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Abstract: Intelligent manufacturing under Industry 4.0 assimilates sophisticated technologies and
artificial intelligence for sustainable production and outcomes. Blockchain paradigms are coined
with Industry 4.0 for concurrent and well-monitored flawless production. This article introduces
Sustainable Production concerned with External Demands (SP-ED). This method is more specific
about energy production and the distribution for flawless and outage-less supply. First, the energy de-
mand is identified for internal and external users based on which sustainability is planned. Secondly,
Ethereum blockchain monitoring for a similar production and demand satisfaction is coupled with
the production system. From two perspectives, the monitoring and condition satisfaction processes
are validated using federated learning (FL). The perspectives include demand distribution and pro-
duction sustainability. In the demand distribution, the condition of meeting the actual requirement is
validated. Contrarily, the flaws in internal and external supply due to production are identified in
sustainability. The failing conditions in both perspectives are handled using blockchain records. The
blockchain records reduce flaws in the new production by modifying the production plan according
to the federated learning verifications. Therefore, the sustainability for internal and external demands
is met through FL and blockchain integration.

Keywords: blockchain; federated learning; intelligent manufacturing; sustainable energy

1. Introduction

Sustainability in various manufacturing aspects, such as energy, is achieved using
intelligent processing in Industry 4.0. Sustainable energy comes from renewable sources
such as wind power, water resources, and solar energy. Sustainable energy production is a
crucial task to perform in industries [1]. Renewable energy applications and technologies
are used in industries. Energy applications provide various services and policies to increase
the sustainability range in energy production. An energy production scheme provides
functions and services to perform specific tasks in industries [2]. Renewable energy produc-
tion improves the energy-efficiency range of organizations. Sustainable energy production
reduces the energy consumption ratio in Industry 4.0. Greenhouse gas (GHG) emission
control is a complicated task to perform in industries. Greenhouse gas emission control
uses various methods and techniques [3]. Artificial Intelligence (AI) technology is used in
Industry 4.0—it increases the computational efficiency level of the systems. The AI method
identifies the critical factors for the energy production process. The AI-based technique
enhances industries’ effectiveness and performance range [4]. Energy surplus or deficit may
threaten the energy supply and demand security, leading to a demand–response issue in the
industrial environment. It is becoming increasingly tricky to optimally schedule in a smart
industry with varying energy consumption patterns and to engage in trustworthy energy
trading due to potential privacy and security challenges in the distributed energy system.
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Ethereum blockchain is the decentralized, open-source blockchain-based technol-
ogy used for sustainable energy production in Industry 4.0. Blockchain-based tech-
niques are mainly used in industries to detect problems and issues in the production
process [5]. Blockchain techniques provide specific solutions to solve problems in produc-
tion. For example, peer-to-peer transmission is carried out in manufacturing sectors, includ-
ing effective assistance for sustainable energy production. Transmission and production
contain various issues and threats that reduce the industry’s production speed [6]. Essential
qualities and attributes are identified in the database, yielding actionable data for multiple
applications. The blockchain-based method identifies industries’ potential benefits and
features that provide necessary data for energy production [7]. A blockchain-based secure
system is implemented in industries that increase the accuracy of sustainable energy pro-
duction processes. The security system uses blockchain to initiate production based on
certain conditions and functions. The Ethereum-blockchain-based data analysis method is
also used in Industry 4.0, which analyzes the relevant datasets for the sustainable energy
production process. The data analysis technique reduces the computation process’ latency
and energy consumption ratio [8,9]. Ethereum blockchain in industrial energy production
allows for one to store the collected data (or proof of such data) to exchange them securely
between entities that do not trust each other. Furthermore, blockchain technologies permit
the creation of smart contracts, described as self-sufficient decentralized codes performed
autonomously when certain conditions of an industry progression are met.

Machine learning (ML) models and techniques are widely used in various fields and
applications. ML models are commonly used to improve production, computation effi-
ciency, and feasibility range [10]. ML models are also used in Industry 4.0 for sustainable
energy production. The convolutional neural network (CNN) algorithm is in the produc-
tion model that performs specific industry tasks. CNN uses a feature extraction method
that extracts the essential features and patterns from the database. CNN reduces the energy
consumption range in computation, improving the efficiency ratio in the energy production
process [11,12]. The support vector regression (SVR) technique is also used in sustainable
production. SVR uses analysis that analyzes the data required for the production process.
SVR increases the accuracy and performance range in Industry 4.0 [13,14]. The multiple
linear regression (MLR) model is used for Industry 4.0, which implements a power forecast-
ing system. The MLR model predicts the problems presented in the computation process,
of which reduce the error range in sustainable energy production [15].

Sun et al. introduced a combined production scheduling model for sustainable manu-
facturing systems [16]. The primary goal of the presented model is to pinpoint the origin of
the scheduling-related variation in resource use. The particle swarm optimization (PSO)
algorithm is used here to analyze the data required for the scheduling process. PSO min-
imizes the overall time and energy consumption level in computation and scheduling
processes. As a result, the proposed model enhances the performance and feasibility ra-
tio of the manufacturing systems; however, the complex production efficiency modeling
necessities need to be explored.

Li et al. introduced a digital twin-driven information mechanism for manufactur-
ing systems [17]. A hierarchical analytic process analyzes the information relevant to
scheduling and further processes. The digital twin mechanism uses evidence theory to
build proper intelligent manufacturing techniques for the systems. The introduced method
reduces the complexity and latency in the computation process. The presented strategy
broadens the platforms’ potential for efficiency and long-term sustainability. However, the
incompleteness of primary data sources, the difficulty and uncertainty of actual indicators,
and inaccuracy in human cognitive progression exist in the model procedure.

Majeed et al. developed an infrastructure for Sustainable and Smart Addiction Man-
agement (SSAM) using big data [18]. The proposed framework is mainly used for the
decision-making process. Big data analytics identify the necessary data which are relevant
for SSAM systems. The big data approach is mainly used for analyzing processes that re-
duce energy consumption in the identification process. The suggested architecture has been
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shown to improve the efficiency and functionality of SSAM systems in research conditions.
However, due to the company’s available capabilities and setup of IoT devices, the SSAM
model can only be implemented in the first phases of a product’s life cycle.

Psarommatis et al. presented a holistic approach to sustainable manufacturing
systems [19]. Zero Defect Manufacturing (ZDM) is used here to improve the systems’
efficiency and feasibility range. The suggested method’s true motivation is to lessen
the workload on the power grid during computing. ZDM is a required method since
it supplies essential information and characteristics for production. In addition, the
proposed approach increases the Quality of Service (QoS) in sustainable manufacturing
systems. However, the suggested system data-driven model insufficiently attains the
sustainable factor in the manufacturing process.

Ma et al. introduced a demand–response-based data-driven framework for a sustain-
able manufacturing system [20]. The goal of the proposed method is to manage multi-level
requests which occur during the manufacturing process. The introduced framework re-
duces the computation cost and latency in manufacturing systems. The particle swarm
optimization algorithm also manages the data required for various methods. The presented
framework increases decision-making accuracy, enhancing the systems’ performance. The
suggested sustainable, innovative manufacturing model only considers the product lifecy-
cle’s manufacturing phase, disregarding other stages, such as operation, design, recycling,
maintenance, and remanufacturing.

Tian et al. introduced dynamic evaluation based on correlation relationships for sus-
tainable manufacturing in industrial cloud robots (ICR) [21]. Correlation relationships
produce appropriate data which are related to assessments. The suggested technique may
identify issues throughout the computation and provide a workable answer to fix them.
The proposed approach has a lower energy usage ratio in the calculation compared to prior
methods. The recommended strategy increases ICR’s efficiency and dependability. Impact-
ing sustainability objectives must be considered when developing a more comprehensive
evaluation indicator.

Jasiulewicz-Kaczmarek et al. introduced a multiple-criteria approach for manufactur-
ing systems [22]. The method offered is a continuous sustainability performance evaluation
based on fuzzy set theory. The presented method uses a maintenance indicator that identi-
fies the synthetic index and patterns necessary for the assessment process. The maintenance
indicator reduces the time consumption ratio in both computation and identification
processes. The introduced approach improves the manufacturing systems’ overall sustain-
ability and feasibility range. However, several aggregation functions have a limitation,
primarily from their natural assumption that input criteria are independent.

Zimmermann et al. designed an action-oriented teaching approach for an intelligent
precision manufacturing system [23]. The proposed method detects the exact demands
and reasons for requests in manufacturing systems. Various machine tools are also used
in a teaching approach that provides certain services in the decision-making process. An
intelligent-based reduction strategy is used here that reduces the latency rate in assessment
and scheduling processes. The systems’ effectiveness and energy efficiency are improved by
the proposed method. However, the limitation concerning the included thermal errors and
the inadequate prediction accuracy makes an extensive industrial application unrealistic.

Wang et al. developed an energy consumption intelligent model for additive manu-
facturing (AM) systems [24]. A multisource fusion method is used in the proposed model
that identifies the exact data from the database. The proposed model is mainly used for
3D printing (3DP), which detects the necessary pixels and features from the images. As
the experiments show, the suggested model improves the AM devices’ efficiency range.
However, modeling energy consumption and forecasting with multiple source data are
infrequent. The residues obscure how various sources can be leveraged to effectively learn
a detailed depiction of the prediction task.

Favi et al. proposed an energy management framework for a sustainable life cycle in
Industry 4.0 [25]. The proposed structural framework uses energy material flow analysis
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(EMFA) for the data analysis. Key Performance Indicators (KPIs) are used in industries that
identify the exact production performance ratio of the systems. KPI provides relevant data
for decision-making and allocation processes. The proposed framework minimizes the
material flow range in industries. Furthermore, the efficiency in supporting companies in
the analysis, managing production plants’ energy, and identifying criticalities and material
flows have yet to be verified.

Pei et al. introduced an approximation algorithm for unrelated parallel machine
scheduling in manufacturing systems [26]. The suggested method aims to reduce manu-
facturing systems’ electric power consumption rate. The introduced algorithm identifies
the regional problems that occurred during the manufacturing process. The proposed
approach improves the precision of machine scheduling, which strengthens the systems
overall. The new algorithm enhances both the speed and accuracy of existing systems.
However, one commonly known disadvantage of the branch and bound technique is its
time-consuming feature.

Cañas et al. designed a conceptual framework for Smart Production Planning and
Control (SPPC) in Industry 4.0 [27]. Small- and medium-sized (SMEs) businesses are the
primary users of the proposed framework. The proposed framework provides a systematic
structure to analyze the relevant data for the SPPC process. As a result, the conceptual
framework enhances the efficiency and accuracy of SPPC4.0. Furthermore, compared with
other frameworks, the proposed framework achieves high performance in scheduling
processes. However, it must be noted that multidisciplinary engineering is essential for
establishing SPPC 4.0 models.

Friederich et al. introduced a standardized data-driven architecture for intelligent
production systems [28]. The proposed framework aims to maintain the data in digital-
twin-based systems. Machine learning (ML) and data mining techniques are used here to
reduce the computation process’ complexity. ML techniques are mainly used here for the
validation and detection process. The introduced framework enhances the effectiveness
and feasibility range of smart manufacturing systems. However, due to issues with devices,
networks, etc., data may be incomplete.

Gu et al. developed a cyber–physical architecture for smart factories [29]. The architec-
ture implements a deep reinforcement learning (DRL) algorithm that detects the relevant
data for different processes. DRL selects the necessary information for decision-making, re-
ducing the computation process’ latency and energy consumption. The suggested strategy
also improves the systems’ effectiveness by boosting the precision of their decision-making
and planning. However, a single scheduling rule cannot preserve high-quality scheduling
efficiency in the face of orders of dissimilar sizes.

Liu et al. proposed product lifecycle management (PLM) infrastructure for Industry 4.0
based on blockchain technology [30]. The blockchain technique identifies the exact relationship
among the nodes that provide optimal data for the scheduling process. Blockchain also detects
the problems which occur during manufacturing. The conceptual approach reduces PLM
systems’ overall time-to-energy ratio. The proposed platform increases PLM’s long-term
viability and scope of industrial importance. This study still needs to implement the real-life
case-study use fully; thus, existing outcomes supported the possibility of implementing this
platform but cannot make a quantitative comparison with conventional PLM platforms.

Krithika L. B. [31] discussed the advancements in blockchain technology that have
shown promising properties that might be useful in farming. There have been some
helpful upheavals and progressive acceptance of blockchain in agribusiness owing to the
development and rollout of blockchain, which has helped to modernize the sector. Decent
quality development in farming has led to the use of blockchain technology at several
stages of the process. This research comprehensively examines the existing research on the
opportunities and threats posed by blockchain technology in the agricultural sector. Much
of the study is in its infancy, the PoCs are based on outdated versions of blockchain, and
the concept has undergone significant rehabilitation since its beginnings.
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Guruprakash Jayabalasamy and Srinivas Koppu [32] suggested nonrepudiation in
Internet of Things (IoT) apps developed on blockchain using High-Performance Edwards
Curve Aggregate Signatures (HECAS). Compared to the standard digital signature model,
the signing and verifying procedures created in the present study took 10% and 13%
less time to process, respectively. Additionally, using HECAS in a blockchain context
may reduce storage costs by 40%, improve transaction flows by 10%, and improve block
validation by 10% compared to a system that does not use HECAS. Finally, the author
tested their technology by simulating several blockchain-based Internet of Things systems.
As a result of their efforts, blockchain-based technologies for the smart Internet of Things
may produce effective, consistent results across various sensor types.

The leakage or collision of secret keys is possible if two identities are generated using
the same randomized integer.

Zixiao Xu et al. [33] suggested a blockchain-based power trading and bidding mech-
anism for several microgrids. Consequently, to accomplish source–sale integration, a
competitive spot market with scattered “multi-seller and multi-buyer” was constructed.
Researchers in this study compared and contrasted traditional power trading with a
blockchain-based alternative. In addition, an ant colony optimization technique was
used for randomized bidding matching, and a blockchain-based multi-microgrid energy
trading model was developed. This method integrates the transfer of energy, data, and
money into a single procedure. Lastly, the efficient allocation of power resources was
ensured by openness and transparency in power transactions. Nonetheless, business still
needs to develop and improve the Energy Internet trading system.

Qu et al. [34] introduced federated learning and a blockchain-based distributed ap-
proach for Data-Driven Cognitive Computing (D2C). Federated learning’s emphasis on
privacy and efficiency makes it well-suited to address the “data island” issue. In contrast,
blockchain’s reward mechanism, completely decentralized nature, and resistance to poi-
soning assaults make it an attractive complement. Improvements in decision-making and
data-driven intelligent manufacturing are already visible thanks to the development of
different AI and machine learning technologies. Furthermore, rapid convergence may be
achieved via sophisticated verifications and member choices made possible by blockchain-
enabled federated learning. The results of a comprehensive review and assessment show
that D2C is superior to the state-of-the-art in terms of efficiency.

Zhao et al. [35] proposed a federated learning (FL) system that uses a reputation
mechanism to allow for home appliance makers to train a machine learning model using
data from actual consumers to facilitate the development of an intelligent home system.
The first step in the system’s workflow involves users training the manufacturer-supplied
baseline model on their mobile device and the mobile edge computing (MEC) server in
addition to an incentive system to reward participants for enticing more consumers to
participate in the crowd-sourced FL work.

Energy surplus or deficit may threaten the energy supply and demand security, lead-
ing to a demand–response issue in the industrial environment. It is becoming increasingly
more work to optimally schedule in an intelligent industry with varying energy consump-
tion patterns and to engage in trustworthy energy trading due to potential privacy and
security challenges in the distributed energy system. Based on the survey, there are several
challenges in existing methods in achieving high sustainability factors, attack detection
time, modifications, and flaw detection for energy supply–demand. Hence, in this paper,
Sustainable Production concerned with External Demands (SP-ED) has been proposed for
practical energy production and distribution for flawless and outage-less supply.

2. Sustainable Production Concerned with External Demands

The features of Ethereum blockchain are used in Industry 4.0 for a synchronous
and well-observed, flawless production. This method introduces Sustainable Production
concerned with External Demands [SP-ED]. This method is used for energy production
and the distribution of flawless outages. Industry 4.0 evolves many technologies, and
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blockchain is one of them. Blockchain enhances the Industry 4.0’s security, privacy, and
data transparency. This Industry 4.0 enables the manufacturers to achieve their goals in a
more agile and quick way. Blockchain is used to attain more identification and improve the
manufacturing environment. As blockchain is more straightforward and less intermediary,
it is used to defend their inventions. Using this blockchain technology in Industry 4.0
enhances their competitiveness, which can access the world of copyrights. This unique
technology eliminates transaction communication, effectively as a productive production
flow. Decentralized energy trade and supply, the safe records of all industrial activities in
energy generation, and the effective automated management of energy and storage flow
via smart contracts are ways the Ethereum blockchain with FL might benefit the energy
sector. This proposed SP-ED is portrayed in Figure 1.
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Figure 1. SP-ED illustration.

This method’s manufacturing process is the modern version of automation. The
manufacturing process depends on the energy demand to improve energy sustainability
during the production of goods. The internal and external demands are identified from
the energy demand. Internal demand is the one that has the energy used in the process
of manufacturing. External demand is the one that contains the excess energy not used
in the procedure of manufacturing. Blockchain technology observes these internal and
external demands, which will be given as input to federated learning (FL). This FL checks
the demands, distribution of energy, and energy consumption. From this FL, the production
flaws, energy sustainability, and recommendations are obtained. These production flaws
check the energy distribution and the internal usage of energy. If the energy is insufficient,
it can be identified in this process. Energy sustainability checks how long the energy lasts
to achieve the demand. A recommendation is used to recommend scheduling the energy
and time depending on the output. From the blockchain, the monitor control takes place.
Based on the input in the blockchain, the modification process is carried out to improve the
manufacturing procedure. Ethereum blockchain technology can improve energy efficiency
and give consumers more control over their utilities in the industrial environment.

Furthermore, the data on how much energy is used is updated securely and promptly
due to an immutable ledger. Here, the intelligent manufacturing process is carried out in
Industry 4.0 based on the energy demand. X1, X2 are the subset of variance to calculate
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the energy consumption. The process of enhancing the manufacturing procedure by the
energy demand is explained by Equation (1), as given below:

a− b− c(X1 + X2), i f 0 ≤ X1 + X2 ≤ b/c− 0, (1)

where a is denoted as the measure of observation, b represents the data feature, c is the
covariance of data, and X1 and X2 are characterized as the internal and external energy
demand. Now, from the energy demand, the sustainability of the energy can be improved.
Then, the internal demand and the external demand are identified. In this internal demand,
the information on the energy used in the manufacturing process can be determined. This
is used to obtain information on the energy that can enhance manufacturing in Industry 4.0.
This also determines the energy utilized in the process and how much energy can be saved.
Based on the demand, the energy can be accommodated for internal usage, and thus it will
be helpful in flawless production. The internal demand accumulates the amount of energy
that is needed in the manufacturing process. Additionally, it does not occupy unnecessary
energy consumption, which will not be used during the process. This information can
be observed by blockchain technology later, and it gives input for the upcoming process.
Thus, the internal demand stores the needed energy during the manufacturing process.
This eliminates the excess energy which is not required for the process. This procedure is
used to enhance energy sustainability to produce flawless execution. The internal demand
is extracted from the energy demand to improve manufacturing. This also helps identify
the needed amount of energy for the process and helps make the energy last longer during
flawless production. This process of internal demand usage is based on the sustainability
plan. Equation (2) below explains the process of extracting the internal demand and its
functions. d1 and d2 are the internal demand parameters, and the energy function is
denoted as C.

π1 − π1(γ1, γ2)− (b− CX1 − CX2 − d1)X1
π2 − π2(γ1, γ2)− (b− CX1 − CX2 − d2)X2

}
(2)

where (π1, π2) is denoted as the mean of all observations and (γ) is represented as
the energy variance during the manufacturing process. Now, the external demand is
extracted from the energy demand. In this external demand, the excess energy not used
for the process is stored. Based on the energy demand, the amount of energy can be used
for the process. Then, if an excessive amount of energy is occupied, it will be stored
in the external demand. This extreme energy can be used for the upcoming process
in production. This can be well monitored by blockchain technology and given as the
input for federated learning. Based on the energy demand, the energy can be used for
manufacturing. The energy utilized in the process is stored in the internal demand, and
the energy not utilized will be stored in the external demand. Thus, the excessive amount
of unused energy will be helpful in the other flawless production process. This will
be helpful to the observation process, which is carried out by blockchain technology.
Internal and external demands are based on the energy demand for the manufacturing
process. The external demand is used to accumulate the excess energy which is not used
in the manufacturing process. This excessive energy acquired during the process can be
helpful in the upcoming flawless production process. Both internal and external energy
is used to improve energy sustainability. This sustainable energy will last longer in the
manufacturing process and production processes. Equation (3) below explains the process
of obtaining the external demand from the energy demand for manufacturing.

L1 − L2(X1, X2)− γ1π1 + (1− γ1)Q1 − (b− CX1 − CX2 − d1)X1, [γ1 − 1]
M1 −M2(X1, X2)− γ2π2 + (1− γ2)Q2 − (b− CX1 − CX2)X2 − γ2d2X2, [{γ2/γ2 ≤ 1}]

}
(3)

where (L1, L2) is denoted as the different energy demand levels and M1 and M2 are denoted
as the excessive energy monitored in manufacturing and production levels. Now, the
internal demand and the external demand are observed by blockchain technology. This
observed information value is given as the input to the federated learning. Furthermore,
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this blockchain process can identify the energy used and available for the upcoming process.
The blockchain implication for internal and external monitoring is illustrated in Figure 2.
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Ethereum blockchain monitoring is used for similar products, and demand satisfaction
is carried out in the production system. This process is used to check whether it satisfies
the production system and whether it carries out the demanded process. This blockchain
technology will obtain the energy used to fit the demand. It took care of both the demand
and production satisfaction coextending. If there is any issue in the process, blockchain
technology takes a further step to resolve the problems. It is used to check whether the
demand satisfaction is met and the production flow. It also assumes energy and excessive
energy consumption in the internal and external demand (Figure 2). Based on this input,
federated learning is used for flawless production. In this technology, more identification is
attained to produce the perfect deliverance without any flaws.

Ethereum blockchain technology is used to manage energy, which satisfies both the
production and the demand. It is also used to observe the entire internal and external
demand process extracted from the energy demand. It can be given as input to FL for
production without flaws. It can also help monitor the control process. It has information
about the used and unused energy for manufacturing and production. Therefore, it can be
observed by satisfying both the presentation and demand during flawless execution. This
process of observing blockchain technology’s internal and external demand is explained by
Equation (4) below:

α(X2)− X1b− d1
2a −

X2
2

β(X1, X2)− X2 − b−γ2d2
2a − X2

2
α(γ2)− b−2d1+γ2d2

2b
β(γ2)− b−2γ2d2+d1

2b

 (4)

where α denotes the performance threshold of the blockchain technology, β is the energy
evaluation function, γ is represented as the output of the internal and external demand
from the energy demand, and d is the energy distribution. The observed information by
the blockchain technology is sent as input to federated learning. The FL validates the
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monitoring and condition satisfaction processes from two perspectives. This perspective
includes the distribution of the demand and the sustainability of the production. In the
distribution of the demand perspective, the condition is validated to meet the actual
requirement. FL is used for the intelligent manufacturing process by using sustainable
energy. It uses the input given by the blockchain for flawless production. It is used to
check the sustainability of production and demand distribution. It also verifies whether
the energy can satisfy the demand and execute a perfect show. It also has information
about the energy consumption and distribution rate used to fulfill the need. It is used to
enhance energy sustainability during manufacturing and production processes. It is also
used to validate whether the condition meets the actual requirement. The input given by
the blockchain to FL is used in the monitoring control for further modification. Then, it is
also used in FL for the perfect flawless production with good energy sustainability. The FL
functions are explained in Figure 3.

Processes 2023, 11, x FOR PEER REVIEW 9 of 20 
 

 

( )

( )

( )

( )

1 2
2 1

2 2 2
1 2 2

1 2 2
2

2 2 1
2

2 2

,
2 2

2
2

2
2

d XX X b
a

b d XX X X
a

b d d
b

b d d
b

α

γβ

γα γ

γβ γ




− − − 
− − − − 


− + 
− 


− + − 

 (4)

where α denotes the performance threshold of the blockchain technology, β is the energy 
evaluation function, γ is represented as the output of the internal and external demand 
from the energy demand, and d is the energy distribution. The observed information by 
the blockchain technology is sent as input to federated learning. The FL validates the mon-
itoring and condition satisfaction processes from two perspectives. This perspective in-
cludes the distribution of the demand and the sustainability of the production. In the dis-
tribution of the demand perspective, the condition is validated to meet the actual require-
ment. FL is used for the intelligent manufacturing process by using sustainable energy. It 
uses the input given by the blockchain for flawless production. It is used to check the 
sustainability of production and demand distribution. It also verifies whether the energy 
can satisfy the demand and execute a perfect show. It also has information about the en-
ergy consumption and distribution rate used to fulfill the need. It is used to enhance en-
ergy sustainability during manufacturing and production processes. It is also used to val-
idate whether the condition meets the actual requirement. The input given by the block-
chain to FL is used in the monitoring control for further modification. Then, it is also used 
in FL for the perfect flawless production with good energy sustainability. The FL functions 
are explained in Figure 3. 

 
Figure 3. FL functions. 

Federated learning is an ML method that trains an algorithm across servers holding 
local data samples and multiple decentralized edge devices. FL allows for ML to be used 
locally without transmitting data to a centralized server. The centralized storage permits 

Figure 3. FL functions.

Federated learning is an ML method that trains an algorithm across servers holding
local data samples and multiple decentralized edge devices. FL allows for ML to be used
locally without transmitting data to a centralized server. The centralized storage permits
the evaluation progression to work fully asynchronously. Since every FL training round
creates a model for every user and a united model resulting from the merge procedure,
the number of models grows fast. The blockchain and federated-learning-assisted solution
deliver secure energy distribution between industrial applications. Federated learning
is used to verify the demand distribution and the sustainability of the production with
the two perspectives. The input given by the Ethereum blockchain to FL checks whether
it satisfies the actual requirement and checks the availability and sustainability of the
energy to meet the demand. The FL extracts the production flaws, energy sustainability,
and recommendation. It can validate the energy state for the manufacturing process and
flawless production (Figure 3). The distribution rate and energy consumption can be
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identified through FL. The method of FL using the input given by blockchain technology is
explained by Equations (5) and (6), as given below:

∀1(γ2)− b−(2d1+γ2d2)
2

Z

∀2(γ2)− (b−d2+d1+γ2d2)(b−γ2d2+d1)
2

Z

}
(5)

∗
∑
z
=

d2 − b1 − a
d2

(6)

where (∀) is denoted as the normalization vector of federated learning, (
∗
∑
z
) is designated

as the energy distribution rate, and Z represents the production flaws. Now, the production
flaws, energy sustainability, and recommendation are extracted from FL. The production
flaws verify the internal usage of energy. Additionally, they also check whether there
needs to be more energy to lead the manufacturing process. Suppose there is an issue
in the distribution process due to insufficient energy—in this case, the needed energy is
given, and the redistribution process is carried out to the flawless production. It is used
to check whether it satisfies the energy demand and sustainability. If there are any flaws
during the show, further steps are taken to resolve the insufficient energy. After verifying
the internal usage of energy, the needed amount is calculated for the other process. The
redistribution process eliminates the flaws and makes the energy so long for the production
process. The redistribution is made to improve the manufacturing process in the industry
without any time delays and defects. It can also be used in the improvement in demand
and product satisfaction. More energy can be identified, and further steps are taken to
enhance the sustainability of energy. The production flaws were used to check whether
the production rate met the demand satisfaction without flaws and insufficient energy.
FL verifies production distribution and demand satisfaction, and the production flaws
are obtained from that. If there is an inadequate amount of energy in the process, then
the redistribution process is carried out with sufficient energy needed for the perfect
manufacturing process. The method of production flaws obtained from FL is explained by
Equation (7) below:

((γ∗1 , γ∗2), (X1(β1, β2), X2(γ1, γ2))−
((

1,
bd2 − d1 − b

d2

)
,
(

b− 2d1 + γ2d2
b

,
b− 2γ2c2 + d1

b

))
(7)

where
(
γ∗1
)

is denoted as the rate of production flaws during manufacturing. Now, the
energy sustainability is verified by FL. Here, it demonstrates how long the energy lasts
to achieve the demands. Additionally, internal and external energy supply flaws during
production are identified. They are used to verify the sustainability of the energy from the
energy demand. The Ethereum blockchain makes the input for FL; thus, the flaws and
production rate can be determined. These are the things that have information about the
energy used in manufacturing. If there is excessive energy in the external demand, it will
be used for the redistribution process when there is insufficient energy. The FL is used to
enhance the sustainability of the energy in order to last a long time to meet the demand
satisfaction. It also improves the production process without any flaws in it.

Energy sustainability checks whether energy can last far for the required demand and
improves the production rate. The condition of meeting the requirement is also validated
in this energy sustainability. From the input of the Ethereum blockchain, these features
are extracted and used to improve the production rate and the manufacturing process in
Industry 4.0. The sustainability of the energy helps in the elimination of flaws and increases
the production rate. The energy sustainability process validates the appropriate value of
energy consumption. It also makes the process effective and improves the satisfaction of the
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required demands during manufacturing. The method of energy sustainability verification
from FL by the input of the blockchain is explained by Equation (8), as given below.

X∗1 (γ) =
b−Vd1+d2

η

X∗2 (P) = b−Vd2+d1
η

}
(8)

where
(
X∗1
)

is denoted as the sustainability of the energy, η is designated as the process
carried out by the sustainable energy production, and V is the volume of the energy charac-
terized as the output of FL. Now, the recommendation takes place from the FL processes.
This recommendation gives information about sufficient and insufficient energy, schedul-
ing the time and energy. By this, other methods can be carried out for the manufacturing
process. It provides recommendations to alter the current approach to meet the demand
after flawless production. This information makes changes for the successful production
process without flaws and delays. The recommendation information is preferred for the
following methods by changing accordingly with the perfect amount of energy and time.
The recommendation flow based on decisions is presented in Figure 4.
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The recommendation includes what to change and add for the upcoming processes.
With this reference, the changes are made for the speedy manufacturing process in
Industry 4.0. These changes can be stored in the blockchain records for further modifi-
cation processes. In addition, it is given as input for the monitoring control process in
the industry (refer to Figure 4). The recommendation process extracted from FL with
the blockchain input is explained by Equation (9), as given below:

W(X1, γ2)−
b− GX1 − γ2d2

a
(9)

where (W) is denoted as the weighted recommendation for the process and (G) is des-
ignated as the energy gain. Now, the monitoring control process takes place from the
blockchain records. The observed information by the Ethereum blockchain modification is
carried out accordingly. By monitoring the production plan based on the federated learning
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verification, the Ethereum blockchain records can be used to reduce the flaws in production.
The monitoring control process is explained by Equations (10) and (11), as given below:

π′1 − π′1(X1γ2)−
(

b− GX1 − γ2d2 − 2J1

a

)
X1 (10)

π′2 − π1
2(X1γ2)−

(b− GX1 + γ2d2 − 2J2)(b− CX1 − γ2d2)

2a
(11)

where
(
π′1
)

is denoted as the monitoring control process and (J) is represented as the flaw
rate obtained during production. The modification is carried out for the new production
process based on the monitoring control output. Improvement is made to improve the
sustainability and production rate during manufacturing. The changes are made according
to the records in the Ethereum blockchain and the validation of FL. These can help produce
a productive manufacturing process in Industry 4.0. The method of the modification
procedure carried out based on the Ethereum blockchain records and FL validation is
explained by Equations (12) and (13), as given below:

∗
∑
z

X1(γ2)−
b + T2d2 − 2d1

2a
(12)

Fz(X1)− 1 (13)

where (Fz) is denoted as the functionality changes made to improve the manufacturing
process and (T) is the required time in the manufacturing due to the Ethereum blockchain.
Hence, this method uses Ethereum blockchain technology and federated learning to im-
prove the production rate and manufacturing process. The sustainability for internal and
external demand from the energy demand is met through FL and blockchain support inte-
gration. Here, the processing time is reduced and the flaw ratio is decreased. As a result,
the sustainability of the energy is high during the manufacturing process. This method
helps in the improvement in production and demand satisfaction. From the considered
dataset, the monitoring control process is illustrated. The monitoring control process is
shown in Figure 5.
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The production unit (industry) is located by its latitude (Lat) and longitude (long)
markers. Based on the capacity, the distribution regions are organized. The generated
energy is split into internal (machines) and external (public) distributions. The log post the
single operation cycle provides the next cycle’s shortage, consumption, and requirements.
The T is predominantly performed for internal and external distributions (Figure 5).

3. Dataset Description

The dataset from [36] is used for validating the SP-ED and verifies sustainability.
Data on greenhouse gas emissions supplied by significant emitters to the United States
Environmental Protection Agency’s (EPA) Greenhouse Gas Reporting Program (GHGRP)
are used to calculate energy usage from commercial combustion at the plant level. In-
formation on fuel usage is calculated using the EPA’s standard pollutants factors. The
values for the amount of energy required to burn fuel at a specific facility are calculated
based on several factors, including sector (six-digit NAICS code), geographic coordinates
(elevation, meridian, zip/postal code, county, and state), type of combustor, and name of
the unit. The manufacturer’s North American Industrial Classification System (NAICS)
codes may further define combustion energy consumption by identifying energy end-use
(e.g., conventional boiler use, co-generation/CHP utilization, process heating, and other
facility support). The proportion of combustion fuel energy utilized for each end-use group
in assembly plants may be calculated using data from the 2010 Manufacturing Energy
Consumption Survey (MECS, produced by the Energy Information Administration), using
the NAICS code and the stated fuel type. Based on industrial combustion energy, two
observations are presented. The first observation is the attributes such as location, oper-
ation time, etc., as illustrated in Figure 5. The second observation is the utilization and
sustainability of energy generation and distribution. In the first observation, a total of
20,118 (with average production) and 183 entries are jointly used for assessment in the
second observation. The joint evaluation is performed according to 20 cycles for internal
and external distribution. The number of nodes included in the eight industrial nodes and
the amount of data available to each node in federated learning is two. The two blockchain
networks were evaluated as potential components of the experimental setup’s distributed
ecosystem. Each benchmark included 1000 transactions sent at speeds ranging from 20 to
500 transactions per second to determine the maximum, average, and lowest transaction
latency and throughput. Sustainability is accounted as the maximum possible distribution
ratio that is consistently achieved in maximum operation cycles. Based on π and L, the
actual representation in the dataset for sustainability is presented in Table 1.

Table 1. π & L representation from the data set.

Cycles π (kWh) Distribution (kWh) M1 L (kWh) Distribution (kWh) M2

2 65.23 64.36 0.87 133.79 133.79 0

4 61.2 61.2 0 259.32 251.36 7.96

6 82.36 78.35 4.1 458.23 452.36 5.87

8 231.21 213.16 18.05 369.6 362.31 7.29

10 198.36 190.3 8.06 698.25 690.58 7.67

12 254.36 251.36 3.0 784.62 785.3 −0.68

14 274.63 269.54 5.90 1008.1 1008.1 0

16 289.46 285.34 4.12 985.36 878.36 107.0

18 303.05 301.21 1.84 874.23 870.69 3.54

20 298.25 298.25 0 963.21 962.21 1.0

The π and L different cycles are tabulated above, wherein π shows up more minor
variations. Contrarily, L is different due to the distribution regions and unpredictable
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consumptions. In the π distribution, the fixed count of machines serves the purpose of
planning the distribution beforehand. Therefore, the maximum utilization is improved,
from which an excess is reported if the machinery is not functional. In this case, M1 (ex-
treme) is augmented for L−based distribution. However, M2, a cycle modification, is
comparatively high and therefore is required to prevent flaws. Pursued by the above repre-
sents the data recorded by the blockchain for identifying defects. For example, if the M2 is
vast even after M1 scheduling, then the production needs to be modified. Therefore, the
revisiting cycle across the different working machines is pursued under modifications. It is
represented in Figure 6.
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The representation in Figure 6 presents four different combinations—namely, excessive
(green), semi-demand (half red-half green), demand (red), and depleting (red concentration
is high). Therefore, the depleting- and demand-based combinations are revisited to prevent
distribution flaws. Based on (α, β) all depletion and demand, (α, β) is analyzed between
successive cycles. In this process, γ∗ due to a lack occurs, and hence, Fz is required. This
represents the precise cycle for which modification is required. A total of 141 changes
(internal 16, external 125) are observed in a given dataset. As the internal is significantly
less, we discard it; the sustainability for 125 is analyzed in Table 2.

Table 2. (V, η) for 120 modifications.

Modifications Flaw Detection (%) X* Excessive
Distribution (kWh) (V,η)

Revisiting
Required

20 13.06 0.365 98.56 0.658 1

40 21.36 0.263 137.604 0.462 3

60 25.69 0.458 121.36 0.541 2

80 29.69 0.547 69.25 0.745 2

100 32.45 0.619 12.39 0.883 0

120 36.46 0.587 58.25 0.851 1

The actual modifications are required to prevent frequent FZ between the operating
cycles. Therefore, sustainability is short-lived, and thus the new γ∗ is identified. The
(M1 + M2) ∀ (L) distribution is planned using G, such that π∗ induces successful allocation.
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This is further studied using the blockchain output for the logs (α, β). In this process, W is
the modification, and T for preventing sustainability falls (Table 2). Following this process,
the flaw minimization duet to M and G is analyzed in Table 3 data.

Table 3. Flaws for varying G = 1 to 7.

G W (V,η) Distribution Flaws (/Cycle)

1 3 0.883 0.955 6

2 5 0.584 0.854 4

3 4 0.651 0.654 5

4 12 0.521 0.741 3

5 18 0.591 0.845 1

6 16 0.625 0.745 2

7 27 0.462 0.608 0

The flaw minimization is achieved by increasing the distribution and sustainability. W
is segregated from multiple intervals (cycles) to improve the distribution. This is achieved
by considering (α, β) various d1, d2 and γ of the FL process. Any flaws are tracked and
addressed by providing precise G between T′s, and hence, appropriate demands are
satisfied. This generates no hassle in further distribution, thus preventing defects (Table 3).

4. Comparative Discussion

The comparative analysis uses the metrics sustainability factor, flaw detection, demand
satisfaction, modifications, and detection time. The operating hours and supply-to-demand
factors are modified accordingly. Alongside the proposed method, the existing MQIP-
TOU [26], DDSIM [20], and GDDF [28] methods are considered. However, several current
ways have limitations, such as complex production efficiency, a high time-consuming
feature, and inadequate prediction accurateness. When compared to all of the existing
methods, the proposed method has higher efficiency, which is discussed as follows:

4.1. Sustainability Factor

The efficacy of the sustainability factor is high in this method by using Ethereum
blockchain technology and the federated learning technique. Based on the energy demand,
the manufacturing process is carried out. From the energy demand, the internal and
external demand is extracted. By using this demand, the use and the excessive amount
of energy can be determined. Energy demand is used to enhance the sustainability of the
energy during flawless production. Blockchain technology is used to observe the internal
and external needs and provides input to FL. Monitoring control is also carried out based
on blockchain records and FL validation. From this, modifications are made to improve
the redistribution and satisfaction of production. This process helps to strengthen both
demand and production satisfaction. Using Equation (5), the sustainability factor has been
determined for the energy production system. By improving energy sustainability, the
flaws can be reduced for the intelligent manufacturing process in Industry 4.0. With these
methods, sustainability is high in this process (Figure 7).
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4.2. Flaw Detection

Figure 8 depicts flaw detection during manufacturing and production in Industry 4.0
compared with the conventional method on which the proposed model has a high flaw
detection rate. The flaw detection is high in this method using the FL technique, which
uses the Ethereum blockchain records input. The production flaws are detected from FL,
which verifies the consumption and distribution ratio during the manufacturing process.
In this production flaw, if energy is inadequate, it can be verified, and further steps are
taken to provide the needed energy. Thus, the redistribution process is carried out based
on the blockchain records and the FL validations for the new manufacturing processes. The
energy is redistributed based on its need, and a further process is carried out to modify
the manufacturing procedure in the industry. The redistribution process is carried out to
reduce the flaws and to make the energy last so long for the production process. Based
on Equation (7), the production process flaws have been detected. This production flaw
identifies the internal energy usage and the insufficiency of energy. It is used to check
whether it satisfies the energy demand and sustainability. Through this FL validation
process, the flaws in the production can be detected quickly, and further steps are taken to
resolve them.
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4.3. Demand Satisfaction

The demand satisfaction is high using Ethereum blockchain technology for manufac-
turing and flawless production. Ethereum blockchain is used to observe the internal and
external demand obtained from the energy demand. It also checks whether the condition
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meets the required show and satisfies the needed directions. It is also used to enhance the
energy’s sustainability, which helps to satisfy the demand needed for flawless production.
FL validates whether the sustainability of the energy lasts longer for the process based
on the demand requirement. Both production distribution and demand satisfaction are
identified by the FL technique, from which the flaws of the production are extracted during
the manufacturing process in the industry. Ethereum blockchain monitoring is utilized for
similar products, and demand satisfaction is completed in the production system. From
Equation (2), demand satisfaction has been identified. The modification process is made
from the blockchain records to improve the sustainability and production rate during man-
ufacturing. The changes are made according to the blockchain records and FL validation
(Figure 9).
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4.4. Modifications

The modifications are less in this method due to the usage of the required amount
of energy for flawless production and the manufacturing process. Transformations are
carried out to improve energy sustainability for the manufacturing process. Based on the
blockchain records, the modification process is carried out. The modifications are carried
out for the new production process based on the monitoring control output. It can help
produce a productive manufacturing process in Industry 4.0. The improvements are made
to the present method for the new manufacturing process, and the flaws are eliminated
according to the demand requirement. This helps to enhance energy sustainability to
meet production and demand satisfaction. The monitoring and condition satisfaction
processes are identified using FL from two perspectives. The perspectives include demand
allocation and production sustainability. From Equation (1), the modification process has
been recognized. This process can be carried out to reduce the procedure of modification in
the manufacturing procedure in Industry 4.0 (Figure 10).
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4.5. Detection Time

The time taken for detecting the flaws is recommended to be less in this method by
using the Ethereum blockchain and FL techniques. By observing the internal and external
demand, the blockchain technique uses this value as the input for FL. The production flaws
are detected from FL; if there is insufficient energy, then it is said to be a flaw in the execution
of the process. Energy sustainability checks how long the energy lasts to achieve the
demand. The production system accompanies blockchain monitoring for lateral production
and demand satisfaction. The observing and status gratification processes are approved
using FL. The ineffectual conditions in prospects are manipulated using blockchain records.
The Ethereum blockchain records reduce flaws in the new production by customizing the
production plan according to the federated learning confirmations. Based on Equation (13),
the detection time of marks has been identified. Using these processes, the time taken for
the detection is less in this method for the flawless manufacturing procedures (Figure 11).
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5. Conclusions

This article introduces and discusses the Sustainable Production concerned with
External Demands method. This SP-ED method is designed to improve the efficacy
of Industry 4.0 in energy production and distribution. The proposed method utilizes
blockchain and federated learning concepts to improvise sustainability performances.
The entire process is monitored, and the blockchain stores and processes detailed logs to
identify production flaws. In this process, FL validates the sustainability and flaw detec-
tion for modifying the operations in consecutive operation cycles. The sustainability due
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to internal and external distribution demands is identified, and precise recommendations
are provided. In the learning process, the maximum amount of achievable sustainability is
predicted, and the performance is leveraged. The following learning process is instigated
by considering the changes pursued in the production process using the recommenda-
tions. Therefore, the energy scheduling process is validated using joint blockchain and
learning paradigms. Hence, sustainability is slowly leveraged across varying operation
times and demands. The proposed federated learning and Ethereum blockchain model
can achieve sustainability by 11.48%, flaw detection by 14.65%, and can reduce modifica-
tions by 11.11% and detection time by 10.46% for the varying energy supply-to-demand
factor compared to DDSIM. The study’s limitations are speed and scalability, a challenge
identified for energy production and industrial applications. Future studies will examine
the edge computing techniques for energy production for green innovation success in the
industrial environment.
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