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Abstract: Many fundamental decisions in the process design of a separation task are conducted in an
early stage where, unfortunately, process simulation does not have the highest priority. Subsequently,
during the setup of the digital twin, dedicated experiments are carried out in the design space that
was established earlier. These experiments are most often too complicated to conduct directly. This
paper addresses the idea of a combined approach. The early-stage buffer screening and optimization
experiments were planned with the Design of Experiments, carried out and then analyzed statistically
to extract not only the best buffer composition but also the crucial model parameters, in this case the
isotherm dependency on the buffer composition. This allowed the digital twin to predict the best
buffer composition, and if the model-predicted control was applied to keep the process at the optimal
productivity at a predetermined purity. The methodology was tested with an industrial peptide
purification step.

Keywords: peptide purification; isotherm determination; design of experiments

1. Introduction

Chromatography is a widely used unit operation in chemical and pharmaceutical
engineering with broad fields of application from low-cost bulk chemicals to high potential
pharmaceuticals. Because of the variety of potential chromatography processes such as
batch chromatography or various continuous process options, process modelling has been
state of the art for decades [1–6]. With increasing computational power, model parameter
determination has become the bottleneck for fast and efficient model implementation.
There is an increasing number of different approaches that can, in general, be separated
into two categories.

One approach is to measure each model parameter individually, preferably decoupled
from the other effects. Fluid dynamics, e.g., the axial dispersion coefficients measured
with tracer experiments [3,7–9]; thermodynamics, e.g., isotherms measured with dedicated
experiments such as shaking flask experiments, frontal analysis or perturbation [1,10,11];
and mass transfer are evaluated separately. Although delivering precise and accurate
results, this approach is time consuming.

The other approach is obtaining parameters from simple experiments, ideally di-
rectly from chromatograms. This is possible with fitting routines [12–14], neuronal net-
works [15–17] or alike. This is a fast approach; the resulting quality, however, might not be
the best, especially if two parameters can describe the same effect. Peak shape, for example,
is influenced by fluid dynamics, thermodynamics and mass transfer. Of course, a combined
approach is also possible.
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Great efforts have been devoted to the development of different isotherm models
and the corresponding parameter determination methods, especially for gradient separa-
tions. In most cases, the thermodynamic behaviour of the analytes/compounds is only
investigated for the modifier. In some cases, isotherms are determined for two different
parameters, such as the pH and ionic strength. This was obviously needed for mixed-mode
chromatography [18–21] but was also undertaken for other media [22,23]. The determi-
nation of isotherm dependency for more buffer components is rarely undertaken since
the experimental effort increases exponentially. Nevertheless, most buffer components do
have a significant influence on retention behaviour. In most cases, however, the buffer
composition is examined in an early process stage and is kept untouched later. Often,
only the gradient gets optimized and modelled thoroughly. Fluctuations in the buffer
composition are, therefore, often not representable in chromatography models.

For this case study, a reversed-phase polishing step for an industrial peptide pro-
duction was investigated. To evaluate the influences of buffer composition, a Design of
Experiments approach was taken. Three components, counter ion, stabilizer and the pH
value were investigated. The DoE was performed with downscaled preparative chromatog-
raphy runs and first analysed for the significance of each parameter. The preparative
DoE runs were further evaluated to obtain the model parameters to describe the isotherm
dependency on each buffer compound.

2. Modelling Chromatography: General Rate Model

The chromatography model used throughout this work, namely the general rate model,
as well as the general modelling approach, is described in detail in Zobel-Roos et al. [24].
The model was used and parametrized in Zobel-Roos et al. [25].

In order for the model to become a digital twin, it was necessary for the real process to
provide information back to the model. In this case, this was accomplished through the use
of Process Analytical Technologies (PAT) tools that converted the Diode Array Detector
(DAD) signals to product and impurity concentrations in-line and in real time [26,27].
Furthermore, neural networks are sometimes used to determine or adjust model parameters
during the operation, such as the fluid dynamic parameters [15]. The coupling with the
process control system was described by the authors in [28,29].

The general rate model can be separated into three parts: the mass balance for the
mobile phase, the mass balance for the light phase and the description of the equilibrium.
The authors of [1,2,5,30–32] provide more detail regarding derivation, assumptions and
further information.

Mass balance of mobile phase:
The mass balance of the mobile phase consists of four terms reading from left to right:

storage, convective flow, axial dispersion and mass transport [1]:

∂ci
∂t

= −uint·
∂ci
∂x

+ Dax·
∂2ci
∂x2 − 6

dp
· (1 − εs)

εs
·k f ,i·

(
ci − cp,i

∣∣
r=Rp

)
(1)

with uint as interstitial velocity, Dax as axial dispersion coefficient, εs as voidage, dp as
particle diameter and k f ,i as film mass transport coefficient. The use of film mass transport
coefficient demands the consideration of pore diffusion in the mass balance of the stationary
phase. However, film mass transport and pore diffusion can be combined, resulting in the
lumped pore diffusion model [32]. Here, the film mass transport coefficient k f ,i was replaced
with an effective mass transport coefficient ke f f . This simplification is often applied in the
early process development to reduce the model parameter determination efforts at the
expense of the model accuracy and process understanding. An even further simplification
is the lumped kinetic model that neglects the intraparticle pores completely [32].

Mass balance of stationary phase:
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The mass balance of the stationary phase is mostly dominated by pore diffusion Dp,i
and surface diffusion DS,i [30,33]:

εp,i·
∂cp,i

∂t
+
(
1 − εp,i

)
·∂qi

∂t
=

1
r2

∂

∂

[
r2
(

εp,i·Dp,i·
∂cp,i

∂r
+
(
1 − εp,i

)
·DS,i

∂q∗i
∂r

)]
(2)

with cp,i as the concentration of component i within the pores and qi as the surface loading
of component i. For larger molecules, surface diffusion is often neglected or combined with
pore diffusion into one effective diffusion coefficient Deff [10,33].

De f f ,i = εp,i·Dp,i +
(
1 − εp, i

)
·DS,i

∂q∗i
∂cp,i

(3)

Combining Equations (2) and (3) results in:

εp,i·
∂cp,i

∂t
+
(
1 − εp,i

)
·∂qi

∂t
= De f f ,i

(
∂2cp,i

∂r2 +
2
r
·
∂cp

∂r

)
(4)

For the lumped pore diffusion model, the mass balance for the stationary phase
reads [32]:

εp,i·
∂cp,i

∂t
+
(
1 − εp,i

)
·∂qi

∂t
=

6
dp

· (1 − εs)

εs
·k f ,i·

(
ci − cp,i

∣∣) (5)

Adsorption equilibrium:
There is a vast number of approaches to describe the adsorption equilibrium, mostly

depending on the adsorption mechanism and mode of operation [11,34–45]. For this
simulation study, competitive Langmuir isotherms were used [10,46]:

qi =
qmax,i·Ki·ci

1 + ∑n
j=1 Kj·cj

(6)

Here, Ki is the Langmuir coefficient and qmax,i the maximum loading capacity of
component i. There are different notations found in the literature, e.g., with the use of the
Henry coefficient Hi. All notations can be transferred into the other with:

Hi = qmax,i·Ki (7)

All necessary parameters for fluid dynamic (Dax, εs and εp,i), mass transfer (k f ,i) and
adsorption equilibrium were measured in a previous work [25]. The Langmuir isotherm
was measured for the modifier, a short-chain aliphatic alcohol.

3. Materials and Methods
3.1. Feed, Buffer Components and Columns

The feed solution was taken from an industrial peptide process. The short-chain
aliphatic alcohol, buffer salts and stabilisers were obtained in pharmaceutical production
quality from Sanofi-Aventis Deutschland GmbH. Short-chain aliphatic alcohol was taken
from the production process.

Preparative chromatography was performed with silica-based reversed-phase media
in self-packed glass columns (Götec-Labortechnik GmbH, Bickenbach, Germany). Analyti-
cal chromatography was performed with a RP-18 column.

3.2. Preparative Chromatography

All preparative runs were performed with the same method. Each run started with 1
column volume (CV) equilibration followed by 14 CV loading. The gradient was started
directly afterwards. A run was terminated with a regeneration step after the elution of the
main peak, detected via UV–Vis at 280 nm.



Processes 2023, 11, 1480 4 of 11

3.3. Software

For process simulation and isotherm parameter fitting, Aspen Custom Modeler (As-
pentech, Bedford, MA, USA) was used. The Design of Experiments plan was set up and
evaluated with JMP (SAS Institute, Cary, NC, USA). JMP was also used to statistically
evaluate the isotherm parameters using multiple linear regression.

4. Design of Experiments

To identify the significance of each parameter in the given range, the following
was used:

• Counter ion: 25–100 mM;
• Buffer: 50–150 mM;
• pH: 3.35–3.7.

A three-factor, level two, full factorial Design of Experiments plan was carried out.
It included one centre point with three repetitions to evaluate the reproducibility. The
boundaries were conceived from prior knowledge. The pattern introduced in Table 1 is
used throughout the article to identify the experiments. The centre point is 000 and + and—
indicate that the factor is at minimum or maximum. The order of the symbols represents
the order as given in Table 1: first, the counter ion; second, the buffer; and third, the pH.
Although Table 1 shows the entries in order, the experiments were randomized. Each run
was fractionated in 30 s intervals and analysed offline for the target and side component
concentrations. The product was pooled out of these fractions to surpass 99% purity. The
target values were productivity and yield, normalized to the mean value of the three centre
points. The experimental data and results are given in Table 1:

Table 1. Design of Experiments plan.

Factors Target Values
CI Buffer pH Normalized Yield Normalized Productivity

Pattern [mM] [mM] [-] [-] [-]

(000) 62.5 100 3.53 1.01 1.00
(000) 62.5 100 3.53 0.99 0.99
(000) 62.5 100 3.53 1.00 1.00
(—) 25 50 3.35 0.73 0.61
(–+) 25 50 3.7 1.06 1.08
(-+-) 25 150 3.35 1.09 1.08
(-++) 25 150 3.7 0.93 1.02
(+–) 100 50 3.35 0.93 0.91
(+-+) 100 50 3.7 1.20 1.20
(++-) 100 150 3.35 1.23 1.22
(+++) 100 150 3.7 0.97 0.99

The pareto charts of the standardized effects, given in Figure 1, indicated that each
single parameter and each parameter combination had a significant effect on both the
yield and productivity. Obviously, a higher yield automatically resulted in a higher pro-
ductivity. In addition, the changes in the buffer composition had an influence on the
retention time as well (see also Figure 4). Therefore, productivity was more affected by the
buffer composition.

The results showed that each parameter individually had a positive influence on the
target values. Increasing these would increase the outcome. The parameter combinations,
however, had a negative impact, especially the combination of the pH and buffer, which
had the highest impact values. Although the absolute values given in the pareto charts did
not necessarily give the correct ranking or strength of impact, one might assume that the
best buffer composition would be:

• A high counter ion (CI) value; and
• A high pH value at a low buffer concentration; or
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• A low pH value at a high buffer concentration.

Figure 1. Pareto charts of the standardized effects for (a) yield and (b) productivity.

The achieved quality of the DoE results was excellent. Figure 2 shows the plots of
the measured over the predicted values. All the data points were well on or very close
to the red line, indicating that there was a good correlation between the measured and
predicted values. This was underlined by very narrow confidence intervals. The other
evaluation metrics were also very good. The p-values were very low. Generally speaking,
the p-values describe the accordance of the dataset with a potential explanation, such as
that the null-hypothesis is true. Here, the p-values were with p ≤ 0.001 far below the
significance boundary of p = 0.05 chosen for this DoE. The R2, here RSq, is near 1 and the
Root Mean Square Errors (RMSE) were below 1.5%.

Figure 2. Observed vs. Predicted plots for (a) yield and (b) productivity.

5. Parameter Extraction

The good results of the DoE, especially the very narrow confidence intervals, indicated
that there might be a linear correlation between each individual buffer component and the
adsorption isotherm. Figure 1 also suggests that there were interactions between the two
buffer parameters. It is worth noting that this assumption can only be made within the
observed DoE design space. An extrapolation outside the measured parameter range is in
general not recommended by statistic fundamentals.
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In previous work [25], the isotherm dependency on the modifier concentration was
implemented with 4 factors for each component, a1,i, a2,1, b1,i and b2,i. These factors
influence the Langmuir parameters Henry coefficient Hi and maximum loading capacity
qmax,I depending on the modifier concentration:

Hi = a1,i ·cp
a2,1 (8)

qmax,i = b1,i + b2,i ·cp (9)

Note that cp is the concentration of the modifier inside the pores. For clarity, the correct
indices for cp were left out here. In case of linear dependencies between the single buffer
compounds and the adsorption equilibrium as well as the two parameter interactions, the
four factors mentioned above can be described with an equation such as:

y = i0 + i1x1 + i2x2 + i3x3 + i12x1x2 + i13x1x3 + i23x2x3 (10)

where y is one of the four factors, xi is the concentration of the buffer component and
ii is the component dependent linear factor. The latter should be determinable directly
with JMP. To do so, a1,i , a2,i , b1,i and b2,i were added as new target values to the DoE.
The factors themselves were obtained by fitting the simulation results to the experimental
chromatograms. Again, the linear correlations looked very good. The p-values were
between 0.003 and 0.0009, R2 was above 0.98 and the Root Mean Square Errors were also
very low. All the values can be found in Table 2. The observed vs. predicted plots are given
in Figure 3, exemplified with b1 and b2. Again, the confidence intervals were narrow. An
interesting observation can be undertaken for data point (—). Despite being on the line
with the others, it is relatively far outside.

Figure 3. Observed vs. Predicted plots for the factors (a) b1 and (b) b2 for the target component.

Table 2. Evaluation metrics for the DoE parameter determination.

p R2 RMSE

a1 0.003 0.98 2.8 × 10−7

a2 0.0009 0.99 0.0494
b1 0.0023 0.98 0.007
b2 0.0006 0.99 0.0115

6. Discussion

So far, the method was straight forward. The Design of Experiments plan that was
set up to determine the dependence of the preparative chromatography runs on the buffer
composition was extended by a few isotherm parameters and evaluated statistically to
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identify the correlations between these parameters and the buffer composition. Statistically,
the results were excellent. The important part, however, was the implementation into
the digital twin and that the simulations carried out with different buffer compositions
matched the corresponding DoE experiments. In terms of implementation, Equation (10)
was added to the model for each isotherm parameter (a1,i , a2,i , b1,i and b2,i ).

A comparison between the measured and simulated chromatograms can be found in
Figure 4. It can be seen that the digital twin covered the changes in the buffer composition
very well. The R2 values were between 0.858 and 0.998 with an average of 0.952. More
importantly, the yield and productivity could be described with good accuracy. On average,
the deviation for the yield was 3.6% and the deviation for the productivity was 2.76%. All
the values are listed in Table 3.

Figure 4. Comparison between DoE experiments (dots) and digital twin simulations (solid lines).

Table 3. Comparison between yield and productivity values for simulations and preparative runs.

Simulation Experiment Deviation

Pattern Normalized
Yield

Normalized
Productivity

Normalized
Yield

Normalized
Productivity Yield Productivity

[-] [-] [-] [-] [%] [%]

(000)_1 1.00 1.00 1.11 1.08 9.88 7.32
(000)_2 1.00 1.00 1.09 1.07 8.65 6.70
(000)_3 1.00 1.00 1.10 1.08 9.12 7.59

(–+) 1.24 1.23 1.17 1.16 −5.51 −5.60
(-+-) 1.22 1.21 1.20 1.16 −1.74 −4.52
(-++) 1.01 1.04 1.03 1.10 1.66 5.03
(+–) 1.00 0.98 1.03 0.98 2.59 −0.19
(+-+) 1.29 1.27 1.32 1.29 1.91 1.81
(++-) 1.28 1.26 1.35 1.32 5.11 4.23
(+++) 1.02 1.03 1.06 1.07 3.89 3.26

Of course, the digital twin could be used to optimize the buffer composition. Contour
plots are shown in Figure 5. The top two rows show the values for the buffer and counter
ion (top) and the pH over counter ion (middle). In accordance with the pareto charts
(Figure 1), the trend for all the components was the more the better. For the combination of
the pH and the buffer (bottom), however, the ideal spots are on the two end points, being
high pH with a low buffer concentration or a high buffer concentration with low pH. Again,
this opposing trend was predicted by the pareto charts. Optimization studies showed that
the best result was reached for the combination of the high buffer concentration at low pH.
Thus, the best composition was 100 mM counter ion and 150 mM buffer at pH 3.35. This
increased the yield by 29% and the productivity by 27% compared to the center point.
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Figure 5. Contour plots showing the influence of two factors on target values, normalized yield on
the left and normalized productivity on the right. Top row: Buffer over counter ion, middle row: pH
over counter ion, bottom row: pH over buffer. Due to the stepwise change in color instead of a steady
color gradient, there were rounding errors leading to the display of more inflection points.

7. Conclusions

Design of experiment plans to estimate the best buffer composition are state of the
art as part of the early process development phase, as they are easy to set up and fast to
execute. The DoE itself shows the dependency of the performance values on the buffer
composition. If coupled with a digital twin, additional information can be extracted easily.
In this work, it was shown that fitting the isotherm parameters to the DoE runs and feeding
these values back into the DoE as target values generated good correlations. These can
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again be integrated into the digital twin, which was able to optimize the buffer composition.
This provided an increase in yield of 29% and productivity of 27%.

Additionally, if used for advanced process control, the digital twin is now able to
detect fluctuations in the buffer composition and optimize the system, especially the cut
points, to maintain the purity at maximum performance.
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Abbreviations

ci (g/L) Concentration of component i
cp,i (g/L) Concentration of component i inside the pores
CTCC Continuous Twin Column Chromatography
CV Column Volume
Dax (cm2/s) Axial dispersion coefficient
Deff (cm2/s) Effective diffusion coefficient
Dm,i (cm2/s) Molecular diffusion coefficient
dp (cm) Particle diameter
Dp,i (cm2/s) Pore diffusion coefficient
DS,i (cm2/s) Surface diffusion coefficient
DoE Design of Experiments
εp,i (-) Porosity
εs (-) Voidage
Hi (-) Henry coefficient of component i
Ki (l/g) Langmuir coefficient of component i
ke f f (cm/s) Effective mass transport coefficient
kf (cm/s) Mass transport coefficient
l (cm) Length
MCSGP Multicolumn Countercurrent Solvent Gradient Purification
PAT Process Analytical Technology
Pei (-) Peclet-Number
qi (g/L) Loading of component i
qmax,i (g/L) Maximum loading capacity of component i
r (cm) Radius
Re (-) Reynolds-Number
RMSE Root Mean Square Error
Rp (cm) Particle Radius
Shi (-) Sherwood-Number
t (s); (min) Time
ti (s); (min) Mean residence time
uint (cm/s) Interstitial velocity
v (cm/s) Velocity
.

V (mL/min) Volumetric flow
Vcolumn (mL) Volume of column
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η (mg/cm ∗ s) Dynamic viscosity
ρ (g/L) Density
σ2 (s2) Variance

References
1. Guiochon, G.; Felinger, A.; Shirazi, D.G.; Katti, A.M. Fundamentals of Preparative and Nonlinear Chromatography, 2nd ed.; Elsevier

Academic Press: Amsterdam, The Netherlands, 2006.
2. Strube, J. Technische Chromatographie: Auslegung, Optimierung, Betrieb und Wirtschaftlichkeit; Habil.-Schr. Universität Dortmund, Als

Ms. gedr; Shaker: Aachen, Germany, 1999; ISBN 3826568974.
3. Altenhöner, U.; Meurer, M.; Strube, J.; Schmidt-Traub, H. Parameter estimation for the simulation of liquid chromatography. J.

Chromatogr. A 1997, 769, 59–69. [CrossRef]
4. Felinger, A. (Ed.) 3 Models of chromatography. In Data Analysis and Signal Processing in Chromatography; Elsevier: Amsterdam,

The Netherlands, 1998; pp. 43–78, ISBN 9780444820662.
5. Zobel-Roos, S. Entwicklung, Modellierung und Validierung von Integrierten Kontinuierlichen Gegenstrom-Chromatographie-Prozessen;

Shaker: Herzogenrath, Germany, 2018; ISBN 3844061878.
6. Seidel-Morgenstern, A. Modeling of Chromatographic Processes. In Preparative Chromatography, 3rd ed.; Schmidt-Traub, H.,

Schulte, M., Seidel-Morgenstern, A., Eds.; WILEY-VCH: Weinheim, Germany, 2020; pp. 311–354, ISBN 9783527344864.
7. Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; Wiley: New York, NY, USA, 1999; ISBN 9780471254249.
8. Hejtmánek, V.; Schneider, P. Axial dispersion under liquid-chromatography conditions. Chem. Eng. Sci. 1993, 48, 1163–1168.

[CrossRef]
9. Tallarek, U.; Albert, K.; Bayer, E. Measurement of transverse and axial apparent dispersion coefficients in packed beds. AIChE J.

1996, 42, 3041–3054. [CrossRef]
10. Carta, G.; Jungbauer, A. Protein Chromatography: Process Development and Scale-Up; WILEY-VCH: Weinheim, Germany, 2010; ISBN

978-3-527-31819-3.
11. Seidel-Morgenstern, A. Experimental determination of single solute and competitive adsorption isotherms. J. Chromatogr. A 2004,

1037, 255–272. [CrossRef] [PubMed]
12. Hahn, T.; Huuk, T.; Heuveline, V.; Hubbuch, J. Simulating and Optimizing Preparative Protein Chromatography with ChromX. J.

Chem. Educ. 2015, 92, 1497–1502. [CrossRef]
13. Osberghaus, A.; Hepbildikler, S.; Nath, S.; Haindl, M.; von Lieres, E.; Hubbuch, J. Determination of parameters for the steric mass

action model—A comparison between two approaches. J. Chromatogr. A 2012, 1233, 54–65. [CrossRef]
14. Huuk, T.C.; Hahn, T.; Osberghaus, A.; Hubbuch, J. Model-based integrated optimization and evaluation of a multi-step ion

exchange chromatography. Sep. Purif. Technol. 2014, 136, 207–222. [CrossRef]
15. Mouellef, M.; Vetter, F.L.; Zobel-Roos, S.; Strube, J. Fast and Versatile Chromatography Process Design and Operation Optimization

with the Aid of Artificial Intelligence. Processes 2021, 9, 2121. [CrossRef]
16. Wang, G.; Briskot, T.; Hahn, T.; Baumann, P.; Hubbuch, J. Estimation of adsorption isotherm and mass transfer parameters in

protein chromatography using artificial neural networks. J. Chromatogr. A 2017, 1487, 211–217. [CrossRef]
17. Gao, W.; Engell, S. Neural Network-Based Identification of Nonlinear Adsorption Isotherms. IFAC Proc. Vol. 2004, 37, 721–726.

[CrossRef]
18. Kreusser, J.; Jirasek, F.; Hasse, H. Influence of pH value and salts on the adsorption of lysozyme in mixed-mode chromatography.

Eng. Life Sci. 2021, 21, 753–768. [CrossRef]
19. Zhu, M.; Carta, G. Protein adsorption equilibrium and kinetics in multimodal cation exchange resins. Adsorption 2016, 22, 165–179.

[CrossRef]
20. Schmidt, A.; Zobel-Roos, S.; Helgers, H.; Lohmann, L.; Vetter, F.; Jensch, C.; Juckers, A.; Strube, J. Digital Twins for Continuous

Biologics Manufacturing. In Process Control, Intensification, and Digitalisation in Continuous Biomanufacturing; Subramanian, G., Ed.;
Wiley: Hoboken, NJ, USA, 2022; pp. 265–350, ISBN 9783527347698.

21. Vetter, F.L.; Zobel-Roos, S.; Mota, J.P.B.; Nilsson, B.; Schmidt, A.; Strube, J. Toward Autonomous Production of mRNA-Therapeutics
in the Light of Advanced Process Control and Traditional Control Strategies for Chromatography. Processes 2022, 10, 1868.
[CrossRef]

22. Baumann, P.; Huuk, T.; Hahn, T.; Osberghaus, A.; Hubbuch, J. Deconvolution of high-throughput multicomponent isotherms
using multivariate data analysis of protein spectra. Eng. Life Sci. 2016, 16, 194–201. [CrossRef]

23. Field, N.; Konstantinidis, S.; Velayudhan, A. High-throughput investigation of single and binary protein adsorption isotherms in
anion exchange chromatography employing multivariate analysis. J. Chromatogr. A 2017, 1510, 13–24. [CrossRef]

24. Zobel-Roos, S.; Mouellef, M.; Ditz, R.; Strube, J. Distinct and Quantitative Validation Method for Predictive Process Modelling
in Preparative Chromatography of Synthetic and Bio-Based Feed Mixtures Following a Quality-by-Design (QbD) Approach.
Processes 2019, 7, 580. [CrossRef]

25. Zobel-Roos, S.; Vetter, F.L.; Scheps, D.; Pfeiffer, M.; Gunne, M.; Boscheinen, O.; Strube, J. Digital Twin Based Design and
Experimental Validation of a Continuous Peptide Polishing Step. Processes 2023, 11, 1401. [CrossRef]

https://doi.org/10.1016/S0021-9673(97)00173-8
https://doi.org/10.1016/0009-2509(93)81044-V
https://doi.org/10.1002/aic.690421106
https://doi.org/10.1016/j.chroma.2003.11.108
https://www.ncbi.nlm.nih.gov/pubmed/15214669
https://doi.org/10.1021/ed500854a
https://doi.org/10.1016/j.chroma.2012.02.004
https://doi.org/10.1016/j.seppur.2014.09.012
https://doi.org/10.3390/pr9122121
https://doi.org/10.1016/j.chroma.2017.01.068
https://doi.org/10.1016/S1474-6670(17)31895-5
https://doi.org/10.1002/elsc.202100058
https://doi.org/10.1007/s10450-015-9735-z
https://doi.org/10.3390/pr10091868
https://doi.org/10.1002/elsc.201400243
https://doi.org/10.1016/j.chroma.2017.06.012
https://doi.org/10.3390/pr7090580
https://doi.org/10.3390/pr11051401


Processes 2023, 11, 1480 11 of 11

26. Zobel-Roos, S.; Mouellef, M.; Siemers, C.; Strube, J. Process Analytical Approach towards Quality Controlled Process Automation
for the Downstream of Protein Mixtures by Inline Concentration Measurements Based on Ultraviolet/Visible Light (UV/VIS)
Spectral Analysis. Antibodies 2017, 6, 24. [CrossRef]

27. Vetter, F.L.; Zobel-Roos, S.; Strube, J. PAT for Continuous Chromatography Integrated into Continuous Manufacturing of Biologics
towards Autonomous Operation. Processes 2021, 9, 472. [CrossRef]

28. Uhl, A.; Schmidt, A.; Hlawitschka, M.W.; Strube, J. Autonomous Liquid–Liquid Extraction Operation in Biologics Manufacturing
with Aid of a Digital Twin including Process Analytical Technology. Processes 2023, 11, 553. [CrossRef]

29. Mouellef, M.; Vetter, F.L.; Strube, J. Benefits and Limitations of Artificial Neural Networks in Process Chromatography Design
and Operation. Processes 2023, 11, 1115. [CrossRef]

30. Kaczmarski, K.; Cavazzini, A.; Szabelski, P.; Zhou, D.; Liu, X.; Guiochon, G. Application of the general rate model and the
generalized Maxwell–Stefan equation to the study of the mass transfer kinetics of a pair of enantiomers. J. Chromatogr. A 2002,
962, 57–67. [CrossRef] [PubMed]

31. Kaczmarski, K.; Gubernak, M.; Zhou, D.; Guiochon, G. Application of the general rate model with the Maxwell–Stefan equations
for the prediction of the band profiles of the 1-indanol enantiomers. Chem. Eng. Sci. 2003, 58, 2325–2338. [CrossRef]

32. Felinger, A.; Guiochon, G. Comparison of the Kinetic Models of Linear Chromatography. Chromatographia 2004, 60, S175–S180.
[CrossRef]
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