. Results

The study recommended that each of the Web of Science database (577), IEEE Xplore
(142), Science Direct (376), and Taylor and Francis Group (289), obtain a total of 1384 articles
from research sites that were approved in the study between 2016 and 2022. However,
two scientific articles from WoS could not be downloaded due to accessibility issues. A
total of 546 papers were published in the most recent six years (from 2016 to 2022), and
368 papers appeared in all three databases, generating 178 papers. The articles were filtered
using two categories and the research’s sequence. Following a careful examination of their
titles and abstracts, 67 more papers were eliminated. A total of 53 papers were in the
complete set. Five additional research papers were not uploaded after that. As a result, the
study now includes 48 academic articles in its entire sample. The study covered two major
fields that were divided into two subfields: Multimodal Age and Gender Estimation, and
Human-Robot Interaction. The first category consists of 13 papers (27.083%) such as review,
survey, and systematic review. Meanwhile, the second category consists of 35 papers
(72.91%) that include techniques and algorithms used for age and gender estimation for
adaptive Human-Robot Interaction.

4.1. Distribution Outcomes

Figure 3a demonstrates that the four digital databases published many publications.
IEEE Xplore published six papers, Web of Science published 12, Science Direct published
twenty-seven, and Taylor & Francis published three. Next, we extracted the percentage
number of articles from the total number of features in four important databases, Web of
Science database, IEEE Xplore, Science Direct, and Taylor & Francis Group (25%, 12%, 56%,
6%), respectively, shown Figure 3b.

Databases/ Number of articles

Web of Science database -

B Web of Science database W |EEE Xplore

0 20 40 60 B Science Direct Taylor &Francis Group

(a) (b)

Figure 3. (a) Publishing sites by number (b). The percentage of the number of articles from the
total number.
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4.2. Distribution by Articles’ Publication Years

Figure 4 shows the distribution of the articles from 2016 to 2022 by the years of their
publication. Approximately, there have been five published since 2016. In 2017, four articles
were published. Since 2018, 23 articles have been published. Since 2019, one article has
been published, three have been published since 2020, ten have been published since 2021,
and two have been published until May 2022. The lack of articles created in 2019 and 2020
can be attributed to the spread of COVID-19, while the year 2022 included the first four
months of it.

M year M No. of articles

23
10
2
I 3
| I I
2022
2016 2017 2018 2019 2020 2021

years

Number of Articles

Figure 4. Statistics of the appearance of the number of articles for years.

Figure 5 shows how triage is used in 25 different countries and nationalities. We
discovered that certain countries were the focus of literature studies or the circumstances
they addressed. The most productive writers come from the United Kingdom (UK), Ger-
many, the United States (USA), Brazil, Australia, Malaysia, Spain, Japan, Iraq, Indonesia,
Italy, Turkey, Norway, Iran, Switzerland, Canada, Hungary, India, Francis, Mexico, Chile,
Singapore, South Korea, and Switzerland, in that order, in terms of both numbers and
percentages (1 each).
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Figure 5. The authors’ nationality.
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appreciation

In Figure 6a, the word that appears the biggest in a word cloud reflects the term that
occurs the most frequently in the dataset, whereas the word that appears the smallest in
a word cloud represents the word that occurs the least frequently in the dataset. While it
represents Figure 6b, which was developed to assist instructors in managing the demands
of academic language and vocabulary in their text resources.

Q Q@ Interaction

oS & gender

X Age

anrobot

(@) (b)
Figure 6. (a) Word frequency (word cloud) in the study in terms of importance, (b) Word Sift.

4.3. Classification

Studies differed from one individual to another by the method of treating inputs,
and by what are the approved parameters on which the study was based in terms of
input, model, parameters, types, and many other various factors. Some of them used
accurate and other learning algorithms. Before entering the topic, it is necessary to in-
clude an introduction to deep learning, machine learning, and many methods of age and
gender estimation.

4.4. Artificial Intelligence (AI)

Today, artificial intelligence (Al) is known as a fast-expanding discipline that is en-
gaged in various subdomains and adapted to many practical applications. Over decades, Al
has been associated with various applications such as self-driving cars, speech and image
recognition, machine translation, as well as competing against world chess champions [63].

Some Al systems can learn without being explicitly programmed by extracting pat-
terns from raw data [64]. This capacity is known as Machine Learning (ML). Al-based
systems learn through trial and error and develop over time, in contrast to conventional
programming that follows step-by-step coding instructions based on logic, if-then rules,
and decision trees [65]. A subsidiary of machine learning called deep learning (DL) makes
use of artificial neural networks (ANN) with many hidden layers.

A.  Machine learning (ML)

Computer algorithms that can learn to perform tasks more effectively based on experi-
ence are the subject of machine learning (ML). Essentially, it is related to statistical analysis
and pattern recognition. ML has become increasingly mathematical and successful in
applications over the last 20 years (Makridakis, Spyr). ML has a wide range of applications,
including web searches, commercials, credit scores [66,67], stock market forecasting [68],
gene sequencing analysis, behavioral analyses, time forecasting, and in the analysis of large
amounts of data. Artificial neural networks have been used to predict time series in recent
decades due to ideal properties that allow for nonlinear models to be used [69]. Similarly,
the artificial network continues to grow in terms of the development of applications that
make it easier to work with when performing simulations with networks.

B.  Deep learning (DL)
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This is known as an automatic learning technique that uses many layers of nonlinear in-
formation processing to extract and transform characteristics with and without supervision,
as well as analyze and classify patterns.

An artificial neuron is modeled after a biological structure that serves as a basic
information processing unit. An artificial neuron is made up of a linear combination of
weights and input values that is processed by activation functions. As shown in Figure 7a,
the classical artificial neuron is a binary classifier from a supervised learning algorithm [70].

Input i . Weight i
Weight i+1

Input i+1 .
. Weight n !

'— Qutputs

. Output

Input layer Hidden layer  Output layer

a b
a 6 A A P\
hy he b R I |
b 4 oW W W W

Figure 7. (a) Artificial Neural Network, (b) Neural Network with Three Layers [71,72] (c) Sequential
Processing of a Recurrent Neural Network [71,72].

The simplest ANNs generate backward propagation, which allows for better learning
patterns to be obtained over time. Therefore, ANNs can match a certain pattern (some pat-
tern of data) over time. f represents the activation function of this unit, which corresponds
to the function chosen to convert input x to output value y = f(x,w), and it depends on the
specific characteristics of each network.

Y; = f(T:, St, Et) (1)

y=f(x,w) )

where x = input neural network, w = weight.

The basic structure of artificial neurons is a multilayered network. This structure is
commonly implemented, and it consists of the first level being the input neuron layers,
which receive the values of some of the patterns represented as vectors and act as the input
of the network. Then, many hidden layers whose modules respond to specific features may
appear on the input patterns; additional hidden layers may be present as well. The final
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level is the output, which is presented as the output of the entire network; this network is
known as a multi-layered or neural network, (see Equation (3)).

f) =1 (7 (F9)) ©)

where 1 = number of hidden layers.

The output or forecasting values must be validated by comparing the target to the
output values to learn the neural network. The training objective is to validate the forecast-
ing and reduce errors using the loss function. The forecasting is more accurate when the
error is lower. Gradient descent is a common improvement approach for improving the
loss function.

As presented in Figure 7b, the neural network consists of three primary components
(i.e., input layer, hidden layers, and output layer). Firstly, the input layer is used to apply
the input data to the network to compute the required results. With one layer, the input
layer could have multiple inputs. Secondly, the hidden layers could have one or more
layers, depending on the complexity of the network, and they are used to compute the
required results as well as train the neural network. Finally, the third layer, which consists
of one layer identical to the input layer, is used to generate the computed results. The
loss function could be computed to evaluate the network’s performance. The forecasting
results are compared to the defined target results using the loss function. An example
is the mean square error (MSE), which is utilized to compute the difference between the
computed and target results. A small difference between the computed and target results
refers to the highest accuracy and optimum forecast results, while a large difference refers
to the poverty of the technique to produce optimum results that are closely defined to
the target. Therefore, the relation between the MSE output and the accuracy is inverse,
which means that a small MSE value refers to the optimum forecasting network results.
(See Equation (4)).
1
n

™=

Wy—y) ==Y (V) )

t=1

where y = actual value (target), y' = forecasting value, and n = number of targets.

Neural networks have an advantage in forecasting due to their adaptive power, but
neural networks have limitations in time series because they cannot capture the temporal
dependency that could be observed. Thus, RNNs are created.

C.  Recurrent neural network (RNN)

RNN was first introduced in the 1980s and is composed of three main layers: an
input layer, one or more hidden layers, and an output layer. RNNs have a series structure
as repeating units, with the idea of storing and managing information from previous
processing steps in these units. In time series, RNN can learn the sequence and solve the
dependency problem. Figure 7c shows a simple RNN with an input unit, an output unit,
and a recurring hidden unit spread throughout the network, where xt is the input at t time
and ht is the output at once.

During the training process, RNN utilizes the reaction propagation algorithm that is
commonly used in the gradient calculation and modification of the matrices that will be
modified after adjusting the feedback process. (See Equations (5) and (6)).

i = f (U, W) ®)

o' = softmax(Vh') (6)

For this reason, this algorithm is also commonly called Back-Propagation Through
Time (BPTT) [73].

D. Long short-term memory (LSTM)
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LSTM is a revolution in RNN. Hochreiter and Schmidhuber (1997) proposed the
process to address the discomforts of RNN when additional cells are added, known as the
ability to learn long-term dependencies and recall of information for extended periods of
time [72,74].

In Table 3, the classification represents studies according to the factors that were
mentioned earlier by accreditation, models, and variables to display the main elements of
output, accuracy, and challenges within the field of study.

Face-based age estimation algorithms are frequently used in biometric applications
and other industries such as forensics and healthcare. To validate or estimate an individual’s
age for security purposes, facial characteristics can be used to restrict access to physical or
logical resources for that person. It will be indicated, clarified, and displayed in Figure 8 in
our study.

(A) Year and Model (B) parameters and Type

(D) ' Accuracy and Challenges

Figure 8. The results of the target category. (A) Reference, Year and Model, (B) References, Parameters
and Type, (C) References, Input, and output, and (D) References, Accuracy and Challenges.
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Table 3. Classification based on input, model, parameters, types, and other factors.

Ref. Year Model Parameters Type Input Out Put Average Challenges
Accuracy
. , o more difficult to classify the
[75] 2020 CNN Six hidden layers, Face recognition GoogLeNet 8, 5328 Estimation 850/0Age est, o,  more detailed classes
algorithm images 98% gender esti. 98% .
according to age.
. similarity & language
Five categories, speak 119 words in perceptitgn and fgamgguage
[76] 2022 neural activity . . . Speech the MRI, Estimation 52% . .
300 dimensional semantic FMRI raw data production in semantic
representations
50 participants,
[77] 2018 hypotheses 1a & 1b guréizi;n :;Zaéirqueleer;iiym(:gz )s, Speech Arabic, Korean and Estimation 71% non-native speakers
P & ' Mandarin
indowing;
Deep neural DNN-GIE, QCP, wn i S L
[78] 2019 ’ ! telephone speech interpolate and Estimation _ glottal flow estimation
networks AMR, CP, TIAIF and CCD. overlap add
PESQ, SNR, SSNR, SDR, clean speech Risk Estimation, F16 noise,
[79] 2020 PROSE STOI, MSE, WE, IS, COSH, Speech NOIZEUS and Estimation _ White noise,
IS-1I NOISEX-92 database Street noise, Train noise.
stabilized wavelet Japanese words
transform (SWT), Spectral, just noticeable (F€V03) TANDEMS-
[80] 2022 Auditory mode, difference (JND, point of speech TR AIGi—IT Estimation _ weighting function,
Cross-correlation, subjective equality (PSE), dataset
Transform SWM,
text augmentation
— approaches by adult degree of spontaneity,
[81] 2022 DNN. LSTM ET:;%:;OI‘ESS’VI;ZEHE gm;lénts speech data, Web data, text Estimation, Speech B include incomplete sentences.
! word repetition & ’ P generated by RNN, Recognition speech may be ill-formed,
p 33 children, LENA vocal effort
recording
3 h, 2023 newspaper
[82] 2021 ANN, niHEGP artificial neural networks speech style sentences, 300 Estimation 81% noise
sentences [83,84]
spectrogram,
MF Speaking-rate normalization, TANDEM .. Did speaking-rate
[85] 2018 VTLN, SRN, MFCC Zero-frequency filtering speech STRAIGHT Speech Recognition normalization (SRN) highly

effective?
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Table 3. Cont.

Average

Ref. Year Model Parameters Type Input Out Put Accuracy Challenges
GMM, Feature extraction, Mel filter S h g;loe TIMlI(Trdataset, traction of information
[36] 2020 MFCC, bank features, UBM, RMSE, peech, Speaxers Estimation extraction of mtormation,
short-time. STFT MAE video Audio Forensic speaker characteristics
4 Dataset (AFDS)
Textually neutral Hindi
GMMs, Speech, L. words have been used to
[87] 2018 MFCC LPCCs video 9 age groups Classification construct
text prompts
HMM, Soft (1) Rulesllpference engine . Speech Recognition, how know ideas fuzzy HMM
[88] 2020 . (ii) Fuzzifier Speech Speech signal P strategy, how know speech
Computing o Classification . X .
(iii) Defuzzifier signal handling territory
dysarthric speech
support vector . database, o
machines (SVMs), glottal para.meters. 765 isolated word 72.01% classification, intelligibility
K } time-domain, e Test data, X R
[89] 2020 time-domain, frequency-domain Speech utterances (B1, Classification 73.53% Validation estimation
frequency-domain q Y B2 and B3) oo tasks compared,

parameters

parameters, PCA

255 words, 155
common words

data
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In addition, in 2022, a study introducing random auditory stimulation was presented
for the final time. Individual perception (RaS-DeeP) used Deep Expectation (DEX CNN) to
achieve an EER of 3.3% for age estimation using Deep-learning-based age estimation [90].

On one hand, this aspect will be reviewed and explained by a display of models,
dataset entered, versions, and sizes arrived in the results (see Table 3). On the other hand, a
study used k-nearest neighbor (KNN) by gait energy images as to age estimation [91] and
gait analysis [92].

5. Evaluation Metrics

They are standard criteria that are measured by the actual performance of the work. It
is the level that must be the performance and arises usually after observation, monitoring,
experiments, research, and testing. These criteria are determined in advance, so, there are
two types of accuracy evaluation metrics, Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE) are used. In this study, the standards were tested on the news
classification of the speaker (female/male) and will be described in detail [1,93-95].

A.  Mean Absolute Error (MAE)

Error, also known as MAE, is a metric that measures the number of errors in a forecast-
ing set without taking the direction of the error into account (error greater or less than the
true value). This is shown in Figure 9 (See Equation (7)).

1 n
MAE = —} |yi =] @)
t=1

a. Year, dataset, size, type of Data and methodology

Figure 9. Cont.
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b. methodology and MAE

¥
N
g

w,

Figure 9. (a) Year, dataset, size, type of data, and methodology, (b) methodology and MAE.

B.  Root Mean Square Error (RMSE)

RMSE is a commonly utilized method for calculating the error of a model in forecasting
quantitative data (See Equation (8)). It is formally defined as follows:

RMSE — [y W) ®
=1 N

RMSE or MAE is one of the most used metrics for measuring the mean error between
predicted and real values. The RMSE is more sensitive to outliers in the data because it
calculates the mean of the squared errors.

6. Challenges and Limitations

Multimodal is a mode of communication that includes Language, Writing, Typing,
Body Language, Sign Language, Speech and Vocalizations, Gestures, and Facial Expres-
sions; High Tech AAC systems, Light Tech Devices, and Low-Tech boards.

In Figure 10, there are many challenges in the field of the study of the exact special-
ization represented by many difficulties which are in the role of finding solutions to them.
It can be shortened by capturing the five as shown in Figure 8, which are devices, spatial
challenges, time challenges, methods used, and other factors. The first devices contain type
of devices, modernity number, and the number of speakers per second and scan image. The
second spatial challenges contain the place, nature, delivery, and work environment. The
third challenge contains the age of the speaker, their health, and psychology. The fourth
method used contain RNN, CNN, DT, and another (see Table 4, Methodology column).
Finally, other factors include the used dataset, variables, sample size, and techniques.
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Figure 10. Challenges and Limitations of Age and Gender Estimation Studies.
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Table 4. The summary of the related articles, their methodology, used dataset and their details, methodology and MAS (Female, Male and Mixed).

MAE (Years)

. Yo Dataset Si Type of Data Methodolo
Ref ear atase 1ze P 8y Female Male Mixed
ADNI, ADNI, DLBS, 1000FCP, . .
[26] 2022 IXI, NITRC, OASIS, PPMI, SALD 2251 images multi-feature-based networks 3.73
[2] 2021 VoxCelebl 1211 speech Statistical Functional, LDA, G- RNN 9.25 10.33 10.96
[96] 2016 aGender 659 Telephone i-vector, LS-SVR 3 9.77 10.63
Speech
i-vector, 9.85 10.82
Neural Networks 9.56 10.69
[31] 2018 NIST SRE 220 speech LSTM 7 a4 8.29
RNN 6.97 7.79
[97] 2019 Morph-II, 55,134 Face DAG-VGG16 2.81
FG-NET 1002 images DAG-GoogLeNet 2.83
[98] 2021 MORPH II 55,134 Face images Hierarchical Attention-based Age 253
Estimation
[99] 2018 MORPH (Album?2) 55,134 Face images M-LSDML 3.31
FG-Net 1002
[100] 2017 MORPH 55,134 Face images CNN 2.78
Year-labeled. 154,294
Asian Face ..
[101] 2016 Age Dataset (AFAD) 160 K facial images OR-CNN/CNN 3.27
[102] 2022 MORPH II 55,134 facial images MWR 2.00
[103] 2016 IMDB-WIKI 523,051 facial images DEX(IMDB-WIKI)/CNN 2.68 2.68
MORPH, 55,134 . DLA 477
[104] 2015 FG-NET 1002 Face images CNN 426
[105] 2018 Morph-II 55,134 facial images CNN + ELM 3.44
FGNET, MORPH, 1002, 2000 . 5.39,3.98
[106] 2017 FERET, PAL 2366, 576 facial images CNN 3.00,3.43
[107] 2016 IMDB-Wiki 500K Face images CNN 2.99
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7. Dataset

In this section, the data were reviewed. We were able to divide the data into two
versions, A and B; the first contains the TIMIT Dataset, the HKUST Dataset, the SRE08/10
Dataset, the TCDSA Dataset, the JNAS Dataset, the AgeVoxCeleb dataset, and the AgeVox-
Celeb2 dataset. As for the second group, it contained the utch corpus dataset, the UF-VAD
dataset, the aGender dataset, and the NIST SRE dataset. Each of the arguments was re-
viewed separately, the form of the components of each category, its parts, numbers, types,
sizes, and studies that used this category data groups. Mono-media and multi-means.

All data contain different forms and types, including speaking, sound, and others
including videos and pictures. All of these are aimed at reaching the assessment of Age
and Gender Estimation. It represents real data.

A.  Group A Dataset

1. TIMIT DATASET

The purpose of the TIMIT read speech corpus is to develop speech data for acoustic-
phonetic research as well as for the development and evaluation of automatic speech
recognition systems. Broadband recordings of 630 speakers reading ten phonetically
dense phrases in eight significant American English dialects are included in TIMIT. Each
utterance in the TIMIT corpus has a 16-bit, 16-kHz speech waveform file, and time-aligned
orthographic, phonetic, and word transcriptions. Texas Instruments recorded the lecture,
MIT transcribed it, and the National Institute of Standards and Technology inspected and
prepared it for CD-ROM production (NIST) [1,2,4,108-110].

2. HKUST DATASET

The Hong Kong University of Science and Technology (HKUST) created HKUST
Mandarin Telephone Speech, which comprises roughly 149 h of Mandarin conversational
telephone speech (CTS). Although Standard Mandarin is not a natural dialect in the majority
of China, it is considered the official language of instruction. Mandarin speakers can have
regional accents or not. All calls were audited and classified as standard or accented without
further distinction, and subjects’ birthplaces were categorized into Mandarin-dominant
and non-Mandarin-dominant regions. This dataset was used in several cities across China.
Most of the participants had never met before. For this purpose, topics similar to Fisher
English were developed to engage in a smooth conversation. All calls were initiated by an
automated operator dialing two participants at the scheduled time of contact. Participants
were asked age, gender, native language/dialect, education, employment, phone type
education, and other demographic questions (refer to Table 5). It denotes the type and
number [111-113].

Table 5. Type And Number.

Number of Number of

Grope Calls Hours Females Males
Training 873 144.7 797 948
Development 24 3.9 24 24
Total 867 148.6 821 972

3. SRE08/10 DATASET

There are two types of SRE Datasets, namely the SREO8 Dataset and the SRE10 Dataset.
From 2008 to 2010, revisions and modifications were made. The 2008 NIST Speaker Recogni-
tion Evaluation Test Set was published in cooperation with the Linguistic Data Consortium
(LDC) and NIST (National Institute of Standards and Technology). It consists of 942 h
of multilingual telephone conversation, English interview speech, transcripts, and other
materials that were utilized as test data in the 2008 NIST Speaker Recognition Evaluation
(SRE). The NIST SRE dataset is a sequence of NIST evaluations that are essential in deter-
mining the focus of research and the apex of technological development. They are tailored
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toward academics with a general interest in text-independent speaker detection. The inter-
view is conducted in English the entire time. About 368 h of the dataset were accounted
for by telephone speech, and the remaining 574 h were accounted for by microphone
speech [31,114-116].

4. TCDSA DATASET

The Trinity College Dublin Speaker Ageing (TCDSA) Database was created with
the aim of learning more about the influence of age-related voice changes on speaker
verification. A major part of the collection comprises speech recordings from 26 individuals
(15 males and 11 females) whose range of age starts from 25 to 58 years. A collection of
120 developing speakers is also offered, with a mix of ages, genders, and accents. [117,118].

5. JNAS DATASET

The Acoustical Society of Japan’s Project the Speech Database Committees. The
following are the contents of newspaper article sentences: 155 text sets (each with roughly
100 sentences), for a total of 16176 sentences. The 503 phonetically balanced phrases in
ATR are as follows; there are a total of 503 sentences in ten text sets (each with roughly
50 sentences). There are 306 speakers in all (153 males and 153 females). The environment
for recording is a head-set microphone, and a desk-top microphone is included. WAV is a
digital audio format (16 kHz, 16-bit, Mono) and is formatted for audio files [119-121].

6. AGEVOXCELEB DATASET

The VoxCeleb dataset is an audio-visual collection of short snippets of human speech
collected from YouTube video interviews. It has over 7000 clips. Speakers VoxCeleb features
almost 2000 h of speech from speakers of all races, accents, professions, and ages. VoxCeleb
is a combination of voice and visual apparatus. Each section lasts at least three seconds.
There is a total of 1,000,000 utterances. All speaking face tracks, as well as laughing, with
background chatter, laughter, different lighting conditions, overlapping speech, and pose
variation. Gender was distributed as follows: 61% male and 39% female. The countries of
the speakers include the following, the United States, the United Kingdom Germany, India,
France, and Unknown, 29%, 10%, 6%, 6%, 6%, 7%, respectively [3,122-125].

7. AGEVOXCELEB2 DATASET

This dataset consists of 5994 speakers, 145569 videos, and 1092009 utterances. It is
a giant database of more than a million utterances from 6112 celebrities collected from
YouTube videos for VoxCeleb2. The IDs in the VoxCeleb2 development set do not overlap
with those in the VoxCeleb1 or SITW datasets [124-126].

B. GROUP B DATASET

1. DUTCH CORPUS DATASET

A huge dual set includes 425 speakers from the N-best training corpus’s Flemish
section which includes news, interviews, live interviews, read commentary, and reports
from Belgium. The corpus contains all of them. Figure 11 displays the age histograms for
both male and female speakers [127,128].

Male Female

Number of Utterances

Number of Utterances

0
15 20 25 30 35 40 45 50 55 60 65
Age

Figure 11. Speakers’ histogram (a) male (b) female.
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2. UF-VAD DATASET

The University of Florida Vocal Aging Database (UF-VAD), a corpus of American
English that was taped between 2003 and 2007, provided the information for the tests.
The collection includes 1350 read spoken utterances from 150 different speakers that are
based on well-known sources like the Rainbow Passage, Grandfather Passage, and SPIN
phrases. A corpus with a duration of 5 h consists of a participant who reads 2 min of
the same material using the same microphone and recording settings. The contributing
speakers are similarly evenly distributed among the three main age groups and genders.
In this instance, there are 25 male and female speakers in the young (18-29), middle-aged
(40-55), and elderly (over 55) age brackets (62-92). There are 50 delegates for each age
group and 75 delegates for each gender. The average age for each age group is 21, 48, and
79, respectively [129,130].

3. AGENDER DATASET

Felix Burkhardt et al. presented the aGender corpus in A Database of Age and
Gender Annotated Telephone Speech, which consists of audio recordings of free speech
and predetermined utterances made by people of various ages and genders. As shown in
Table 5, each utterance is categorized into one of three gender categories—male, female,
or child—as well as one of four age categories—children (C), youth (Y), middle (M), or
senior [96,131-134] (Refer to Table 6). The dataset is summarized as 659 speakers (291 males
and 368 females).

Table 6. Agender dataset (age and gender).

Class No. Age Gender Age Group

1 7-14 Male + Female Children
2 15-24 Female Young

3 15-24 Male Young

4 25-54 Female Male

5 25-54 Male Male

6 55-80 Female Seniors

7 55-80 Male Seniors

4. NIST SRE DATASET

The most enormous and comprehensive dataset for telephone speaker recognition
currently available is the NIST SRE CTS Superset, which is used to compile earlier SRE
datasets (SRE1996-2012). Overall, there are 605,760 segments with 6867 voices (2885 male
and 3992 female). As some speakers appear in multiple source corpora, the total number of
speakers in the table exceeds 6867. Each speaker has at least three sessions or calls, with
each section containing somewhere between 10 and 60 s of speaking. The CTS Superset
contains more than 50 languages, even though English is spoken in the vast majority of
segments (both native and accented English) [31,135].

8. Conclusions

This work suggested a comprehensive framework literature review where the methods
and techniques of several studies were clarified during the study period and show the
types of data used in this field. It also identified some studies that used automatic learning
and interaction between humans and robots, and the study showed the study environment
and displayed MAE. In a systematic study of Age and Gender Estimation, the approach
was presented to determine the main challenges and restrictions in the implementation
of the double-stage research. We studied accurately many studies to show the benefits,
challenges, and recommendations using accurate data, Age and Gender Estimation, and
we identified several gaps.

This research provides a broader base for modern literature directions by data anal-
ysis, determining their sizes and knowing their type, up to the results of the disposal in
research papers in Age and Gender Estimation Studies to obtain the deepest visions in the
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investigation area. The goal is to encourage academics and practitioners to use multimedia
analysis that includes speech and images and rely on them to reach a lifetime and select sex
for a precise image. Moreover, it determines the inputs on which the review operations
relied upon for the most accurate results and avoid the amount of error.
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Abbreviations

Definition Abbreviations
Percep-Tual Evaluation of Speech Quality PESQ
Segmental Snr SSNR
Source-To-Distortion Ratio SDR
Short-Time Objective Intelligibility STOI
Perceptual Risk Optimization For Speech Enhancement PROSE
Mean-Square Error MSE
Weighted Euclidean Distortion WE
Ttakura—Saito Distortion 1S
Hyperbolic Cosine Distortion Measure COSH
Itakura-Saito Distortion Between Dct Power Spectra Is-II
Stabilised Wavelet Transform SWT
Just Noticeable Difference JND
Point Of Subjective Equality PSE
Long Short-Term Memory LSTM
Stabilized Wavelet-Melling Transform SWMT
Stabilized Wavelets Transform SWT
Deep-Neural Network DNN
Asian Face Age Dataset AFAD

random auditory stimulation and Deep-learning based age estimation,

though individual perception RaS-DeeP
used Deep Expectation—Convolutional neural network DEX-CNN
Systematic Literature Review SLR
Preferred Reporting Items for Systematic Reviews and Meta-Analyses =~ PRISMA
Artificial Intelligence Al
Machine Learning ML

Deep Learning DL
Recurrent Neural Networks RNN

Artificial Neural Network ANN
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Audio Forensic Dataset AFDS
Mel filter cepstral coefficients MFCC
Mean Absolute Error MAE
short-time Fourier transform STFT
Gaussian mixture models GMMs
Hidden Markov Model HMM
support vector machines SVMs
principal component analysis PCA
ADNI: the Alzheimer’s Disease Neuroimaging Initiative, ADNI
Dallas Lifespan Brain Study DLBS
Functional Connectomes Project 1000FCP
Information eXtraction from Images IXI
Neuro Imaging Tools & Resources Collaborator NITRC
Open Access Series of Imaging Studies OASIS
Parkinson’s Progression Markers Initiative, PPMI
label-sensitive deep metric learning LSDML
Moving Window Regression MWR
Southwest University Adult Lifespan Dataset SALD
Mean Absolute Error MAE
Root Mean Square Error RMSE
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