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Abstract: Digital images can be easily shared or stored using different imaging devices, storage tools,
and computer networks or wireless communication systems. However, these digital images, such as
headshots or medical images, may contain private information. Hence, to protect the confidentiality,
reliability, and availability of digital images on online processing applications, it is crucial to increase
the infosecurity of these images. Therefore, an authorization encryption scheme should ensure a
high security level of digital images. The present study aimed to establish a multilayer convolutional
processing network (MCPN)-based cryptography mechanism for performing two-round image en-
cryption and decryption processes. In the MCPN layer, two-dimensional (2D) spatial convolutional
operations were used to extract the image features and perform scramble operations from grayscale to
gray gradient values for the first-image encryption and second-image decryption processes, respec-
tively. In the MCPN weighted network, a sine-power chaotic map (SPCM)-based key generator was
used to dynamically produce the non-ordered pseudorandom numbers to set the network-weighted
values as secret keys in a sufficiently large key space. It performs the second and first encryption
processes using the diffusion method, modifying the image pixel values. Children’s headshots and
medical images were used to evaluate the security level by comparing the plain and cipher images
using the information entropy, number of pixel change rate, and unified averaged changed intensity
indices. Moreover, the plain and decrypted images were compared to verify the decrypted image
quality using the structural similarity index measurement and peak signal-to-noise ratio.

Keywords: multilayer convolutional processing network (MCPN); spatial convolutional operation;
sine-power chaotic map (SPCM); diffusion method

1. Introduction

Digital images contain several types of information which represent original images in
a set of pixel numbers and can be processed and stored using digital computer and storage
devices in multimedia files, such as static images, audio, and video. These files can be
widely shared and transmitted through computer networks or wireless communication
networks (internet) to the desired destinations. These visual data are visible and accessible
to specific users, catering to telemedicine, video-conference, video-on-demand, monitoring
in a cloud computing intelligent transportation system (ITS), and medical images in an
internet of medical things (IoMT) system [1–4]. However, these digital images may be
easily duplicated or modified by their unauthorized distribution and illegal copying. Thus,
ensuring digital image infosecurity, including data confidentiality, data integrity, and data
availability, is a crucial task in open public communication channels so as to protect them
from unauthorized individuals. For example, the users of mobile-phone digital cameras
may protect their private pictures such as their headshots on online image-processing
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applications [5,6], ensuring image privacy on these applications. The cloud computing
ITS acquires and processes images from various motorway sectors for car navigation,
traffic-signal control, number-plate recognition, and speed-monitoring applications; thus, it
requires a security protocol to protect the drivers’ private information, including license-
plate numbers, location, and driving habits [1,7]. In addition, an IoMT system [2,3,8] allows
for secure communication between the computer network and different medical devices
to collect patients’ information using smart sensors or medical imaging equipment and,
subsequently, analyzes it using artificial intelligence-based interpretation methods [2,8–10].
However, the IoMT is currently facing security and privacy concerns, such as medical
record and image thefts or ransomware attacks in the healthcare sector [11]. Hence, the
primary concern of online image-processing websites is to improve protection technologies
to circumvent possible attacks. The goal of the proposed image encryption method is to
apply a cryptography mechanism for restricting unauthorized users and protecting private
information from theft, modification, or loss.

The cryptography scheme utilizes an encryption method to secure information by
concealing the digital image contents. When encrypted, an image is only accessible to
the specific authorized users using the secret keys, including asymmetric and symmet-
ric cryptography methods. To protect security and privacy for digital images, previous
studies [12–21] have designed the symmetric cryptography scheme to perform permu-
tation, substitution, or shift operations for the encryption and decryption tasks, such as
the permutation method (PM), the diffusion method (DM), or the combination of both
methods, which have been used for digital signals and images encryption processes. In
the PM-based encryption algorithms, the Arnold map and one-dimensional (1D) and
multi-dimensional chaotic maps [12–17,19,22–24] are well-known cryptography schemes
to support symmetrical encryption processes. The Arnold map, as a scrambling operator,
uses the Arnold transform [12–15,25] to produce pseudorandom sequence numbers to
rearrange the image pixel matrix, which randomly permutates the image pixel positions for
producing a shuffled image; moreover, its inverse transform is used to decrypt the cipher
image. Its chaotic permutation is produced by line mapping while also controlling two
positive-integer parameters as secret keys or extending the control parameters to enlarge
the secret key space [14–16]. However, the encryption processes are performed by the same
keys and cannot affect the frequency of image pixel values. Hence, this method can be
easily broken by statistical attacks (with frequency counting or statistical analysis) or brute
force attacks.

In the DM-based encryption algorithms, the 1D and multi-dimensional chaotic maps
are used to produce the pseudorandom sequence numbers as secret keys, replacing the
image pixel values without rearranging their pixel positions. Their cryptography scheme’s
secret keys are generated by using the chaotic map functions, as the so-called chaotic
key generator (CKG), for image encryption, such as the logistic, sine, cosine, circle, tent,
and Chebyshev maps [3,14,17,22,26,27]. Moreover, their scrambling operator can produce
oscillation and chaotic behaviors by setting an initial condition and adjusting the control
parameters in the specific range with the iteration computations. To increase the chaotic-
complexity levels, from three-dimensional (3D) to five-dimensional (5D) chaotic maps, such
as Euler equations and Hamiltonian conservative chaotic systems [2,18,28,29], are also used
to establish a multi-dimensional scrambling operator, which can produce hyperchaotic be-
haviors, allowing pseudorandom numbers to exhibit probability and fractional-dimension
distribution in random-number seed space. These chaotic operators can perform both PM-
and DM-based methods to change the image pixel positions and image pixel values in
digital color-scale (red, green, and blue) or grayscale images. However, the CKG-based
cryptography mechanism is sensitive to the initial conditions and control parameters, and
also selects secret keys in a fixed range of the random-number seed. Hence, the CKG needs
to enlarge the secret key space to defend against different attacks.

Additionally, deep-learning (DL)-based network models, such as the convolutional neu-
ral network (CNN) [2,18], DL-based image encryption and decryption network (DeepEDN),
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and conditional generative adversarial network models, have been used to encrypt and
decrypt digital images, and owing to their complex structure and the large key space, they
exhibit excellent potential for digital image infosecurity. Traditional DL-based models have
promising capabilities to perform the feature extraction and classification tasks, such as face
recognition and disease or cancer diagnosis [17,19,27,29–32], which use multi convolutional
and polling computations with multi convolutional windows to extract a hierarchy of fea-
ture patterns from incoming images [31–33]. Hence, their multilayer model can perform
scrambling operations to produce shuffled images, which are different from the plain images,
for also defending against statistical and differential attacks. Hence, the DL-based method,
an image-to-image transformation technique which uses multi convolutional operations,
can also be used to realize the cryptography mechanism and is sensitive to change in secret
keys [2].

Therefore, based on the DM-based method, we intend to establish a multilayer convo-
lutional operation-based cryptography mechanism, consisting of two convolutional layers
and a weighted network (WN) to perform image encryption and decryption processes, as
seen in Figure 1. In the two convolutional layers, the two fractional-order convolutional
windows (FOCWs) are used to perform two-dimensional (2D) spatial convolutional opera-
tions in order to scramble pixel values from grayscale values to gray gradient values. The
FOCW-based operator with the adjustable fractional-order parameters (∈[0, 1]) are used to
scramble image pixel values using a 3 × 3 sliding window (sliding stride = 1) [29,34] over
the plane image in the horizontal and vertical directions, which allows for the combination
of the convolutional weight calculations and scrambled pixel values. The FOCW-based
window also has a rotation-invariant ability [33,35] (rotating the angle 45◦ clockwise in
eight directions from 0◦ to 315◦) and can capture the same feature pattern in a 2D image.
Before any cipher image transmission, the authorized person can reset the weighted values
of FOCWs by adjusting the fractional-order parameter, and the connecting weighted values
in the WN are produced by using the sine-power chaotic map (SPCM)-based key genera-
tor [17]. Thus, two-round convolutional operations are used to perform the first encryption
process. In the WN, the SPCM-based key generator [17,26] generates the non-ordered
pseudorandom numbers to set the connecting weighted values of the network, as a large
number of secret keys are used to enhance the security level for the second encryption
process. Hence, the cipher images are obtained through image-to-image transformation;
moreover, the inverse processes, with the WN and two-round convolutional operations,
are used to decrypt the cipher image. Through experimental validation with children’s
headshots (Facial Expression Image Database) [36] and medical images (self-created hand
X-ray images and National Institutes of Health (NIH) chest X-ray database), the security
level is evaluated by using the information entropy (IE), the number of pixel changing
rate (NPCR), and the unified averaged changed intensity (UACI) for the image encryption
process [2,15,17,18,27,37]; the structural similarity index measurement (SSIM) and peak
signal-to-noise ratio (PSNR) [15,38,39] are used to evaluate the quality of the decrypted
image for the decryption process.

The remainder of this article is organized as follows: Section 2 describes the methodol-
ogy, including the MCPN design, differential (security level) evaluation, and decrypted-
image quality evaluation. Section 3 describes the experimental setup, digital image encryp-
tion and decryption tests, and performance evaluation using the NPCR, UACI, IE, SSIM,
and PSNR indices. Section 4 concludes the paper.
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Figure 1. Structure of multilayer convolutional processing network (with two-round convolutional
processes)-based cryptography mechanism for image infosecurity.

2. Methodology
2.1. First-Image Encryption Using Fractional-Order Convolutional Processes

A conventional CNN typically contains convolutional, pooling, and fully-connected
layers [2,31,33], with more than one convolutional layer for extracting feature maps, en-
abling the recognition of these features in the images. The pooling layer receives the specific
features from a convolutional layer and compresses them using the maximum or average
pooling processes. The fully-connected layer is employed to acquire the reduced feature
maps for prediction, object recognition, or classification applications. In the CNN, the
convolutional process is employed to constantly extract and compress the image features.
Herein, it functioned to control the scrambling operations in the image encryption process
against the active hacker attacks. Thus, the fractional-order convolutional process [29,30]
is used to perform the 2D spatial convolutional operations in both the x horizontal and y
vertical directions, which compute the gray gradient of a plain image, I0 (Ixy = I0), and can
be expressed as follows [29,30]:

ECIc
xy = Cc(Ixy, M, v), c = 1, 2, . . . (1)

Mx =

c0 c1 c2
c1 c1 0
c2 0 c2

, My = MT
x , subject to det(Mx) 6= 0 and

det(My) 6= 0

(2)

Elements in matrix Mx and My [29,30]:

cn =
Γ(n− v)
(n)!Γ(−v)

, n = 0, 1, 2, ..., subject to
∞

∑
n=0

cn 6= 0 (3)
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where Cc(•) is the fractional-order convolutional operator at the cth-round convolutional
operation; Ixy ∈ [0, 255] is the grayscale pixel value at location (x, y) in a 2D image, where
N × M is the size of the image, x = 1, 2, 3, . . . , N, and y = 1, 2, 3, . . . , M; ECIxy

c is
the convolution result by the matrix multiplication operation at location (x, y); v is the
fractional-order parameter, v∈ [0, 1]; Mx and My are the FOCWs, which are derived from the
Grünwald–Letnikov (G-L) derivative in fractional calculus [30,31], and are used to perform
the convolutional operations both in the horizontal and vertical directions, respectively. In
this study, we select the 3 × 3 convolutional window, as seen in Equations (2) and (3).

Hence, three parameters, c0, c1, and c2, were used to set the elements of the FOCW
in the x and y directions. As seen in Figure 1, we defaulted the two-round convolutional
operations (two convolution layers) with two 3 × 3 FOCWs, padding and passing an N
×M matrix through two convolutional windows. The 2D convolutional process can be
performed using a window, Mx, in the x direction and subsequent convolution using a
window, My, in the y direction, which can transform the grayscale values to gray gradient
values and also serves as a filter for edge detection and feature extraction. Hence, after
each 2D spatial convolutional process, the result of the convolutional operation can be
represented in a normalized value as follows [34]:

ECIc
xy
∼=
|ECIc

x|+ |ECIc
y|

255
, c = 1, 2, . . . (4)

where ECIx
c and ECIy

c are the convolutional values in both the x and y directions for the first
encryption processes, respectively. Equation (4) shows the values from the grayscale values
[0, 255] to the normalized values [0, 2]. After the multi-round convolutional processes
(c = 2 for two-round operation in this study), the first encrypted image could be obtained.
This DM-based method with the fractional-order convolutional operation is a flexibility-
encryption mechanism by controlling the fractional-order parameters for enhancing the
security level.

2.2. Second-Image Encryption Using the Weighted Network

As seen in Figure 1, the first WN maps the ECIxy to the second encrypted image, EIxy,
using the connecting network-weighted values. These connecting weighted values function
as secret keys, which are used to construct both the encryption and decryption networks for
the secondencryption process and first decryprion process, respectively, with the number
of parameters for each network being N ×M. The network-weighted values are obtained
using the SPCM-based key generator [17,26] to set the secret keys (SKs) as follows:

ch+1 = sin2(
√
|ch|) + 2(1− r)|ch|(1− 2|ch|), h = 0, 1, 2, . . . , Nc (5)

where r is the control parameter, c0 is the initial condition, as 0 < c0 < 1, and Nc = N ×M is
the number of SKs, as key space for the second encryption. We can compute the unsigned
non-ordered integer numbers, skxy, skxy ∈ [1, 255], using the following equation [16,18]:

skxy = mod(round(255 · |2ch|), 255), h = 0, 1, 2, . . . , Nc (6)

where round(•) is the operator to return the nearest integer number, and mod(•) is the
modulo operator. Hence, the pseudorandom numbers, skx, can be used to set the SKs at
location (x, y). Further, the second encryption process can be calculated as follows:

EIxy = ECIxy · skxy (7)

where I1 = EIxy is the cipher image transmitted from a data-emitter end to a data-receiver
end via a computer network (IEEE 802.3 standard or IEEE 802.15 standard [16,40]).
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2.3. First-Image Decryption Using the Weighted Network

As seen in Figure 1, the second WN uses the symmetric SK to decrypt the cipher image
using the following equation:

DIxy = ECIxy ·
1

skxy
, subject to skxy 6= 0 (8)

where DIxy is the first decrypted image. In the proposed second encryption and first
decryption processes, the key space contains N ×M SKs, ensuring that the encryptor’s key
space is sufficiently large and sensitive to the SKs, which are randomly distributed between
values of 1 and 255. Thus, these multi-SKs can be dynamically readjusted at any time by
using the SPCM-based key generator [17,26] to prevent the active hacker attacks.

2.4. Second-Image Decryption Using Fractional-Order Convolutional Processes

In the second decryption process, we used the 2D spatial convolutional operations to
decrypt the DIxy with the inverse matrix, M−1, which can be expressed as follows:

DCIc
xy = Cc(DIxy, M−1, v), c = 1, 2, . . . (9)

M−1
x = inv(

c0 c1 c2
c1 c1 0
c2 0 c2

), M−1
y = (M−1

x )
T

, subject to det(M−1
x ) 6= 0 and det(M−1

y ) 6= 0 (10)

where invc(•) is the inverse matrix operator. Hence, after the two-round convolutional
operations, the cipher image can be recovered by using Equations (9) and (10), and the final
result of the convolutional operation can be represented as follows:

DCIc
xy
∼=
|DCIc

x|+ |DCIc
y|

255
, c = 1, 2, . . . (11)

where DCIx
c and DCIy

c are the convolutional values in both the x direction and y direction
for the decryption processes, respectively.

Then, the decrypted image, I2, can be computed by

I2 ∼=
255 ·DCIc

xy

max(DCIc
xy)

(12)

where operator max(•) is the function for finding the maximum value in DCIxy
c (c = 2 in

this study).

2.5. Differential Evaluation between the Plain and Cipher Images

In general analysis, the graph of a histogram analysis is preliminary to evaluate the
robustness of the image-cryptography mechanism, which indicates frequency distributions
in grayscale pixel values within an image [15,18], as seen in the number of pixels distribu-
tion and the correlation analysis in Figure 2, respectively, where the green color represents
the plian image, the blue color represents the cipher image and plain image versus cipher
image, and the red color represents the plain image versus the decrypted image. Hence,
we used a 227 × 227-sized (N = 227, M = 227, and Nc = 51,529 grayscale pixels for key
space) digital image (resolution of 96 × 96 dots per inch and 24 bits per pixel (colored
image)) to perform the encryption process and demonstrate the frequency distributions
among the plain, cipher, and decrypted images. The plain and decrypted images exhibit the
right-skewed distributions, whereas the histogram plot of the cipher image is uniform and
nearly flat (plateau distribution), and exhibits significantly different behavior of the cipher
image compared to the plain image as regards offering a secure encryption process. This
also indicates that the proposed encryption model can change the distribution relationship
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in pixel values between the plain and cipher images for the statistical attack (frequency
counting analysis). Additionally, for correlation analysis with the linear regression method,
a good cipher image exhibits low adjacent correlation between the plain and cipher images,
as evidenced by the adjacent location (x + 1, y) versus the location (x, y) in Figure 2, where
the correlation coefficient (CC) of the plain image versus the cipher image is 0.1022 (blue
coloring plot) and that of the plain image versus the decrypted image is 0.8126 (red col-
oring plot). The adjacent pixels in the cipher image exhibit extremely low correlation at
CC = 0.0284 (blue coloring plot).

Figure 2. Histogram and correlation analyses for image-cryptography mechanism (image encryption
and decryption processes).

The IE is also an index to evaluate the level of randomness distribution in a cipher
image [17,24,37,41]. The complexity and chaotic encryption processes can increase the
IE level. For an 8-bit encrypted image, the ideal IE level is 8.00, as the larger the IE, the
more confusing the information in the cipher image is. The IE index can be defined as
follows [17,24,37,41]:

IE(q) =
Q−1

∑
j=0

P(qj) log2(
1

P(qj)
),

Q

∑
j=1

P(qj) = 1, j = 0, 1, 2, . . . , Q− 1 (13)

where Q is the total number of grayscale pixels, j is the grayscale pixel value (Q = 28 = 256 in
this study) in a cipher image, qj is the jth grayscale value, and P(qj) is the emergence probability
of qj. The IE value indicates that the same SKs can generate different diffusion images for
different images. To evaluate the security level, the NPCR and UACI [2,15,17,18,27,37,42] are
used to quantify the confidentiality between the plain image, I0, and the cipher image, I1, as
follows:

NPCR =

N,M
∑

x=1,y=1
D(x, y)

N ×M
× 100% (14)

D(x, y) =
{

0, i f I0(x, y) = I1(x, y)
1, i f I0(x, y) 6= I1(x, y)

(15)
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UACI =

N,M
∑

x=1,y=1
|I0(x, y)− I1(x, y)|

N ×M
× 100% (16)

where I0 and I1 represent the size of the N × M images; x= 1, 2, 3, . . . ; N and y = 1, 2, 3,
. . . , M; and I0(x, y) and I1(x, y) are the grayscale pixel values of plain and encrypted images,
respectively. The NPCR index indicates the pixel change rate in a plain image after the
encryption process, and the UACI index indicates the degree, which is used to measure the
pixel differences between the plain and cipher images. For an ideal condition, the values of
NPCR = 99.59% and UACI = 33.46% [37] yield the best performance for encryption processing.

2.6. Decrypted Image Quality Evaluation and Similarity Level Calculation between the Plain and
Decrypted Images

After the image decryption process, the SSIM index is used to measure the recovery
quality of a decrypted image and the similarity level between the plain image, I0, and the
decrypted image, I2. The SSIM uses three comparison measurements, the luminance (L),
contrast (C), and structure (S) [15,38,39]:

L(I 0, I2) =
2µI2 µI0 + d1

µ2
I2
+ µ2

I0
+ d1

, C(I 0, I2) =
2σI2 σI0 + d2

σ2
I2
+ σ2

I0
+ d2

, and S(I 0, I2) =
σI2 I0 + d3

σI2
σI0

+ d3
(17)

d1 = (0.01l)2, d2 = (0.03l)2, and d3 =
1
2

d2 (18)

SSIM(I0, I2) = L(I0, I2)
αC(I0, I2)

βS(I0, I2)
γ (19)

where µI2 and µI0 represent the mean values of the decrypted and plain images (I2 and
I0), respectively; σI2 and σI0 are the standard deviations of the plain and decrypted images,
respectively; σI2I0 is the covariance of images, I2 and I0; parameter, l, is the dynamic
range of the pixel values (l is the maximum value in an image, that is, 255 for an 8-bit
grayscale image); d1 and d2 are constants used to maintain the stability; parameters, 0.01
and 0.03 [15,17,39], are small constants; and the values of parameters, α, β, and γ, are set to
1. Hence, the SSIM offers a quantitative indication for evaluating the recovery quality and
can be represented as follows [15,38,39]:

SSIM(I2, I0) =
(2µI2 µI0 + d1)(2σI2 I0 + d2)

(µ2
I2
+ µ2

I0
+ d1)(σ

2
I2
+ σ2

I0
+ d2)

, SSIM(I2, I0) ∈ [0, 1] , SSIM(I2, I0) ≥ 0.95 (20)

The value of SSIM lies between 0 and 1. A value closer to 1 or greater than 0.95 indicates
higher similarity (good recovery quality) between the plain and decrypted images, whereas a
value of 0 indicates the absence of structural similarity. This index is also a human perception
of recovery quality. The larger the SSIM value, the smaller the loss, which means that the
proposed decryptor exhibits a good recovery quality without any active hacker attack.

In addition, the PSNR is an index to quantify the recovery quality level in image
decryption [18,43], which measures the image distortion level by using the mean squared
error (MSE) between the plain and decrypted images as follows:

MSE =
1

NM

N

∑
i=1

M

∑
j=1

[I2(i, j)− I0(i, j)]2 (21)

PSNR(dB) = 10 log10(
MAX2

I
MSE

) (22)

where I0(x, y) and I2(x, y) represent the plain and decrypted images, respectively, and MAXI
is the maximum pixel value in image I2, where each point is represented by 8 bits, and the
maximum value may be 255. The PSNR is a nonnegative index, which is used to evaluate
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the difference between the plain and decrypted images. This index has a smaller value for
evaluating the encrypted image and performs better; the larger the index value, the smaller
the distortion after the decryption process.

3. Experimental Results and Discussion

For the validated proposed MCPN-based cryptography mechanism, in experimental
tests, the digital images were collected from headshots of 100 children (facial expression
image database [36]) and 10 medical images (hand X-ray images, self-created), as seen in
Figures 3 and 4, respectively. Each digital image in joint photographic experts group (JPEG)
format was digitized to a resolution of 96× 96 dots per inch and 24 bits per pixel, with each
image sized 227 × 227 pixels (N = 227, M = 227, and Nc = 51,529 represents KS), where the
row numbers were x = 1, 2, 3, . . . , 227, and the column numbers were y = 1, 2, 3, . . . , 227.
The proposed MCPN-based cryptography mechanism was designed on a tablet PC (Intel®

Xeon®, CPU E5-2620, v4, 2.1 GHz and 64 GB of RAM) using MATLAB 9.0 version software
(MathWorks, Natick, MA, USA), with a graphics processing unit (GPU: NVIDIA Quadro
P620, 64-bit Windows 10.0 operating system) used to process digital images. Herein, we
used a 2D FOCW with the fractional-order parameters v ∈ [0, 1] (using Equation (3)) [29,30]
to perform the first encryption process; for example, the fractional-order parameter v = 0.02
was set, and then the FOCW and its inverse FOCW in both the horizontal and vertical
directions were represented as follows:

Mx = MT
y =

 1.0000 −0.0200 −0.0098
−0.0200 −0.0200 0
−0.0098 0 −0.0098

 and Mx
−1 = (MT

y )
−1

=

 0.9711 −0.9711 −0.9711
−0.9711 −49.0289 0.9711
−0.9711 0.9711 −101.0698


In the WN, the SPCM-based key generator was used to produce the pseudorandom

numbers with the initial condition ch=0 = 0.0 and control parameter r ∈ [3.3510, 4.0000] [17],
and, further, 51,529 non-ordered pseudorandom numbers could be selected to set the SKs
for image encryption and decryption using Equations (5) and (6), as seen in Figure 5a,b,
respectively. Table 1 shows the related formula and parameters for setting MCPN-based
encryption mechanism. Finally, through experimental tests using children’s headshots
and medical images (hand X-ray and chest X-ray images), the difference between the
plain and cipher images, as the so-called “security level”, could be evaluated by IE, NPCR,
and UACI indexes after the encryption process; and the SSIM and PSNR (dB) indexes
were used to evaluate the “quality of decrypted images” after the decryption process, as
seen in the flowchart in Figure 6, including secret keys generation, image encryptor and
decryptor establishment, image encryption and decryption processes, and security level
and decrypted image quality evaluations, respectively.

In experimental tests, the digital images, including children’s headshots and medical
images, were used to validate the proposed MCPN-based cryptography mechanism.
From 100 children’s headshots, we randomly selected five images, as seen in Figure 7;
the correlation analysis showed the relationships of two horizontally adjacent grayscale
pixel values (location (x + 1, y) versus location (x, y)) for the plain images and cipher
images (green and blue coloring plots) and the plain images versus decrypted images
(red coloring plots), respectively. For example, as seen in the headshot in the first row
in Figure 6, after encryption processing with the linear regression method, the CC was
0.0129 in the cipher image, which was extremely small, and small relationships were
observed between the adjacent grayscale pixel values. It was challenging to restructure
the relationship between the cipher and plain images. Hence, the proposed encryption
mechanism was able to effectively shuffle the plain images against frequency counting,
statistical, and entropy hacker attacks. For differential evaluation, the IE, NPCR, and
UACI indices could also be used to evaluate the security levels for image encryption
between the plain and cipher images.
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Figure 3. Children’s headshots (Facial Expression Image Database [36]).

Figure 4. Medical images (hand X-ray images, self-created).
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Figure 5. Secret keys (SKs) in key space. SKs for image (a) encryption and (b) decryption.

Table 1. Related formula and parameters for setting MCPN-based encryption mechanism.

Task Method Parameter Assignment

First Image Encryption

Two-round 2D spatial convolutional
operations (two convolution layers) in the x

and y directions [29,30]
ECIc

xy = Cc(Ixy, M, v), c = 1, 2

Mx =

c0 c1 c2
c1 c1 0
c2 0 c2

, My = MT
x c0 = 1,

c1 = −v, c2 = v2−v
2 , v ∈ [0, 1].

The results of the convolutional operations
are normalized by using Equation (4).

ECIc
xy
∼= |ECIc

x|+|ECIc
y|

255

The fractional-order parameter, v, is set by the
authorized persons, v ∈ [0, 1].

Second Image Encryption The 2nd image encryption is performed by
using EIxy = ECIxy · skxy

The secret keys, skxy, are produced by
SPCM based key generator [17].

ch+1 = sin2(
√
|ch|) + 2(1− r)|ch|(1− 2|ch|),

ch=0 = 0.0, r ∈ [3.3510, 4.0000].
skxy = mod(round(255 · |2ch|), 255)

First Image Decryption
The 1st image decryption is performed by

using
DIxy = ECIxy · 1

skxy
, subject to skxy 6= 0.

Second Image Decryption

Two-round 2D spatial convolutional
operations in the x and y directions.
DCIc

xy = Cc(DIxy, M−1, v), c = 1, 2

M−1
x = inv(

c0 c1 c2
c1 c1 0
c2 0 c2

), M−1
y = (M−1

x )
T ,

subject to det(M−1
x ) 6= 0 and

det(M−1
y ) 6= 0det(M−1

y ) 6= 0.
The decrypted image is computed by

DCIc
xy
∼= |DCIc

x|+|DCIc
y|

255 , I2 ∼=
255·DCIc

xy

max(DCIc
xy)

The fractional-order parameter, v, is set by the
authorized persons, v ∈ [0, 1].

As seen in Table 2, Equations (13)–(16) were used to compute the values of the IE,
NPCR, and UACI indices; for example, for the headshot (No. 1) in first row in Figure 6, the
NPCR% = 100.00% and UACI% = 80.24% were obtained to estimate the number of changing
grayscale pixels and the number of averaged changed intensity, respectively; the IE index
was used to quantify the randomness, disorder, and unavailable information using the
probability, and it exhibited higher values and better performance for image encryption.
As seen in Table 2, their IE values were greater than 7.5000 (very close to 8 [43]). Hence, the
proposed encryption mechanism could produce random SKs to protect the digital images,
and the promising quality of random number generation could contribute to the higher
security value of the secret key. Additionally, with Equations (17)–(20), the SSIM index, as
a value range of 0–1, was used to measure the similarity level between the decrypted and
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plain images. Their average value was greater than 0.9000, which indicated that the cipher
images had been effectively recovered after the decryption process; otherwise, the similarity
level of the cipher images was extremely low. The PSNR index (average value = 105.2928 dB)
exhibited a higher value and also indicated that the proposed cryptography mechanism
could meet the criteria for image recovery. Therefore, for five of the children’s headshots,
the proposed MCPN-based cryptography mechanism could effectively resist differential
attacks (with an average IE of 7.7564, average NPCR of 100.00%, and average UACI of
75.19%). The proposed cryptography mechanism took an average CPU time of 0.065 s and
0.107 s to perform the image encryption and decryption tasks, respectively.

Figure 6. Flowchart of multilayer convolutional processing network-based cryptography mechanism
for digital image encryption and decryption processes.

Figure 7. Five children’s headshots for experimental tests.
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Table 2. Experimental results for differential evaluation and decrypted-image quality evaluation.

Digital Image NO.
Security Level

Evaluation
Decrypted Image

Quality Evaluation

IE NPCR% UACI% SSIM PSNR (dB)

1 7.7936 100.00 80.24 0.9406 105.2513

2 7.7864 100.00 75.45 0.9371 105.2513

3 7.6396 100.00 65.33 0.8715 105.2513

4 7.6338 100.00 67.24 0.8946 105.2513

5 7.9286 100.00 87.72 0.9405 105.4591

1 6.8112 100.00 34.60 0.9162 105.2704

2 6.9452 100.00 37.86 0.9066 105.4208

3 6.5357 100.00 28.29 0.9194 105.2513

4 6.7082 100.00 32.02 0.9025 105.2513

1 7.2054 100.00 45.11 0.9279 104.4977

2 7.7354 100.00 60.87 0.9244 104.4977

3 7.7686 100.00 60.87 0.9244 104.4977

4 7.6144 100.00 58.66 0.9492 104.5395

5 7.3966 100.00 46.17 0.9392 104.5205

6 6.9366 100.00 39.54 0.9264 104.4977

For the medical images, the hand X-ray images were low-radiation exposure images,
which are used to detect fractures, bone tumors, degenerative bone conditions, and os-
teomyelitis [44,45]. As evident from the four hand X-ray images in Figure 8, the hand
X-rays were used to determine the bone age of children so as to circumvent the problem
of impaired growth in children. Hence, they also contained patients’ private information
and thus required protection. In Figure 8, in the plain images and decrypted images, the
correlation between the adjacent pixels was extremely high (average CC = 0.9125, as seen
in the blue and purple coloring plots); in contrast, the correlation between the adjacent
pixels of the cipher image was extremely low (average CC = 0.1058, as seen in the green
coloring plots). For the four randomly selected hand X-rays, an average IE, NPCR, and
UACI of 6.7500, 100.00%, and 33.19%, respectively, were obtained to evaluate the encryp-
tion performance, and an average SSIM and PSNR of 0.9112 and 105.2985 dB, respectively,
indicated the decryption performance for the quality evaluation of decrypted images. For
these decrypted images, they exhibited sufficient quality to evaluate the bone age using
DL-based computer-aided diagnosis methods [44,45].

Furthermore, six chest X-ray (CXR) images were selected from the Nation Institutes
of Health Chest X-ray Database (Nation Institutes of Health, Clinical Center, Bethesda,
MD, USA) [46–48] for validating the proposed cryptography mechanism (Table 2). Six
images were labeled as representing normal condition, pneumonia, fibrosis, pleural effu-
sion, emphysema, and pneumothorax, respectively, and each image in portable network
graphics (PNG) format was digitized to a resolution of 96 × 96 dots per inch and 24 bits
per pixel (colored image), and was a 1024 × 1024-pixel image. They were resized from
1024 × 1024 pixels to 227 × 227 pixels in JPEG format. As seen from the results of the
correlation and histogram analyses in Figure 9, the linear regression method showed a low
correlation in the cipher image, being CC = 0.9063 for the plain image in Figure 9a and
CC = 0.1338 for the cipher image in Figure 9c, respectively; the histograms were significantly
different for the cipher and plain images (Figure 9b,d). The average NPCR, UACI, and IE
of 100.00%, 51.87%, and 7.4428, respectively, could be obtained to indicate the significant
potential of the proposed method for CXR image encryption. In the decryption process, the
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average SSIM and PSNR of 0.9319 and 104.5048 dB, respectively, were obtained to measure
the recovery quality of the decrypted images, offering promising recovery quality for the
existing medical imaging examinations of cardiopulmonary diseases and lung cancers. The
experimental results of the six selected CXR images are shown in Table 2. Additionally,
with a standard digital image (512 × 512 pixels in tagged image file format, 96 × 96 dots
per inch and 24 bits per pixel) from the University of Southern California-Signal and Image
Processing Institute (USC-SIPI) Image Dataset [48,49], Figure 10 indicates the satisfactory
encryption performance of the proposed method using correlation and histogram anal-
yses. With 100 children’s headshots [36], 10 hand X-rays, 20 CXR images [46,47,50], and
10 standard images [49], Table 3 shows the experimental results for the image encryption
and decryption evaluations. The experimental results validated the performance of the
proposed cryptography mechanism and its encryption and decryption abilities. In Table 4
is shown comparison of different cryptography mechanisms for digital image encryption.

Figure 8. Four hand X-ray images for experimental tests.

Table 3. Experimental results for encryption and decryption evaluations using IE, NPCR, UACI,
SSIM, and PSNR.

Image Type

Security Level (Differential) Evaluation Decrypted Image Quality Evaluation

Average IE Average NPCR% Average
UACI%

Average
SSIM

Average
PSNR (dB)

100 Children’s
Headshots [36] 7.7900 ± 0.1553 99.99 ± 0.02 78.01 ± 9.27 0.9400 ± 0.0124 105.2532 ± 0.0083

10 Hand X-ray Images 6.7292 ± 0.1507 100.00 ± 0.00 32.88 ± 3.96 0.9039 ± 0.0127 104.6487 ± 0.8096

20 CXR Images [46,50] 7.4491 ± 0.2984 99.69 ± 0.69 56.01 ± 11.37 0.9363 ± 0.0092 104.5053 ± 0.0152

10 Standard Images [49] 7.4692 ± 0.1930 99.89 ± 0.02 53.88 ± 8.85 0.9013 ± 0.0012 112.3162 ± 0.0015
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Figure 9. Correlation analysis and histogram analysis for chest X-ray images. (a,c,e) Correlation anal-
ysis for plain image, cipher image, and decrypted versus plain image, respectively; (b,d,f) histogram
analysis for plain, cipher, and decrypted images, respectively.

Figure 10. Correlation and histogram analyses for standard images. (a,c,e) Correlation analysis for
plain image, cipher image, and decrypted versus plain image, respectively; (b,d,f) histogram analysis
for plain, cipher, and decrypted images, respectively.
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Table 4. Comparison of different cryptography mechanisms for digital image encryption.

Literature Image Database Method Promising Result

[2]

Image Database from U.S.
National Library of Medicine,

Department of Health and Human
Services in the USA and Shenzhen

No. 3 People’s Hospital in China [47].

Deep-Learning-based Image
Encryption and Decryption
Network (DeepEDN) with

Backpropagation Algorithm

Average IE = 7.96,
Average SSIM = 0.014 for

Encryption,
Average SSIM = 0.913 for

Decryption,
Average PSNR = 36.35 dB

[16]

Standard 512 × 512 Pixels Images
from SIPI Database [48]

(Boats, Bridge, Baboon, Sailboat,
Airplane, Peppers)

Cascading 1D
Logistic-Chebyshev and 1D

Logistic-Sine Maps.

Average IE = 7.9995 (Global),
Average NPCR = 99.62%, Average

UACI = 33.47%, and Average
PSNR = 8.2123 dB

for Image Encryption

[17] NIH CXR Image Database
(100 PA CXR Images) [46,50]

Chaotic Map and Quantum
based Key Generator + GRA
based Image Encryptor and

Decryptor

Average IE = 7.55,
Average NPCR = 99.45%, and

Average UACI = 31.92%
for Image Encryption,

[18] Standard 256 Grayscale Images
(Pepper, Butterfly, Architecture, Boat)

Logistic Map + 5D
Conservative

Hyper-Chaotic System + CNN

Average IE = 7.9983, Average
NPCR = 99.61%, Average
UACI = 33.45%, Average

MSE = 8,315.6, and Average
PSNR = 8.6125 dB

for Image Encryption;

[26]

USC-SIPI Image Dataset [49],
including 256 × 256, 512 × 512, and

1024 × 1024 Pixels Images
(Miscellaneous Database)

2D Logistic-Modulated-Sine-
Coupling-Logistic Chaotic

Map

Average ISE (Local Shannon
Entroy) = 7.9020, Average

NPCR = 99.6096%, Average
UACI = 33.4629% for Image

Encryption;

[51]

PEIR (Pathology Education
Informational Resource) Digital

Library Image Database [51]
(Medical Images)

Logistic Map based Key
Generator + Perceptron

Neural Network
based Encryption System

Average PSNR=4.82 dB, Average
IE = 7.98, Average NPCR = 99.88%,
Average UACI = 24.54% for Image

Encryption,

Proposed Method

100 Children’s Headshots [36]
10 Hand X-ray Images (self created)

NIH CXR Image Database
(20 CXR Images) [46,50]

USC-SIPI Image Dataset [49]
(10 Standard Images)

MCPN based Cryptography
Mechanism

(2D Spatial Fractional-Order
Convolutional Operations +
SPCM based Key Generator)

[17,27,29,30]

As seen Experimental Results
in Table 3

As is evident from the literature in Table 4 [2,16–18,26,51], DeepEDN [2], chaotic map-
based key generator [16,26], and chaotic map-based key generator + neural network-based
encryption systems [17,18,52] have been implemented for digital image encryption and de-
cryption processes. For example, a previous study [16] used cascaded 1D logistic-Chebyshev
and 1D logistic-sine maps to permute the plain image and substitute the permuted im-
age, respectively. With the standard 512 × 512 pixel-images from SIPI Database (boats,
bridge, baboon, sailboat, airplane, and peppers) [48], the experimental results, having an
average IE = 7.9995 (Global), average NPCR = 99.62%, average UACI = 33.47%, and av-
erage PSNR = 8.2123 dB, showed the effectiveness of the cascading chaotic map-based
cryptosystem for image encryption. Moreover, in a previous report [18], the 5D conserva-
tive hyperchaotic system was used to establish a multi-dimensional key generator with a
strong pseudorandomness scheme to produce pseudorandom numbers for a large key space,
and, further, the CNN was used to generate the chaotic pointer to control the scrambling
operations for image encryption. With 256 standard grayscale images (pepper, butterfly,
architecture, and boat), an average IE, NPCR, UACI, MSE, and PSNR of 7.9983, 99.61%,
33.45%, 8,315.6, and 8.6125 dB, respectively, were obtained to validate the feasibility of
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the cryptography mechanism in the digital encryption channel. Dridi et al. [52] used the
combined cryptography mechanism as a “logistic map-based key generator + perceptron
neural network (PNN)” to generate cipher images with sufficiently large key space (>2100) to
resist brute-force attacks. With medical images from the Pathology Education Informational
Resource digital library image database [53], average PSNR, IE, NPCR, and UACI values of
4.82 dB, 7.98, 99.88%, and 24.54%, respectively, showed that the PNN with chaotic map could
enhance the cryptography technique for statistical and differential attacks. Ding et al. [2] and
Lin et al. [17] demonstrated promising results for image encryption in medical images using
the DL-based cryptography mechanism [46,50]. Through the experimental tests utilizing the
standard image database [37,46,47,49], the proposed cryptography mechanism indicated
the following advantages for digital image encryption:

• The FOCW was a flexible encryptor to perform the first-image encryption and second-
image decryption processes, which could control the scrambling operations by adjust-
ing the multiscale fractional-order parameters.

• The SPCM-based key generator was used to produce the non-ordered pseudorandom
numbers as SKs to perform second-image encryption and first-image decryption
processes in the WN.

• The proposed cryptography mechanism presented a simple structure to scram-
ble image pixel values using two-round 2D spatial convolutional operations and
diffusion processes.

• Using the children’s headshots [36], medical image database [46,50], and standard
digital image database [49], the security level (differential evaluation) could be verified
using the IE, NPCR, and UACI indices.

• The decrypted image quality could be evaluated using the SSIM and PSNR indices.

4. Conclusions

In this study, an MCPN-based cryptography mechanism was proposed to ensure
online digital image infosecurity in a computer network, an ITS, an IoT, or an IoMT
system [53–55]. The proposed MCPN consisted of two 2D spatial convolutional layers and
a WN to perform the image encryption and decryption processes. In the two convolutional
layers, two FOCW-based operators were used to scramble image pixel values for the
purpose of, first, encrypting the plain image and, second, in WN, to produce the cipher
image, the SPCM-based key generator produced the non-ordered pseudorandom numbers
as SKs. With 100 children’s headshots and 10 hand X-rays, the IE, NPCR%, and UACI%
indices were used to validate the security level of the proposed cryptography mechanism
against statistical and differential attacks. For image decryption processes, the reciprocal
numbers in WN and 2D spatial convolutional operations with a FOCW inverse matrix
were used to decrypt the cipher images. The SSIM and PSNR, used to revaluate the
recovery quality, indicated a satisfactory decryption performance. Hence, the proposed
MCPN-based cryptography mechanism offers promising capabilities to protect the data
confidentiality, data recoverability, and data availability of digital images. In future works,
we can combine the artificial intelligence (AI)-based classifiers for online applications in
face recognition or disease and cancer diagnosis (lung cancer, cardiopulmonary-related
diseases, or bone tumors) to extend its applications in the ITS, IoT, and IoMT systems, and
continually integratenew secure communication techniques, such as blockchain or discrete
fractional fourier fransform methods, to enhance the security level in the physical layer for
data transmission and sensing or imaging data fusion between heterogeneous devices.
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MCPN Multilayer Convolutional Processing Network
2D Two-Dimensional
1D One-Dimensional
SPCM Sine-Power Chaotic Map
ITS Intelligent Transportation System
IoMT Internet of Medical Things
PM Permutation Method
DM Diffusion Method
CKG Chaotic Key Generator
3D Three-Dimensional
5D Five-Dimensional
DL Deep-Learning
CNN Convolutional Neural Network
WN Weighted Network
FOCW Fractional-Order Convolutional Window
NIH National Institutes of Health
IE Information Entropy
NPCR Number of Pixel Change Rate
UACI Unified Averaged Changed Intensity
SSIM Structural Similarity Index Measurement
PSNR Peak Signal-to-Noise Ratio
SK Secret Key
ECIx

c and ECIy
c Convolutional Values in both x and y Directions

CC Correlation Coefficient
MSE Mean Squared Error
CXR Chest X-ray
JPEG Joint Photographic Experts Group
PNG Portable Network Graphics
USC-SIPI University of Southern California-Signal and Image Processing Institute
DeepEDN Deep-Learning-based Image Encryption and Decryption Network
PEIR Pathology Education Informational Resource
PNN Perceptron Neural Network
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