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Abstract: Batch processes in the biopharmaceutical and chemical manufacturing industries often
develop new products to meet changing market demands. When the dynamic models of these new
products are trained, dynamic modeling with limited data for each product can lead to inaccurate
results. One solution is to extract useful knowledge from past historical production data that can be
applied to the product of a new grade. In this way, the model can be built quickly without having
to wait for additional modeling data. In this study, a subspace identification combined common
feature learning scheme is proposed to quickly learn a model of a new grade. The proposed modified
state-space model contains common and special parameter matrices. Past batch data can be used
to train common parameter matrices. Then, the parameters can be directly transferred into a new
SID model for a new grade of the product. The new SID model can be quickly well trained even
though there is a limited batch of data. The effectiveness of the proposed algorithm is demonstrated
in a numerical example and a case of an industrial penicillin process. In these cases, the proposed
common feature extraction for the SID learning framework can achieve higher performance in the
multi-input and multi-output batch process regression problem.

Keywords: batch process; few-shot learning; common feature space; subspace identification

1. Introduction

The batch process is more flexible than the large-scale continuous production process
as the former can better respond to market changes and customer needs. Contrary to the
era of big data advocated for in recent years, in many fields, such as chemical process
control [1,2] and military electronic product production [3], data are collected with diverse
small batch production models employed to cope with rapid product changes [4]. Moreover,
the difficulty in collecting data involves many key variables [5], resulting in the problem of
small samples in the batch process. Such small samples are called the “low-N problem” [6].
It is difficult to obtain sufficient batches of production data in a certain manufacturing
period because of the long operation time, complex operation steps, expensive costs for
data collection, and insufficient manpower and material resources. It is not uncommon
for the new chemical compounds to run only once or twice in the production equipment,
resulting in a low-N scenario in the production of new products [7].

The problem of small samples has been studied in many fields. Some solutions have
been used to enhance the robustness of the results obtained from the follow-up training by
adding more information to the data or to assist the training of the target by transferring
knowledge or data from other aspects [8]. Tulsyan et al. [7] considered using the data
sampled repeatedly by hardware to train a GP-based generator and generate a large
number of data; then, the authors used the generated data for further process modeling.
This method of requiring hardware to repeat sampling may not be implemented in every
process; in particular, the measurement data of some key variables are difficult to obtain
many times. In addition, the quality of the samples generated by the generator providing
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auxiliary information is not as good as expected. Zhang et al. [9] combined the physical
model and data-driven model, and then a hybrid model framework was proposed to model
the process with fewer data in some operating conditions and applied to the dynamic model
prediction of algae lutein synthesis. This method is not for practical applications as it is
often difficult to obtain the mathematical model in most of the complicated batch processes.

In the industrial batch process, there may be a number of data for other similar prod-
ucts produced in the past. As the current producing product and the past similar product
data are measured in the same process, they must share some similar or even the same
features. It is reasonable to extract the information from data in these different grades of
products that are highly relevant to the current (or target) produced product. Then, the tar-
get process model with the transferred data information can be enhanced. Jaeckle et al. [10]
proposed extended principal component regression (EPCR), which combines the output
data of similar old processes with the output data of the new process for calculation. How-
ever, EPCR does not consider the input information of the process, which is unfavorable for
a regression problem. Mufioz et al. [11] extended EPCR, considered the input information,
and proposed Joint-Y PLS (JY-PLS). In JY-PLS, the variables of the output data are supposed
to have the same statistical distributions. Recently, the method based on JY-PLS has been
applied to process quality prediction and soft sensing [12,13]. Chu et al. [14] considered
the shortage of new data in the initial operation stage of the batch and used the latent
variable process migration model (LV-PTM) to transfer similar process data to the new
batch of the initial stage. These transfer-based methods require sufficient source data from
the same source, which may not be applicable to all kinds of small data scenarios. The
above methods based on transfer learning allow the target to transfer knowledge from the
data of a single source. However, the data from a single source often does not have enough
information as a reliable source of knowledge. The data collected are often diverse, and the
number of individual data is small. Therefore, it is necessary to maximize and efficiently
use all source data.

Yamaguchi et al. [15] used multi-task learning (MTL) to address the data scarcity
of each product in the multi-level batch process. By sharing useful information among
multiple related grade products, MTL can improve the accuracy of the model in the case
of data shortage. Although MTL makes use of the data of all small sample products for
mutual assistance and complementarity, it does not focus on the modeling and analysis
of new products. It also does not provide the common information of all collected data.
To obtain knowledge transferred from the multiple tasks for the learning of new tasks,
Tripuraneni et al. [16] proposed a method to learn common feature representation from
multiple tasks, so the data of the new task can be projected into this representation, which
can reduce the number of samples required to find the best regressor on the new task.
Combining data from multiple products with small samples can help compensate for the
limitations of using the data from a single source. However, in the research conducted
by Tripuraneni et al. [16], only the common feature space of the input was extracted
without considering the dynamic variables. It is impossible to extract shared knowledge of
industrial processes in general dynamic MIMO systems.

In this study, a method for batch process modeling with the low-N problem is pro-
posed. The method extracts common features from multi-grade batch process data and
incorporates these features into the subspace identification for the new batch process
modeling. The problem and novelties considered in this study are summarized as follows:

e  The proposed method considers the characteristics of batch processes, including their
multi-input and multi-output structures, their dynamic behavior, and the issue of
the uneven length of collected data. The dynamic behavior of the batch process is
described using a linear time-invariant state-space (LTI-SS) model, and the original
data are used for modeling without the need for data warping.

e  To extract common parts from the historical data, we propose a modified version of the
state-space model, which further divides the original model parameters into common
and individual parts.
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e  When using the proposed model, the input-output equation derived from the proposed
LTI-SS model has two coupled common features. We introduce the technique of
oblique projection to separate the two parameters so that it can avoid computationally
expensive iterative solutions and problems that may not converge.

e Based on the two separate sets of equations, we derive and organize their final solu-
tions, which can be obtained by calculating the eigenvalue decomposition.

e Based on the modified state-space model, we combine it with the subspace identifica-
tion method, and through the substitution of common knowledge, we can effectively
improve the modeling performance in the case of a few samples.

The rest of this article is organized as follows. In Section 2, the input-output equation
and the problem to be solved are specifically defined. Section 3 introduces the oblique
projection to separate the input-output equation into z-space and u-space, respectively. In
Section 4, the common feature parameter matrices in the model are estimated by solving
the objective function defined in Section 3. In Section 5, the calculated common feature
parameter matrices are applied to model the batch data of a new task. Then, the model of
the new task can be quickly identified even though there is a small number of batch data in
the new task. In Section 6, two examples, including a numerical case and a case of industrial
penicillin production, show the performance of the proposed method. In Section 7, the
conclusion is given. Finally, to enable readers to quickly and clearly understand the
meaning of each symbol, a table is included in Nomenclature; it allows readers to easily
compare and refer to it while reading.

2. Problem Formulation and Description

The chemical batch process often exhibits nonlinear and dynamic behaviors. Mea-
surements of process variables are expected to be strongly serially correlated. There are
additional characteristics of the long duration and operation in different operating con-
ditions at different phases. To ensure the process is stirred evenly and the reaction is
complete, the process is deliberately operated in a fixed operating condition for a while
at each operation phase. Thus, the local behavior at each operation phase tends to be
linear. To produce different grades of products, the batch process is operated in different
operating conditions at different phases, but there are similar behaviors in the physical or
chemical properties in each production process [17]. Thus, very limited batch data are often
available for each grade of the operating batch, particularly in the new grade produced
at the moment of the initial operation period. Only using the limited data of the new
batch is certainly insufficient for establishing reliable models, while the model trained by
directly extracting knowledge from all grades of batch data has a bias in favor of the graded
products with more batch data.

To obtain common knowledge from different grade sources, consider G different types
of batch production processes, which are diverse but similar. The dataset D, of the task
(the production grade) g is:

I !
Dy = [Whens) W) o

where I3; ¢ = 1,- -+, G is the number of batches in the production grade g, ufg r € REx1
and yfg,k € RM*1 are the input data and the output data at the kth sampling time of thg
ith batch data in the production grade g, respectively, i = 1,---, [;; k = ko, ko +1,- - - ,Ké,

g=1---,G and Klg is the operation time of the ith batch in the production grade g.
Similarly, for the modeling of new tasks, new batches in the production grade G + 1 are

1 1
DG — (ul 1 . u ¢+t G+1 (2)
+1 G+1,1'YG+11 )" s g1’ Y Igiq
GH+LKSH 7 GH1LKS

G+1
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To properly describe the dynamic characteristics of the operating batch process, the
state-space model is appropriate for multi-input and multi-output dynamic processes.
Thus, for the production grade g of the operating batch process, a linear time-invariant
state-space model for each phase can be written by:

gk+l = Agxk + Bg“
Yg,k - nggk + Egk

®)

where y ok € RM*1 and xi ok € RNx*1 are M-dimensional system output and Ny-dimensional
system states of the ith batch in the production grade g at the sampling time k, respectively.

g S REX1 s the L-dimensional system input of batch i in the production g at the time
point k. It is assumed to have Gaussian distribution. a; ¢ € RM*1js an M-dimensional

additional noise of batch i in the production grade g at the time point k. It is independent of
u; . and follows the Gaussian distribution. A, € RNxxNx, C, € RMxNx and B, € RNxxL

are the parameters of batch production grade g. Some common features (C. and B,) in the
parameters C and By are shared in all different grades, expressed as:

C, =C.0Q
8 =g

where C. € RM*Ng and B, € RN %L have N, orthogonal column vectors and N; orthogonal
row vectors, respectively, and Q, € RNo*Nx and R, € RN*L are the remaining parts for
each grade. With the common features (C. and B.), Equation (3) can be rewritten as

X1 = AgXp +RgBC“

5
Y;k CCQg g, k + 8 ( )
Equation (5) is then expressed in the form of the Hankel matrices.
i i i i
Yo 5= TgaXy ¢+ LoulUg ¢ +Eg (6)

where all of the Hankel matrices have a dynamic window size of N, and the number of
moving windows is J; = K — N:

i i e i .
y$,N+1 y$,N+2 Yg,NJr]é
Yon+2 Yen+3 7 Y nuji .
, ’ N+J+1 i
Ylg,f — 8 ‘]g c RNMX]g (7)
i i . i
Yg,ZN Yg,2N+1 yg,2N+]§;,71
u u e u
g,N-‘rl g,N+2 ng+]g
Uenio Uonis T N+Ji+1
’ ’ N+Je+ i
Upr =1 " . e P ®)
o u e d
92N 92N+1 $2N+]5—1

i i i e ox Ny xJL
(lg,f - |:xg,N+1 xg,N+1 xg,N—l—]é—l eR™ ]g (9)
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i

EoNT1 EgNi2 Eo N+Ii
Coni2  EgN4s T £y
. , , ,N i1 i
i = 8 8 8 ﬂq+ c RNMxJ} (10)
¢ ¢ gl :
82N 82N+1 ¢2N+Ji—1
CQ,
C.Q, A,
o= | 0 | eRVMXN: 1
CcQAy ™
C.Q,R¢B. 0
Lo = i , € RNM*NL (12)

CCQgAg—ZRgBC -+ C/QR¢B. 0

As the state term ng £ of the system is unknown, the past input and output data are
used to approximate it:

Xop = Pgalyp (13)
where
®g. = [ANTE, A — ANT] L] € RNoNMED
; Y i
Ag = [A? By AJ 7By - Bg}?zlg,p = | 7| e RNOHD
8P
i i e i i i . i
Yor Yoo Yort g1 U2 K2
1 1 . 1 . 1 1 ... 1 i
vi Yoo Ye3 ngéJrl _— U, u, 3 ug,]§+l
&P e O .
Voo Y ey a o u AU
&N g N+1 SN-+JE-1 &N g N+1 SN+Ji—1
Equation (6) can be further rewritten as:
i i i i
Yo 5= Tgx®g:Zg, + LguU, ¢ +E ¢ (14)

Now Ty (Equation (11)) and Lg, (Equation (12)) are substituted into Equation (14),
expressed as:

Qg
i —(I®C Az ®,.7
g,f*( ® C) . g,Z g,p
N-1
Q. A, (15)
0 0 0
QgRg 0 0 4 ‘
+(I®Ce) : L (I®B:)U, - +E
N-2
QA °Ry -+ QgRy 0

To obtain a more compact expression, some notations shown as follows are defined.

Q= (Iy®C)eRVMNNig — (Iy @ B,) € RNN>NL (16)
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Q, 0 0 - 0
Q,Ag QgRg U
_ NNyxN(M+L)m _ NN, xNN;
O, = : @, ¢ RNV NMHL) g — L. | eRNN
QgAgl - QgAN Ry - QR; 0
(17)
Thus, Equation (15) becomes:

Ylg,f = QOgZ’g,p + QEgGU(’glf + E’g,f (18)

Then, each column in Equation (18) can be written as:
Yo = QO0gZy;+ OBeOu 4 & 1) (19)

where () and © are unknown parameter matrices to be estimated. In this work, an oblique
projection, which is used to solve (2 and O, is discussed in the next subsection.

3. Model Decomposition into the z-Space and the u-Space Using Oblique Projection

Since ) and © in Equation (18) are coupled together, to avoid solving these two
parameters with the iterative way, the technique of oblique projection [18] is applied here

to separate Equation (18) into two subspaces which lie in z! 5 j and u’ o fi , respectively. The

oblique projection / w o,j Tepresents the projection onto z! : along the direction parallel
J

8]

to the input vector u’ o f

. ) -1 ) )
i Yot Zg) = (zé’ff)T( (Pilgd)L(zng) T) Zg (Pit,g,j)L (20)

i = i T i i T
where (Pu g ]) =I- (u of, j) U (u e, f,j) g f j is the projection operator for com-
puting orthogonal complementary spaces of u’ o fi With Equations (19) and (20), it is

projected along the input matrix u; 7, onto z! o, €xpressed as:

]

Yesi/ u ui ;% = 004z, i +Q“8®“gf1/ J+ e /i Z;,J' 1)
According to the assumption of data ug r i/ w g =0and ¢ o fi /i ” g =0 Define

: iyl . i . .

the notation ¢ 0i = Yaof, j/ u',g’fr]_z o then, the above equation can be further expressed as:
@y = 00z, (22)
By combining all of the batchdatag = 1,--- ,G;i =1,--- , Io;j=1,--- ,]g), one
wants to search for the parameter matrices, O¢ and (). Assume that () has the orthogonal

structure, and then minimize the sum of squared error defined by:

min|¥2 - 00,78, H

0,0, (23)
st. 0T =1
where ||| is the Frobenius norm,and g =1,---,G.
i _[pl. - @ . izt .. 7
¥, = [0, Con)  Zyy =% Z, 1] (24)
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and . .
B __ B __
¥, [‘1’1 s ¥ Zg,pf[z;p s Z)] (25)

Equation (23) is called the z-space model.

Similarly, using the oblique projection method, Equation (19) is projected onto u; £

along with the matrix of the past inputs and the outputs z! o

1

/4 i “ &fi ( &f J) ' <“;,f,j (P;rg/j) ] (“;,f,j> T) 7 Uy r (Pz rg]) ] (26)

where (Pl )L =1- (zi .)T z! '(zi .)T is the projection operator for computin
28] 9i) \Zei\%si) )%si pro] P puting
orthogonal complementary spaces of zi . With Equations (19) and (26), it is projected along

g j onto the input matrix u’ o f i’ and both sides multiplied by Q7 can expressed as:

QTy;,f,j/z;ju 5= Ogzh /i u +Hg®ugf]/,} ol agf]/l woo (27)

here z
whete g]/ i 8f/] 8f/]/ - U

i
Agji = o'y of.i / g f 7 ; then, the above equation can be further expressed as:

i . . :
= 0 and ugf-/ ljug,f,j L Define notation

AL = Eg(aui, ' (28)

Similarly, all batch data g = 1,--- ,G;i =1, ,Io; j =1, - ,]g) are combined.
One wants to search for the parameter matrices, Eg and O. First, assume that @ has the
orthogonal structure; then, minimize the sum of squared errors defined by:

g A - =0U; | (29)
s.t. @O =1
where , , , ,
A= - 7‘1&] Ufg,f =[Wep1 " “;,,f,]é] (30)
and
AF=IA} o A] UL =[U o UG G1)

Equation (29) is called the u-space model. Thus, the common parameter matrices
(©2 and O) and the individual parameter matrices (Og4 and E¢) of the model defined in
Equation (19) can be solved by separately minimizing the two objective functions.

4. Common Feature Parameter Matrices ((2 and ©®) Estimation
4.1. Q) and Oy Estimation in the z-Space

To solve Equation (23), first consider the loss function for each sub-task parameter,
expressed as:

= |2 - 00,28 ? (32)
|78 8%gp ||
Taking Equation (32) derivative with respect to (w.r.t.) each Og; ¢ =1, -+, G is:

oJ3

50, 0~ —207¥}(z},) 20,28, (z8,) ' (33)
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Then, the solution to Og; ¢ =1, - - -, G is directly given.

0, = Q¥ (zgp) ’ (zg,p (zg’ip) T) o (34)

With the expression of the optimal model parameter O, Equation (34) is substituted
into the loss function (Equation (32)); then, the optimization problem for the common
feature parameter €} becomes:

2

T AN
B TyB B B B B
¥ - 0¥ (zE)) <zg/p (z2,) ) z8,

st. 0T =1

min
Q

. (35)

According to the definition of the Frobenius norm, Equation (35) can be expanded as:

1
£ re-oomwr(a) (a1, (2)) 2|
_ gil (tr ( (‘Ing) T‘If§> b (gT‘fg (zg,p) ' (zgp (zg,,,) T) _lzg,p (‘Ifg) TQ) )

Considering the part related to Q, the objective function (36) can be transformed to:

max - [t Qres (zB )T 7B (ZB )T g (‘I’B>TQ
0 g\ Lgp s\ “5p gr\ g 37)
st. Q'O =1
The gradient of the objective function at the optimum must be zero. Then, Equation (36)

can be written as:
TMT-LQ =aQ) (38)

where « is Lagrange multiplier, and

nan - 3 (w0 () (2,(2)7) 2 0)) @

g=1

Compute the eigen-decomposition of ¥jr.1, and let Q) consist of the N; eigenvectors
of ¥ymr.L that have the largest N, eigenvalues. Once () is obtained, O4 can be directly
calculated in Equation (34).

4.2. © and E¢ Estimation in the u-Space

Similar to the procedure for solving Equation (29), consider the loss function for each
sub-task parameter:

= ||af - ag@Ungi (40)

where ¢ =1, -+, G. By taking Equation (40) derivative w.r.t. each E¢ and setting it equal
to zero, one can obtain:

J3
I

—0=—2A" (Uglf) Tor 25, 0A" <A§> Tor (41)

Then, the solution to E¢; ¢ =1, - - - , G is directly given.

z¢ = AB(UE)) ‘o7 (@Uglf (uZ) TGT) h (42)
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With the expression of the optimal model parameter matrix &;, Equation (42) is
substituted into the objective function (Equation (29)); then, the optimization problem for
the common feature parameter ® becomes:

2
. G
min Y

in L AE - AB(UE )T®T <®U§, A(uE) T®T> 71®U§,f

s&f
st. 00T =1

(43)

F

With the definition of the Frobenius norm, the loss function in Equation (43) can be
G
)y

expanded as:
q B B T T B B T T ! B ’
I[85 -4 (Ut) e (G)Ug,f(Ug,f) ® ) ou?, F

- £ () "n) o ()" a0(08) 07 (o0t (02) 7)ot )

8
(44)
Considering the part related to ©, the objective function (43) can be transformed to:
T T
max E (tr <®U§/f(A§) Ay @gf) ®T> ) 45
0 ¢ out (UZ,) ef (45)
s.t. @07 =1

Solving Equation (44) is a nonlinear optimization problem. To reduce the complexity
of nonlinear calculation, ® = [91 .- 0 NN,] T is calculated row by row. First, take
the first-row vector 61 of ® in Equation (45) and make it a derivative w.r.t. ©1, which is
expressed by:

T

=T (e{wgel)z

=210, (46)

where By = UZ (Ag)TAg (Ugf)T, W, =UE, (Ugf)T; g=1,---,G. Let gy, = 07,05,

and ¢p,1 = elTBgel. Equation (46) can be compactly expressed as

E(01)01 = 161 (47)

B0y — (i( By ¢Bg,1Wg>> )

2
g=1 4)W2'1 (PWg,l

where

Equation (47) is a nonlinear eigenvalue problem associated with the extracted eigen-
vector. For this problem, an iterative algorithm can be used [19]. In the first iteration, with
the guessed 950), the left-hand side of Equation (47) can be computed and an approximation
to the eigenvector 951) associated with the smallest eigenvalue of E (Ggo)) can be estimated.
Then, the left-hand side of Equation (47) with the new computed Ggl) is updated, and

the updated eigenvector 952) associated with the smallest eigenvalue of E ( 9%”) can be

(1)

estimated. The above same procedure is repeated until 0] has no significant change. Once
the optimal result 61 is found, the deflation technique is used to remove the support and
the query sets related to the direction 61:

(Us)"™ = (Uer) " - en(0]01) "6 () @)
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Then, the second parameter vector of 0 is solved based on Equation (47). The above
procedure is repeated until the desired number of vectors is obtained. The whole iterative
procedure originated is applied to solving Equation (47) as shown in Algorithm 1.

Algorithm 1: Iterative procedure for the of the parameter ® estimation.

Input:
B W forg =1,2,--- ,Gand 8"
Process:
1. Fori=1,--- ,NN,
1) Fort =1,-- -, until convergence do Compute the eigenvalue decomposition of

E®) (Glgt*l)) and select the eigenvector to the largest eigenvalues 61@ End for

@) (Ug,f>(i> = (Ug,f>(i_l) - éi<éféi> _1éiT<Ug,f>(i—l)

3) Update Bg) and Wg> by using (Ug,f) 0 End for

Output:
CH
6= :
AT
OnN,

For clarity, the entire procedure for estimating the parameter matrices (€2, ®) of the
model is summarized as shown in Algorithm 2.

Algorithm 2: Algorithm for the estimation of the common features ® and Q.

Input:

The normalized set data, ufg € REXT, y; eRMXLj—1,... e g=1,---,G
The dynamic step size N

The common feature parameter sizes N; and Ny

Process:

1. Arrange the input and output data of each batch of all the products into the Hankel matrix
according to equation (18)
Using oblique projections equation (20) and (26), get (p(ig/ j and Afg,j
According to equation (38), calculate the SVD decomposition of ¥)t.1, and take the first
NN, eigenvectors to obtain the common parameter matrix

4. Substitute the estimated () from into equation (28), and then calculate ® according to

Algorithm1.

Output:
The common feature parameters () and @

5. Refining Parameter Matrices Using Testing Sets
Subspace Identification with the Common Feature Parameter Matrices

Once the common feature parameter matrices () and @ are estimated using the meta-
training sets, the pre-trained model structure and the corresponding parameter matrices
will be transferred to the new batch G + 1. Then, the new batch with limited batch data
can be quickly learned. Substituting Q) and © into Equation (18), the input-output matrix
equation of the ith batch process is:

Y; = Q0Q"Y, + OEOU), + Q20U + E} (50)

where the batch grade index is omitted as the new batch G 4+ 1 has only one grade.
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O =
t t
Q Q Q Q
QA QA QA QA 51
: AN . : [ AN"IR AN2R ... R ]-AYN , o G
i |0y,
P @Uip (52)
P
The first three terms of the right-hand side of Equation (50) are combined
Y, = PWy, + E; (53)

V. _ ATvi =1 % _ ATri 7 _ &1 " Z;
where Yf =0 Yf,P = [O .:.], Ef =0 Ef' Uf = @Uf, and Wy, = [ﬁl]
, ' f
For the solution of Equation (53), the sub-blocks (\N{} and szu) of all I batches hori-
zontally concatenate as follows:

Ys = [Y} ?ﬂ Wzup = [leu VVIZU} (54)

Then, the objective function is written as:

~ - 2
e =
The solution to Equation (55) can be obtained using the least-squares method, and P
can be solved uniquely.

L o~ ~T — ~ T —1
P=YgWyp (WZU,BWZU,B> (56)

To further obtain the state-space model parameters, the estimated parameter P is
divided into the corresponding matrix:

PN

P=[0 Z]

According to Equations (6) and (18), QT X ¢ = OZ,. Decompose OZP with SVD:

T
on-w vy 2]

where } ; is the dominant singular value. The observability matrix and the state sequence
of the system can be directly determined from the above SVD:

Q

. Q
=ar.=uY,=| " (58)
QAN—l

& 1/2 A ~
Xp=Y, Vi= [’y 0 X (59)
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According to the definition of I'?, the parameter matrix (A) in the new batch produc-
tion is: :
A= (rx“(Nx +1: end,:)) I2(1:end — Ny, ) (60)

According to the model in Equation (3), the estimated results X £and A are substituted
to obtain:

2

Kni2 o0 X —Alng o0 Xjo1] =Blungr o0 upq] (61)

[YN-H Y]}:C[*NH e X4 [enpn o g (62)

In addition, the parameter matrices B and C in Equations (61) and (62) can be obtained
using the least-squares method.

6. Case Study

Two cases were used to verify the proposed MT-L SID: a numerical example and an
industrial penicillin batch production process.

6.1. Numerical Example

Consider a batch system whose model generates input and output data according to
Equation (5). Each stage of batch production is regarded as a task (g). The input and output
numbers are L = 20 and M = 20, respectively. The order of the system state is Ny = 4.
The input of the system (u;,k) is random samples generated from the Gaussian distribution

N (O, \@IL> , and the noise of the system is sfg P N(0,0.11p). The parameter matrices

C, € RM*N; and B, € RN*L with N; = 3 and N; = 3 shared in all batches are randomly
generated through the Gaussian distribution and orthogonalized. The parameters, A¢, R,
and Q, vary with different tasks (batch grades). They are randomly generated with the

Gaussian distributions N (0, v 0.2) N (0, vV 1.9) ,and NV (0, vV 2.8) , respectively. The initial

state of each grade of the batch g is x(’é’k = Op,. Assume that there are G different batch
grades in the training phase. The data generation of the new batch grade G + 1 is still based
on the same above assumptions of model parameter matrices.

To verify the proposed common feature extraction scheme for identifying the subspace
model, four cases are demonstrated, including (1) a varying number of grades, (2) a varying
number of data in each batch grade, (3) identifying the subspace model for a new grade,
and (4) modeling performance with the different common feature parameters N, and N;.
The LF-MoM method in [16] was adapted to calculate Equation (28), and the results were
used to compare the proposed methods. The principal angle was used to evaluate the
difference between the estimated common feature parameter and the actual one. The
concept of principal angles between subspaces was first introduced by [20]. Then, Hotelling
and Harold [21] defined the form of the canonical relationship of principal angles in the
statistical theory. In this paper, the calculation method of the principal angle is based on
singular value decomposition (SVD) [22,23].

When using the proposed method to extract common knowledge, the adjustable input
parameters are listed in Algorithm 2, including the dynamic window size, N, and the
dimensions Ny and N; of the two common parameters.

The selection of parameter N is used to extract dynamic features of the process, which
theoretically must be greater than or equal to the potential state order Ny of the model. In
the case of N > Ny, the performance of the identification will not significantly improve
and may even decrease. The larger N is, the more parameters must be calculated, and a
higher data volume is required. In the case of fewer samples, the modeling performance
will decrease. On the other hand, in the case of N < Ny, it cannot adequately reflect the
dynamic characteristics of the process, and the resulting model cannot effectively describe
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the process behavior. Therefore, it is necessary to adjust N appropriately when identifying
batch processes with a few samples:

(1) Varying numbers of grades

Assume that each grade has only two batch data for the common feature extraction
stage. Take the number of samples K = 62 in each training batch. The batch indicator is
omitted in this case. The input and output Hankel matrices Y¢, Uy, and Z,, are arranged
by taking N = 6 and J; = 50 (J; = K¢ — N) from the training data. Then, ¥, and A, are
obtained by the oblique projection.

With different grade numbers, G, the common feature parameter matrices (Q) and O)
were estimated. The sine values of the principal angles between the estimated common
feature parameter matrices and the actual common feature parameter matrices are shown in
Figure 1. The x-axis in Figure 1 is the number of tasks used in the common feature extraction
stage, and the y-axis is the sine value of the principal angle sin 6 between the actual and the
estimated common feature parameter matrices. The smaller sin 6 is, the closer the estimated
and the actual parameter matrices are. The common characteristic parameters of output
variables were not discussed in [17], so only the MT-L SID test results are available. The
results show that the accuracy of the parameter matrix €} can be achieved with fewer data.
In the estimation of the parameter matrix O, both the results of MT-L SID and LF-MoM are
to be improved and need more training grades than the estimated parameter matrix €, as
the former is for the transmitter model, while the latter is for the emission model. More
training grades are to be included for estimating a good parameter matrix ®. Furthermore,
the results show that MT-L SID can achieve a slightly better performance than LF-MoM.

—&— MT-L-SID

sin #

0

50 100 150 200 250 300 350 400 450 500

Number of Tasks
15 . — : : . - : .
=TT MT-L-SID
LF-Motd

sin #

50 100 150 200 250 300 350 400 450 500
Number of Tasks

Figure 1. Sine values of principal angles between estimated and actual €}, and between estimated
and actual ©, respectively, with a varying number of tasks.

(2) Varying numbers of data in each batch grade

In the second case, the number of grades was fixed at G = 30, but different numbers of
training samples were applied. With the different samples in each batch, the corresponding
dynamic windows [, of the Hankel matrix were changed from 31 to 500, but the window
size remained at N = 6. The principal angles between the estimated common feature
parameter matrices and the actual common feature parameter matrices are shown in
Figure 2. The x-axis of Figure 2 represents the number of dynamic windows contained in
each training batch, and the y-axis is the sine value of the principal angle sin § between
actual and estimated common feature parameter matrices. Similar to Case 1, the parameter
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matrix Q) with fewer data samples still can provide a good model performance. At the
same grade number, increasing the number of dynamic windows can improve the accuracy
of the parameter matrix © to a certain extent. In addition, © estimated from MT-L SID
showed better accuracy than LF-MoM.

sin #

50 100 150 200 250 300 350 400 450 500
Number of Windows
1.5 ; ~— . : . ; .
R TN MT-L-SID
0165 4\ i LF-MoM
) o 1
c 0
w .155 |
il =0 ]
50 100 150 200 250 300 350 400 450 500

Number of Windows

Figure 2. Sine value of the principal angle between estimated and actual €}, and between the
estimated and actual @, respectively, with varying numbers of dynamic windows.

(38) System identification of a new grade

A new grade of the product was produced through a single batch. The system model
of the new grade was then identified. The new grade in the testing stage had one batch
for training and one for testing. The data of one new batch were arranged into the Hankel
matrix with N = 6. With the common feature parameter matrices Q) and @ obtained
with 500 tasks and ] = 50, the model parameter matrices O and & were identified by
Equation (56); the corresponding parameter matrices (A, B, and C) of the state-space model
can be calculated using Equations (57)—(60).

Three models, including the conventional subspace identification (SID), the SID com-
bining the common feature parameters estimated from MT-L SID, and the SID from LF-
MoM were, respectively, used for comparisons. Figure 3 shows the poles of the estimated
batch parameter matrix A with different numbers of samples for the three models. The
black asterisk and the blue, cyan, and red circles represent the actual model, SID, MT-L
SID, and SID with common feature parameters estimated from LF-MoM, respectively. In
Figure 3a, when the data are insufficient (/g1 = 25), the proposed MT-L SID outperformed
other models. With the increasing number of training samples, all models were very close
to the actual ones in Figure 3b with ;41 = 40 and in Figure 3c with /g1 = 100. As for all
the case studies, the proposed learning scheme can significantly reduce the training sample
requirements in each grade compared to the other modeling schemes.

In the testing stage, the demand for training data can be reduced by including common
feature parameter matrices when the target batch data are insufficient. If the target batch
data collected in the test phase are already sufficient, then the model directly using only
the target batch data without common feature parameters can achieve accurate estimated
parameters or better. In this case, adding the common feature parameters for estimation
becomes unnecessary. However, at the stage of modeling a new batch process, the proposed
learning scheme plays an important role.
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poles of identified system poles of identified system poles of identified system
=— ¥ Actual |1 1 ] ¥ Actual W ' — i A ;— Actual :
MT-LSID | MT-L SIQ P MT-L SID
LF-MoM ) LF-MoM [ S LF-MoM ]
* SID 1 P & > _SID L & ) SID
// \ "' ," \
| |
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1 | |
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Figure 3. Comparison of poles calculated by two different models and the actual model in different
training samples: (a) Jg+1 = 25, (b) Jg+1 = 40, and (c) Jg4+1 = 100.

(4) Modeling performance with the different common feature parameters N; and N

In the fourth case, quantity and batch grade data were considered to compare the
support of selecting different common parameter structures in modeling new grades.
Assume there are 100 grades of data, each with two batches of data, and each batch has an
operating time of K; = 62. In terms of parameter settings, take N = 6; o = 50. Consider
the case where N; and N, have different dimensions. Substitute the calculated common
feature parameters into the modeling of new product grade data, and further calculate the
MSE from the trained model parameters on the test data as an indicator to measure the
transfer performance. The calculated results are shown in Table 1.

Table 1. MSE calculation with different structures of common feature parameters.

N;=1; Ny =3; N;=5; N; =10; N; =15
N,=1 N,=3 N;=5 N, =10 N, =15
MT-L SID 7.8861 x 108 11.4305 32.2349 41.4559 3.605 x 100

From Table 1, it can be seen that the best modeling performance can be achieved
when the dimensions of the common parameters are the same as the real dimensions. The
dimensions Ny and N; of the common parameters determine the amount of information
transferred from historical data to new batch product modeling. If the selected dimension
is greater than the potential actual dimension, then there is still information that can be
transferred but not used. If it is smaller than the potential actual dimension, then it will
compress the size of the structure describing individual parameters, so the description
of the process in system identification is probably under-fitting. Therefore, similarly,
the dimensions of common parameters also require several attempts to choose a more
appropriate size.

6.2. Industrial Process for Penicillin Fermentation

A simulation of industrial-scale penicillin (IndPen) production performed by the
authors of [24] was used here to validate the proposed method. The simulation was
developed using the historical batch records of a 100,000 L penicillin fermentation using
a high-yielding industrial strain of Penicillium chrysogenum, and all the available process
inputs and outputs were accurately simulated. At the same time, IndPen also integrated
real Raman spectroscopy equipment. In addition to modeling all required online and offline
variables, IndPen also considered the growth, morphology, metabolites, and degradation
of Penicillium chrysogenum fermentation on a large scale. The process flow sheet from [24] is
shown in Figure 4. Further details of the model can be found in [24,25].
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Figure 4. Flowchart of IndPen fermentation process. The * in the figure represents the variable
controlled by the PID controller and the highlighted variable in blue indicates that the variable can be
freely selected to be recorded and used to control PAA.

The input variables and online collected output variables of the fed-batch penicillin
process are listed in Table 2. In the penicillin production process, the sampling time of
the variable was 24 min. The variables were divided into two parts for control, namely
automatic control variables and manual control variables. The temperature and pH were
controlled by automatic control variables and regulated by a proportional integral differen-
tial (PID) feedback loop. In the manual control variables, the substrate flow rate and the
phenylacetic acid flow rate were controlled by the recipe-driven method following the fixed
curve of the whole batch or by the operator operating the fixed curve of the whole batch
(depending on the operator). This control mode copied the control actions observed by the
operator manually adjusting the whole batch of the substrate flow rate and the phenylacetic
acid flow rate.

Table 2. Input and output variables of the IndPen fermentation process.

Input Variables

Output Variables

F,/p: Acid/base flow rate
F,: Heating flow rate
F.: Cooling water flow rate
Fpa a: Phenylacetic acid flow rate
Fg: Aeration rate
Fyy: Water for injection flow rate
Fs: Substrate flow rate
F,;;: Oil flow rate

DO;: Dissolved oxygen conc.
pH: pH
Tiank: Temperature of the tank
COs,94: Off-gas carbon dioxide
W: Vessel weight
03,041 Off-gas oxygen

In IndPen, the operation mode was adjusted as follows.

Changing environment temperature.

Control strategy (recipe-driven (i.e., SBC)).
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e Option to include inhibitory effects on the growth rates during DO,, N, and PAA
limitation, as well as during excessive PAA and CO, concentrations and sub-optimal
T and pH operation.

e Whether to use Raman spectroscopy to control PAA.

According to the selection of the above modes, 14 different modes were collected.
The first 10 modes were operated in ambient temperature condition 1: substrate feed
temperature 288 K, substrate feed cold water 288 K, air temperature 290 K, and inlet coolant
temperature 285 K. The operation mode setting under these temperature conditions is
shown in Table 3. The operation mode setting under temperature condition 2—substrate
feed temperature 293 K, substrate supply cold water 293 K, air temperature 298 K, and inlet

coolant temperature 288 K—is shown in Table 3.

Table 3. Batch runs of product of each operation mode at ambient temperature condition 1.

No. Control Strategy Raman Spectroscopy Inhibition
1 Sequential batch control Only record the Raman data DO,, T, pH, CO,, PAA, N
2 Operator controller batch Only record the Raman data DO,, T, pH, CO,, PAA, N
3 Sequential batch control Use Raman data to control PAA DO,, T, pH, CO,, PAA, N
4 Operator controller batch Use Raman data to control PAA DO,, T, pH, CO,, PAA, N
5 Sequential batch control Use Raman data to control PAA No inhibition
6 Sequential batch control Use Raman data to control PAA DO,, T, pH
7 Operator controller batch Use Raman data to control PAA DO,, T, pH
8 Operator controller batch Use Raman data to control PAA No inhibition
9 Operator controller batch Only record the Raman data No inhibition
10 Sequential batch control Only record the Raman data No inhibition
11 Sequential batch control Only record the Raman data DO,, T, pH, CO,, PAA, N
12 Operator controller batch Only record the Raman data DO,, T, pH, CO,, PAA, N
13 Sequential batch control Use Raman data to control PAA DO,, T, pH, CO,, PAA, N
14 Operator controller batch Use Raman data to control PAA DO,, T, pH, CO,, PAA, N

According to the variables in Table 2, the input and output profiles of mode 1 are

shown in Figures 5 and 6, respectively.
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Figure 5. The profile of input variables.
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Figure 6. The profile of output variables.
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In the case of a small sample of batch data, operation mode 10 was selected for
validation. The common knowledge was extracted from the data of other modes excluding
the test. The proposed MT-L SID was compared with the combination of LE-MoM and SID

and the conventional SID.

e  Few-shot learning in mode 10 data

Considering the modeling of fed-batch penicillin process in operation mode 10, the

common feature extraction involved using the batch data in other modes, and each of them
was five batches. The dimensions of the common feature parameter matrices with N = 36
were N; = 5 and N; = 5. In the testing stage, nine batch data from mode 10 were used
for training, and the rest of the batch was used for verification. The results are shown
in Figure 7.
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Figure 7. Predicted outputs in operation mode 10.



Processes 2023, 11, 1481

19 of 21

In Figure 7, the black lines are the actual outputs, the blue lines are the predicted
outputs without using common feature parameter matrices for modeling, the red lines are
the predicted outputs of the MT-L SID, and the green lines are the predicted outputs of the
model with LE-MoM. Although the outputs of the red lines do not completely follow the
outputs well, the proposed learning model can better describe the process behaviors than
the model established without using common feature parameter matrices and SID with
LF-MoM. The MSE of these methods with five operation conditions (modes) are shown in
Table 4. In Table 4, the process variables are scaled to the same size. The results show that
in few-shot batch modeling, the performance of the proposed MT-L SID was helpful and
better than LF-MoM and conventional SID.

Table 4. MSEs of SID, MT-L SID, and LE-MoM models in the IndPen fermentation process case.

SID LF-MoM MT-L SID
Mode 1 282.2638 2.8839 2.6048
Mode 2 29.2447 15.1013 11.7451
Mode 3 86.4948 101.8927 14.5548
Mode 4 12.4861 4.5348 3.9649
Mode 10 12.2479 2.4549 2.3101

7. Conclusions

The data collected from the industrial batch process sometimes encounter the low-N
problem. Such a small number of batch-run data will greatly degrade the performance
of data-driven models. In this study, multitask-learning SID was proposed for modeling
batch processes, which can transfer knowledge from multiple batch process data. The
proposed method uses historical batch data with similar multiple batch production to
train the state-space model and extract common feature parameter matrices. Then, during
modeling, a batch with a new grade, as well as the input and output variables of the
historical batch data, is projected into the common feature space to reduce the sample
requirements for the training of new model parameters. Thus, the model of a new batch
with a few batch data can be effectively and quickly constructed. In addition, the purpose
of using oblique projection in our method is to avoid solving the common parameters of
two objective functions simultaneously during the solution process. This technique can
decouple the two parameters so that the solutions of the two parameters do not affect each
other. According to the objective functions we have defined, the derivation result of solving
the common parameters corresponds to solving the eigenvalue problem. The common
parameters correspond to the maximum eigenvalue of the data matrix after the oblique
projection transformation. The contributions of this study are summarized as follows:

e A modified linear time-invariant state-space model was proposed, which separates
the common features and individual features corresponding to the input and input
parameters so that it can be used to express the extraction of common features in the
multi-input, multi-output dynamic system.

e  The multi-task learning-based N4SID, called MT-L SID, was developed. The proposed
SID model of the common feature parameters was learned from historical batch data.
It can be effectively applied to the batch process with new grades. Then, the data
requirement of a new batch process modeling can be reduced.

e  With the oblique projection, MT-L SID can separate input-output equations to calculate
the common feature parameter matrices. The calculations are straightforward without
heavy iterations.

Finally, the proposed method was validated based on a numerical example and an
industrial penicillin production process. In the generated numerical examples, increasing
the number of batches (tasks) or the amount of data in individual batches improved the
accuracy of common feature parameters. In the production of penicillin, the proposed
method showed better prediction performance in the case of a few samples.
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Dq The data set of batch grade g
Ig Number of batches in grade g

N Dynamic window size

xjg,k System state of batch i in grade g at time k

ujg,k System input of batch 7 in grade g at time k
yfg,k System output of batch i in grade g at time k
E;g',k Additional noise of batch 7 in grade g at time k

B, Parameter of grade g
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L Number of system inputs
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