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Abstract: In recent years, chemical experiment accidents have frequently occurred, resulting in
injuries and fatalities among researchers. It is crucial to address this issue to improve laboratory
safety. Based on many publications, it is clear that human error makes a major contribution to
many laboratory accidents which contain hazardous processes. However, there is limited research
focusing on human error in laboratory safety, and there is also a lack of effective measures to assess
Human Error Probability (HEP) for experimental process safety. Therefore, we propose an improved
Cognitive Reliability and Error Analysis Method (CREAM) which is based on risk data to assess
the HEP during hazardous processes in chemical experiments. The proposed method adjusts nine
Common Performance Conditions (CPCs) in conventional CREAM to make them suitable to describe
chemical experiments. Then, in contrast to the traditional approach, this study uses the definition
of risk as the support to collect CPC data from the perspectives of possibility and severity, so as to
improve the rationality of the data and decrease the subjectivity of expert judgment. Afterwards, the
weight value of each CPC is calculated through Gray Relation Analysis (GRA) based on the collected
risk data of each CPC. Meanwhile, the collected risk data are used to determine the fuzzy degrees
of each CPC, the activated fuzzy If-Then rules, and the corresponding rule weights. Finally, the
CPCs’ membership degrees, the CPCs’ weights, and If-Then rule weights are integrated together
to acquire the HEP by defuzzification. In short, the proposed method changes the CPCs to ensure
they are suitable, and then it innovatively uses risk data as the source to directly and indirectly
determine the CPC’s fuzzy degree, the CPC’s importance weight, and the If-Then rule weight by
fuzzy theory and GRA for collecting final HEP results. This method was tested on a selected chemical
experiment, “preparation of active ferrous sulfide”, which contains hazardous processes. Through
the proposed method, the HEP of each procedure in the selected risky chemical experiment could be
determined, and among the procedures, the highest HEP was 1.51 × 10−3. In addition, with the HEP
results, several subtasks with a high risk of human error could be identified. The results matched the
real situations.

Keywords: chemical experiments; hazardous processes; human reliability; risk data; fuzzy CREAM;
GRA

1. Introduction

In recent years, many accidents have happened during hazardous chemical experi-
ments. On 21 July 2022, an accident of catalyst leakage occurred at a research laboratory
of Petro China, which led to the death of one person and three people being injured. On
27 April 2022, at Central South University, an accident happened in a research laboratory
during a chemical- and material-science-related experiment, which caused one PhD candi-
date’s death. The laboratory is an important site for scientific and technological innovation
activities, which many young researchers are working in, so the safety issue should not be
neglected [1,2]. Nowadays, research on laboratory safety attracts increasing attention [3,4],
and many researchers share their findings and opinions. With the current focus on safety
management and accident causation analysis, Keckler et al. developed a safety management
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method to enhance laboratory safety by using questionnaire data [5]. Frederico et al. found
that improving safety culture can strengthen laboratory safety management [6]. Peng et al.
used machine learning to improve the accuracy and solve the limitations of subjective
evaluation in safety management [7]. Recently, many researchers have realized that human
error is a considerable issue in laboratory safety. Ma et al. conducted accident analysis and
causation research, finding that most defects in the laboratories and most root causes of
laboratory accidents are human-related [8]. Furthermore, in identifying and analyzing the
causes of laboratory fire and explosion accidents, it has also been recognized that human
error is a major problem [9]. Due to the importance of human error, Zhao et al. recently
published a study which views humans as a key element for laboratory safety assessment;
moreover, Yang et al. assigned the human factor a significant role in the laboratory safety
management framework [10,11]. With the deepening of laboratory safety research, human
error has been acknowledged to be the main cause of laboratory accidents, and its influence
should be considered [12,13]. Although people have realized that human error is a key
element in triggering accidents during hazardous experiments, there is limited research
on the quantification of human error in laboratory safety. Without effective human error
quantification analysis, people may find it difficult to realize how human error impacts
laboratory safety and it may be hard to manage and to avoid human errors. Therefore, HEP
quantification is a crucial and necessary research point in the domain of laboratory safety.

Human Reliability Analysis (HRA) is widely used to quantitatively estimate HEP.
Considering this study, it is also a reasonable choice to deal with HEP in conducting
hazardous chemical experiments. So far, dozens of HRA methods have been designed
and published, and those HRA methods can be divided into three generations. The
first generation HRA methods include the Technique for Human Error Rate Prediction
(THERP), Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H), Success
Likelihood Index Method (SLIM), and Human Error Assessment and Reduction Method
(HEART) [14–19], and they focus on task characteristics. Typical methods in the second
generation are CREAM and A Technique for Human Error Analysis (ATHEANA) [20,21].
They consider the influence of the environment on human reliability apart from task
characteristics. However, the ATHEANA method is for nuclear industries, time-consuming,
and weak in quantification, so this study does not consider that method. With in-depth
research on safety psychology, cognitive science, and system safety science, the newest
generation of human reliability methods includes Phoenix and the Integrated Human Event
Analysis System (IDHEAS) [22,23], which have been published and applied in areas such
as the oil and gas industries and nuclear power plants [24,25]. The above-mentioned HRA
methods are mostly designed for specific domains such as the oil and gas industry, the
petrochemical industry, and the nuclear industry. For this study, CREAM was selected as
the main method for further research, since it is not designed for a specific domain, and it
has strong functions for quantification.

The first publication of CREAM was in 1998, and it has received many expansions. As
human factor data is always insufficient, fuzzy CREAM has become an effective research
direction. Since 2006, fuzzy CREAM has been applied in the areas of oil and gas, the
nuclear industry, railway transportation, aviation transportation, and maritime activities,
with useful results [26–28]. So far, many improvements and expansions have been made
based on the fuzzy CREAM framework. In 2009, relevant scholars endowed fuzzy CREAM
with the function of probabilistic safety calculation through fuzzy min-max operators [29].
In addition, due to the dependence between CPCs, a Bayesian network was integrated with
fuzzy CREAM to build a probability safety assessment model [30–32]. However, CPCs
have different weights of influence on human reliability. Some researchers have promoted
the credibility of analysis results based on fuzzy product-sum operator to combine CPCs’
weight and CPCs’ fuzzy degree together [33–36]. In addition, as If-Then rules activated
by CPCs have weight, Zhang et al. integrated If-Then rule weights into the analytical
process of fuzzy CREAM [37]. Furthermore, type-II fuzzy theory has been introduced to
fuzzy CREAM to analyze CPC membership or weights and it can improve the quality of
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assessment results [38,39]. Although the above research promotes the efficiency of fuzzy
CREAM, there is still a high level of subjectivity in CPC data. The quality and credibility of
CPC data must be guaranteed because the CPC data act as a fundamental guarantee for the
fuzzy degree of membership and probabilistic safety calculation.

This research aims to improve the collection of CPC data and to make sure the fuzzy
CREAM process is more reasonable. Through analysis of the literature, it was found that
some researchers have used the concept of risk to collect data from the perspectives of
possibility and severity to describe performance-shaping factors (i.e., CPCs) [40]. Moreover,
as the definition of risk is widely acknowledged, using it to collect CPCs’ performance
data can be easily understood by people. Considering this study, it is worth adopting the
definition of risk to determine a CPC’s performance data, and then using the CPC’s risk
data to determine the CPC’s fuzzy degree, the CPC’s weight, and the If-then rule weight
activated directly or indirectly by each CPC for the final calculation of the HEP.

Nonetheless, in contrast to the data of facilities and hardware, which have complete
information, the recording of CPC data is always insufficient; namely, it is partially clear
and partially unclear. Therefore, it is also worth introducing gray relation theory to deal
with this situation. Gray relation theory was designed by Professor Deng Julong in the
1980s and has been applied in many areas [41,42], especially for GRA which has been
successfully used for identifying important failure modes and key performance-shaping
factors for human errors [43]. For this study, the collected risk data of each CPC can be
processed by GRA for determining the importance weight of each CPC. The weight value
of each CPC is integrated with the CPC’s fuzzy degree as determined by the CPC’s risk data
through product-sum operator. In addition, as CREAM is designed for general industries
but our study focuses on chemical experiments that contain risky processes, therefore, the
CPCs should receive some changes to make sure they are suitable to describe any chemical
experiment task.

According to the description above, this study proposes an improved CREAM to
effectively and reasonably estimate the HEP for chemical experiments with hazardous
processes. This study firstly adjusts nine CPCs involved in the CREAM to make them
match chemical experiments. Then, this study employs the concept of risk to describe the
performance of each CPC from the aspect of possibility and severity, so as to enhance the
rationality and to decrease the subjectivity of CPC data. Afterwards, the risk data of each
CPC, the GRA method, fuzzy calculation, and defuzzification are used together to estimate
the HEP for the whole chemical experiment process. In summary, the proposed method
provides a feasible passage to estimate the HEP for risky chemical experiments; moreover,
traditional fuzzy data which are mainly determined by experts’ subjective evaluations are
replaced by the risk data (possibility and severity) to decrease the subjective level and
increase data credibility; in addition, CPCs’ fuzzy degrees, CPCs’ weights, and activated
If-Then rule weights are effectively integrated for reasonably estimating the HEP value.
Those together form the contributions of this study.

This research takes the case of ferrous sulfide preparation as the example to validate
the proposed method. The remainder of this paper is structured as follows. Section 2
introduces the basic procedures of the proposed approach. Section 3 elaborates on the
methodologies used and their principles. Section 4 uses the test case to verify our proposed
method. Section 5 contains a discussion of the strengths and limitations of this study, and
Section 6 presents our results and conclusions.

2. Research Procedure

This research provides an improved CREAM approach for estimating the HEP while
carrying out chemical experiments with hazardous processes. The main procedure of the
proposed method contains ten steps, which are presented in Figure 1.
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Figure 1. The flow chart of this study.

The explanation of each step is as follows:
Step 1. Selecting a typical chemical experiment that has risky processes and then

adjusting the CPCs in CREAM to make sure each CPC is appropriate to the experiment.
Step 2. Using Hierarchical Task Analysis (HTA) to decompose the selected chemical

experiment into several subtasks and to describe them.
Step 3. According to the HTA result, and based on the concept of “Risk”, collecting per-

formance data for each CPC in each subtask from the aspect of possibility and consequence.
Step 4. According to the collected risk data for each CPC, analyzing the CPC’s weight

value through Gray Relation Analysis (GRA).
Step 5. Constructing a fuzzy degree of membership function, and then determining

each CPC’s fuzzy degree in each subtask according to each CPC’s risk data.
Step 6. Based on the fuzzy CREAM, and according to the CPCs’ fuzzy degrees in each

subtask, identifying the activated If-Then rules.
Step 7. With the activated If-Then rules, this study adopts fuzzy product-sum operator

to combine a CPC’s weight values and a CPC’s fuzzy degrees together to determine the
initial fuzzy membership degree of each COCOM.

Step 8. Based on fuzzy T-Norm theory, calculating the weights of each activated
If-Then rule by multiplying each corresponding CPC’s fuzzy degrees together.

Step 9. Using fuzzy product-sum operator to integrate the initial fuzzy membership
degree of each COCOM and each corresponding activated If-Then rule to determine the
final fuzzy degree of each COCOM.

Step 10. With the final fuzzy degree of each COCOM, this study uses a defuzzification
method (the center of area method is used here) to calculate the HEP data of each subtask
in the selected risky chemical experiment.
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3. Methods and Principles

We propose an approach for human reliability assessment and HEP estimation for
chemical experiments with hazardous processes. The main methodologies and their corre-
sponding principles are illustrated in this section.

3.1. CREAM

CREAM includes nine types of CPCs: adequacy of organization, working conditions,
adequacy of human–computer interface, availability of programs and plans, number of
targets achieved concurrently, available time, time slot of day, adequacy of training and
experience, and quality of member cooperation [44]. These are adjusted due to the many
differences between laboratory and industry systems, such as task objectives, the work
experience of personnel, and the work environment. The adjusted CPCs are listed in Table 1.
It should be noted that CPC9 is not used when the experiment only needs one person to
carry it out.

Table 1. CPCs adjusted according to the laboratory setting.

CPC CPC Level Effects Effects Index

Adequacy of
organization/management

Very efficient Improved +1
Efficient Not significant 0

Inefficient Reduced −1
Deficient Reduced −1

Lab conditions
Advantageous Improved +1

Compatible Not significant 0
Incompatible Reduced −1

Availability of experimental
support condition

Supportive Improved 1
Adequate Not significant 0
Tolerable Not significant 0

Inappropriate Reduced −1

Rational task order
Appropriate Improved 1
Acceptable Not significant 0

Inappropriate Reduced −1

Complexity of task
Fewer than capacity Improved 1

Matching current capacity Not significant 0
More than capacity Reduced −1

Available time of task
Adequate Improved 1

Temporarily inadequate Reduced −1
Continuously inadequate Reduced −1

Time of day Day-time Not significant 0
Night-time Reduced −1

Adequacy of training and safety
awareness

Adequate, high experience Improved +1
Adequate, limited experience Not significant 0

Inadequate Reduced −1

Quality of member cooperation
(experiments with only one person

need not consider this CPC)

Very efficient Improved +1
Efficient Not significant 0

Inefficient Not significant 0
Deficient Reduced −1

Table 1 shows that each CPC has impacts on system human reliability, which are
“improving,” “reducing,” and “insignificant,” with corresponding scores of +1, 0, and −1.
Based on this, we analyze the CPCs based on the human error impact index, calculated by
Equation (1).

H = ∑|XRe.| −∑|XIm.| (1)
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where H represents the total impact of all CPCs on the task. XRe. and XIm. are the numbers
of CPCs that reduce and improve reliability, respectively. Figure 2 shows the relationship
between the CPC and the COCOM. The horizontal and vertical coordinates indicate XRe.
and XIm., respectively.

Figure 2. Relationship between CPC and COCOM.

CREAM calculates human error probabilities in accordance with the COCOM, which
has scrambled, opportunistic, tactical, and strategic control modes, each corresponding to
an error probability interval. Table 2 provides error probability intervals under different
COCOM modes [45,46].

Table 2. HEP and logarithm of HEP for each COCOM.

COCOM HEP log10 HEP

Strategic (0.00005, 0.01) (−5.3, −2)
Tactical (0.01, 0.1) (−3, −1)

Opportunistic (0.01, 0.5) (−2, −0.3)
Scrambled (0.1, 1) (−1, 0)

3.2. HTA Method

As shown in Figure 1, we use the HTA method to build task models for the selected
case tasks, and then for human reliability analysis. The HTA task analysis method is used
to hierarchically describe task goals and their subgoals, and it is often used to complete task
analysis during human reliability analysis. Through structured analysis, this method disas-
sembles the task to determine the goals of main tasks and subtasks. Goals are connected
according to the corresponding logical relationship, so as to build the task model.

3.3. Collecting CPC Data Based on Risk Concept

CPC data is collected on the basis of the concept of risk (the combination of possibility
and severity), so as to decrease subjective impacts caused by experts who only rate accord-
ing to their experience. In our study, as shown in Figure 3, we used a Likert scale to collect
the data for each CPC from the aspects of likelihood or severity.
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The Likert scale is set from 0.0 to 10.0, indicating possibility or severity of consequences
from low to high. In addition, in order to ensure the data quality, the experts invited for
collecting risk data in this study all had a master’s degree with at least three years of
experience conducting chemical experiments that include risky processes.

3.4. CPC Weight Calculation

As shown in Figure 1, this research adopted the GRA method to solve the issue of
weight differences among the CPCs in each subtask. In accordance with the collected risk
data and in combination with the GRA procedure, we built a gray matrix for the collected
possibility and severity data, as seen in Equation (2):

G(x) =


X1,1 X1,2 · · · X1,n
X2,1 X2,2 · · · X2,n

...
...

. . .
...

Xm,1 Xm,1 · · · Xm,n

 (2)

The matrix contains m groups of data sequences (1 ≤ m ≤ i, i is the number of experts),
each including n data points (1 ≤ n ≤ j, where j is the number of CPCs), and Xm,n is the
gray data for the n CPCs selected for the m experts in the task.

The reference sequence is determined according to G(x) in Equation (2), and it is
generally the maximum or minimum data of a sequence. We select the maximum data as
Equation (3):

Xmax = (Xmax(1), Xmax(2), . . . , Xmax(n)) (3)

where Xmax(n) is the maximum value of group n (in this research, n = 8). The gray relation
coefficient of element k of group j data in the reference sequence is calculated as Equation (4),

Gj
k =

min(min|Xmax − Xc|) + max(max|Xmax − Xc|)∣∣∣Xmax(k)− X j
c (k)

∣∣∣+ δ×max(max|Xmax − Xc|)
(4)

where Gj
k is the gray relation coefficient of element k of group j data; min(min|Xmax − Xc|)

and max(max|Xmax − Xc|) are the minimum and maximum values, respectively, of the
absolute difference between the reference sequence and all comparison sequences; Xmax(k)
is element k in the reference sequence; X j

c (k) is element k of sequence j in the decision data;
and δ ∈ [0, 1] is the distinguishing coefficient, where normally we set δ = 0.5. The gray
relation degree of data sequence j is determined as Equation (5),

Gj =
1
n

n

∑
k=1

Wk · G
j
k (5)

where Gj is the gray relation degree of data sequence j; Wk is the weight of expert k (experts

have equal weight in this research), where Gj
k is calculated by Equation (4). The gray

relation degree of each CPC based on the definition of risk in data sequence j can be
obtained by Equation (6),

GR.
j = GPoss.

j · GCons.
j (6)

where GR.
j is the gray relation degree of each CPC; GPoss.

j and GCons.
j are the respective

gray relation degrees for possibility and consequences of data sequence j. The weight data
of each CPC corresponding to the sequence j can be acquired by normalization (QR.

j ) as
Equation (7).

QR.
j =

GR.
j

∑8
n=1 GR.

j
(7)
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3.5. HEP Calculation

We use risk data as the input to the fuzzy CREAM analytical process. The CPC risk
data are acquired by multiplying possibility and severity data. The risk data of each CPC
are described by a trapezoidal membership function as Equation (8),

h(y) =



0 (y ≤ a)
y−a
b−a (a ≤ y ≤ b)
1 (b ≤ y ≤ c)

d−y
d−c (c ≤ y ≤ d)
0 (y ≥ d)

(8)

where h(y) is the trapezoidal membership function; y indicates risk data, and a, b, c,
and d are parameters of the fuzzy degree of membership function. Reference is made to
the research of Zhang et al. (2018) for the fuzzy degree of membership function in this
research [34], which is used to determine the fuzzy degree of membership for each CPC,
to activate If-Then rules to obtain statistics on CPC membership of each subtask, and to
determine the COCOM according to Equation (1) and Figure 2. Then, with the CPC weight
data, the initial membership degree of COCOM can be calculated by Equation (9),

Gco.
j = ∑8

n=1 Mn
j ×QR.

j (9)

where Gco.
j is the initial membership degree of COCOM; QR.

j is calculated using Equation (7),
Mn

j indicates the fuzzy degree of membership of the nth CPC in subtask j under If-Then
rules, and the fuzzy weight of m types of If-Then rules that exist in subtask j is calculated
as Equation (10),

Qm
j = M1

j ×M2
j . . .×Mn

j (10)

where Qm
j is the fuzzy weight of m types of If-Then rules that exist in subtask j; Mn

j indicates
CPC membership of subtask j. Then, the COCOM membership of subtask j is calculated as
Equation (11),

Dco.
j = ∑ Gco.

j ×Qm
j (11)

where Dco.
j is the COCOM membership of subtask j; Gco.

j and Qm
j are calculated using

Equations (9) and (10), respectively. The end result of the HEP is acquired according to the
Center of Area (COA) defuzzification method as Equation (12),

log10HEP =
∑n

i=1

[∫ zi
U

zi
L

hi(z)zdz
]

∑n
i=1

[∫ zi
U

zi
L

hi(z)dz
] (12)

where log10HEP is the common logarithm of the HEP; z indicates membership of each
COCOM, hi(z) is the expression of the corresponding COCOM fuzzy degree of membership
function, and zi

U and zi
L are the respective upper and lower limits of the membership function.

4. Experimental Verification

We selected the experiment of active ferrous sulfide preparation for model verification.
Laboratory supplies include high-risk chemicals, such as sodium sulfide nonahydrate, ethyl
alcohol, and ferrous sulfide, and other sources of hazard that can easily cause accidents,
including electrical equipment (heating plates, centrifugal machines, and stirrers) and glass
apparatuses (beakers and conical flasks). As the experiment has a high risk coefficient with
much human–machine interaction, we selected it to verify the proposed model of human
reliability analysis in a laboratory.

Through HTA analysis, the goals, tasks, subgoals, and subtasks of the ferrous sulfide
preparation experiment were determined, with results as shown in Table A1 of Appendix A.
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According to the results of the HTA analysis, the experiment was divided into 12 main
tasks and 26 subtasks. Subtask m of main task n was defined as “Tn.m.” The data of T10.3
(“checking activity in fume cupboard, quickly pouring samples from vial onto filter paper
in a pile, and observing sample combustion or not”) were selected for illustration. As this
is a solo experiment, CPC9 (quality of member cooperation) was not considered in the
process of analysis. A survey of experts’ decisions was designed on the basis of 26 subtasks
and eight CPCs. Four experts with experience in this experiment were invited to make
judgements on the CPCs of each task from the perspectives of severity and possibility. Each
expert held a master’s degree or above, with sufficient experience in experiments and in
the management of ferrous sulfide preparation. They completed the risk data collection of
the experiment task with accurate cognition of basic information and experimental risk.
Using the subtask T10.3 as an example, four experts’ decision data can be seen in Table 3.
The data for other subtasks can be similarly determined.

Table 3. Experts’ judgements for the subtask T10.3 (possibility/consequences).

CPC1 CPC2 CPC3 CPC4 CPC5 CPC6 CPC7 CPC8

Expert1 5.8/7.2 6.9/9.2 8.2/8.8 6.0/7.8 6.7/6.1 5.7/4.3 5/1.0 7.6/9.1
Expert2 4.0/3.0 3.0/2.0 5.0/3.0 5.0/2.0 2.0/2.0 4.0/3.0 2.0/2.0 5.0/4.0
Expert3 4.0/5.0 6.0/5.0 6.0/5.0 9.0/7.0 6.0/4.0 6.0/5.0 6.0/5.0 9.0/6.0
Expert4 3.0/7.0 9.0/6.0 1.0/6.0 3.0/5.0 1.5/6.0 2.0/7.0 1.0/7.0 3.0/8.0

Table 3 shows that there were certain differences in their subjective judgments. There-
fore, the issue of data incompleteness and non-uniqueness must be addressed. The gray
relation degrees of possibility and consequences were calculated by Equations (4) and (5),
respectively, and the gray relation degree of risk was calculated by Equation (6). In the end,
the GRA weight result of each CPC was acquired after normalization through Equation (7).
The gray relation degree weight of each CPC in T10.3 is shown in Table 4.

Table 4. Weights of CPCs (taking T10.3 as an example).

CPC1 CPC2 CPC3 CPC4 CPC5 CPC6 CPC7 CPC8

0.1061 0.1430 0.1408 0.1445 0.0875 0.1019 0.0799 0.1959

Risk data were brought into the CPC fuzzy degree of membership function. Fuzzy
sets and corresponding membership were used to interpret the risk data. The fuzzy de-
gree of membership function was described according to parameters a, b, c, and d in
Equation (8) and used to interpret the risk data. For instance, fuzzy sets of CPC1, “ade-
quacy of organization/management system,” are very efficient [a, b, c, d] = [0, 0, 20, 30],
efficient [a, b, c, d] = [20, 30, 40, 60], inefficient [a, b, c, d] = [40, 60, 60, 90], or deficient
[a, b, c, d] = [60, 90, 100, 100]. All CPC membership functions are shown in Figure 4.

The data of the fuzzy degree of membership for each task on every CPC were calcu-
lated using Equation (8), as seen in Figure 4. See Table 5 for the fuzzy degree of membership
of T10.3.

It was found that in T10.3, five CPCs cover two levels, so it can activate 25 = 32 If-Then
rules to determine the COCOM. One example of an activated If-Then rule is CPC1 is
Efficient (0.33), CPC2 is Advantageous (1), CPC3 is Adequate (0.88), CPC4 is Acceptable
(0.57), CPC5 is Fewer than capacity (1), CPC6 is Adequate (0.93), CPC 7 is Day-time (1),
and CPC8 is Inadequate (0.17).
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Figure 4. Fuzzy membership functions of each CPC.

Based on Equation (9) and the CPC weight data in Table 4, the initial membership de-
gree of COCOM for T10.3 can be collected. Using the presented If-Then rule as an example,
its COCOM degree is: 0.1061 × 0.33 + 0.1430 × 1 + · · ·+ 0.1959 × 0.17 = 0.68 with Tactical.
Then, as each activated If-Then rule has the rule weight, Equation (10) is selected. Still using
the presented If-Then rule as the example, its rule weight is 0.33 × 1 × · · · × 0.17 = 0.026.
For other activated rules, their weights can be determined in the same way. Afterwards, the
final membership degree of each COCOM can be collected using Equation (11). Here, using
the presented If-Then rule in T10.3 as an example, its final COCOM is 0.68× 0.018 = 0.01224
(Tactical). For all activated If-Then rules in T10.3 and other subtasks, their final membership
degrees of COCOMs can be calculated similarly. Table 6 shows the final COCOM degrees.
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Table 5. Fuzzy degree of membership of each CPC (taking T10.3 as an example).

No. CPC Fuzzy Degree of Membership

1 Adequacy of
organization/management Very efficient (0.67), Efficient (0.33)

2 Lab conditions Advantageous (1)

3 Availability of experimental
support condition Supportive (0.12), Adequate (0.88)

4 Rational task order Appropriate (0.43), Acceptable (0.57)
5 Complexity of task Fewer than capacity (1)
6 Available time for task Adequate (0.93), Temporarily inadequate (0.07)
7 Time of day Day-time (1)

8 Adequacy of training and
safety awareness

Adequate, limited experience (0.83),
Inadequate (0.17)

Table 6. COCOMs’ final membership degrees.

Task Order Strategic Tactical Opportunistic Scrambled

T1.1 1 0.9325 0.0675 0 0
T1.2 2 1 0 0 0
T2.1 3 0.9157 0.0843 0 0
T2.2 4 1 0 0 0
T3.1 5 0.9756 0.0244 0 0
T3.2 6 1 0 0 0
T4.1 7 0.9437 0.0563 0 0
T4.2 8 1 0 0 0
T5.1 9 1 0 0 0
T5.2 10 1 0 0 0
T6.1 11 1 0 0 0
T6.2 12 1 0 0 0
T7.1 13 1 0 0 0
T7.2 14 1 0 0 0
T7.3 15 1 0 0 0
T8.1 16 1 0 0 0
T8.2 17 1 0 0 0
T8.3 18 1 0 0 0
T9.1 19 1 0 0 0
T9.2 20 0.9604 0.0396 0 0

T10.1 21 1 0 0 0
T10.2 22 1 0 0 0
T10.3 23 0.4047 0.5953 0 0
T11.1 24 0.2833 0.7167 0 0
T11.2 25 0.6244 0.3756 0 0
T12.1 26 1 0 0 0

With the final membership degree of each COCOM, we can calculate the correspond-
ing HEP data. According to the HEP interval of each COCOM (see Table 2), the fuzzy
membership functions of each COCOM are shown as Figure 5. Then, using Equation (12),
the HEP of each task was acquired after COA defuzzification and logarithmization, and
the corresponding results of each task are shown in Figure 6.

According to the final results in Figure 6, the HEP of each subtask can be calculated.
The task during which human errors will most likely appear in this experiment is T11.1
(“The liquid after separation, the liquid after water washing, and the liquid after alcohol
washing need to be put into the corresponding waste bucket”) with HEP = 1.51 × 10−3.
For the HEPs for other subtasks, Table A1 in the Appendix A gives their results.
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Overall, the HEPs of subtasks T10.3, T11.1, and T11.2 were the top three highest.
These subtasks not only have sources of hazards with high risk but are also involved in
the complicated procedure of combustion and waste disposal. In addition, the HEPs of
subtasks T1.1, T2.1, T3.1, T4.1, and T9.2 were moderately high. In these tasks, there are
sources of hazard with high risk, such as heating plates, sodium sulfide, and ammonium
ferrous sulfate, as well as many human–machine interaction activities. It also is found that
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the HEPs in other subtasks are low, and that those subtasks have fewer sources of hazards
and low complexity of human operation. The results of human reliability analysis conform
to the human error situation of this experiment, so the proposed model has effective results.

5. Discussion

According to the description above, it can be seen that the method provided by this
study is applicable and effective for HEP estimation for chemical experiments that contain
hazardous processes. This method has attempted to consider the characteristics of chemical
experiment processes, so as to provide some modifications for the nine CPCs in CREAM.
Moreover, based on the definition of risk, this proposed method uses the risk data of
each CPC for further calculating the CPCs’ fuzzy degrees, the CPCs’ weights, and If-Then
rule weights. Through this method, experts can judge each CPC from more dimensions
(possibility and severity), rather than just experts’ subjective judgments. In addition,
compared with many previous publications, this study designs a fuzzy operating approach
that can absorb the influence of CPCs’ degrees, CPCs’ weights, and If-Then rule weights
together during HEP calculation.

However, this study still has limitations. Although some changes have been made to
the nine CPCs, more considerations are still required to make sure each CPC is suitable to
describe the characteristics of dangerous chemical experiment processes. Using risk data
instead of traditional fuzzy data can increase data credibility and decrease subjectivity,
but the uncertainty issues are still existing, so some data processing methods should be
involved to decrease the uncertainty level of the risk data. Furthermore, software should
be designed to allow the whole method to be conducted and presented by computer. In
summary, the proposed method is an effective attempt to deal with human-related safety
issues for risky chemical experiments, but more specific efforts are still necessary.

6. Conclusions

This study provides an effective method to estimate the HEPs for chemical experiments
with hazardous processes. The proposed approach firstly adjusts nine CPCs to make sure
they can match the characteristics of chemical experiments. Next, for improving the
rationality and for reducing the subjectivity of the CPC data, the method uses the definition
of risk as the support to collect data to express the performance level of each CPC. Then, this
study innovatively chooses those collected risk data as the basis to directly and indirectly
determine the CPCs’ fuzzy degrees, the CPCs’ weight values, and the weight value of
each activated If-Then rule by fuzzy membership function, GRA, and fuzzy calculation.
Afterwards, this method combines the CPC’s degree, the CPC’s weight, and the If-Then rule
weight together by using fuzzy calculating operator to determine the final fuzzy degree of
each COCOM. Finally, the COA method is selected to give defuzzification to the COCOM’s
fuzzy degrees for assessing the HEP results. Those together form the risk-data-based HRA
method for operation safety during chemical experiments.

Based on the analysis results, we verified that the model can calculate the HEP of
the experiment of the selected test case, “active ferrous sulfide preparation”. With the
proposed method, the highest HEP was 1.51 × 10−3 for the subtask “The liquid after
separation, the liquid after water washing, and the liquid after alcohol washing need
to be put into the corresponding waste bucket”. Therefore, some appropriate measures
should be taken. For instance, setting up a risk identifier to remind everyone involved
in the dangerous experiment of safety awareness and to ask them to be in compliance
with experimental regulations; setting up a work safety checklist to make sure the correct
operations are carried out; and assigning a staff member to supervise safety when carrying
out an experiment that has risky processes.

Through the approach designed in this research, quantitative human error data can be
acquired to enhance people’s awareness of human risk and improve laboratory manage-
ment. Meanwhile, it can help the management team to prevent human error and reduce
unsafe behavior in a more targeted way. However, some further development of this
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method is still required. The design of the CPCs for chemical experiments with hazardous
processes should be deeply analyzed to ensure they are closely related to the task processes
and task characteristics. Additionally, the source data used in this study still have a level
of uncertainty, so solutions such as type-II fuzzy membership function can be selected to
replace traditional fuzzy membership function for HEP estimation in the future.
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Appendix A

As mentioned above, this study analyzed the experimental tasks using the HTA
method, and the analysis results are shown in Table A1 in Appendix A.

Table A1. Task analysis of active ferrous sulfide preparation experiment.

Main Task Subtask HEP

T1. Preparation before experiment
T1.1 Wearing personal protective equipment 1.77 × 10−4

T1.2 Preparing chemicals, instruments, and equipment
required for experiment 1.36 × 10−4

T2. Preparation of deoxygenated and
deionized water

T2.1 Using conical flask to hold deionized water and
heating with heat plate in fume cupboard at 200 ◦C 1.89 × 10−4

T2.2 Placing conical flask into basin for cooling 1.30 × 10−4

T3. Preparation of sodium sulfide
aqueous solution

T3.1 Powering-on balance, debugging, and weighing a
certain amount of sodium sulfide solid to beaker 1.51 × 10−4

T3.2 Adding water to beaker, rotor, covering with
sealing film, and placing onto magnetic stirrer to stir 1.30 × 10−4

T4. Preparation of ferrous sulfate
aqueous solution

T4.1 Powering-on balance, debugging, weighing a
certain amount of ammonium ferrous sulfide and

ascorbic acid to beaker
1.68 × 10−4

T4.2 Adding a certain amount of deoxygenated and
deionized water to the beaker, using glass rod to stir 1.30 × 10−4

T5. Preparation of ferrous sulfide
aqueous solution

T5.1 Slowly pouring sodium sulfide aqueous solution
into ammonium ferrous sulfide aqueous solution, and

gently stirring
1.30 × 10−4

T5.2 Covering with sealing film and putting into
refrigerator for cooling for half an hour 1.30 × 10−4
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Table A1. Cont.

Main Task Subtask HEP

T6. Solid–liquid separation

T6.1 Taking solution out of refrigerator and evenly
pouring into centrifuge tube 1.30 × 10−4

T6.2 Placing centrifuge tube in centrifuge, powering on
centrifuge, setting parameters, and

executing centrifugation
1.30 × 10−4

T7. Water washing three times

T7.1 Pouring liquid out of centrifuge tube and adding
appropriate amount of deoxygenated and

deionized water
1.30 × 10−4

T7.2 Stirring with glass rod in centrifuge tube to realize
water washing 1.30 × 10−4

T7.3 Placing into centrifuge, setting up parameters, and
starting centrifugation 1.30 × 10−4

T8. Alcohol washing three times

T8.1 Pouring liquid out of centrifuge tube and adding
appropriate amount of ethyl alcohol 1.30 × 10−4

T8.2 Stirring with glass rod in centrifuge tube to realize
ethyl alcohol washing 1.30 × 10−4

T8.3 Placing into centrifuge, setting up parameters, and
starting centrifugation 1.30 × 10−4

T9. Vacuum drying

T9.1 Opening centrifuge tube and putting into glovebox
with airlock chamber 1.30 × 10−4

T9.2 Using motor to extract air from airlock chamber,
and drying in vacuum environment 1.57 × 10−4

T10. Package inspection and verification

T10.1 Taking out sample to glovebox and grinding into
black powder 1.30 × 10−4

T10.2 Putting a small sample into vial and taking to
fume cupboard; packaging reminder of samples 1.30 × 10−4

T10.3 Checking activeness in fume cupboard, quickly
pouring sample from vial onto filter paper as a pile, and

observing sample combustion or not
1.03 × 10−3

T11. Waste disposal

T11.1 The liquid after separation, the liquid after water
washing, and the liquid after alcohol washing need to be

put into the corresponding waste bucket
1.51 × 10−3

T11.2 Sample might contain original sample after
combustion; placing into fume cupboard to wait until

complete reaction in air and placing separately into
corresponding sites of solid waste

4.38 × 10−4

T12. Instrument cleaning
T12.1 Cleaning instrument and using diluted sulfuric

acid to soak area where some parts cannot be
cleaned away

1.30 × 10−4
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