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Abstract: Wave energy converters are attracting attention as an energy source that can respond to
climate change. In order to increase the energy efficiency of the wave energy converters, efficient
power converters are also required. The efficient converters require operation at a low switching
frequency, which increases the weight and volume of the passive components. Therefore, in this paper,
the performance of various types of topologies is compared to select the optimal power converter
for wave energy converters. In order to cope with the unbalanced operation and unbalanced load of
renewable energy, in this paper, the topology of the four-leg type is analyzed centrally. In addition,
the analysis was performed by applying the model predictive control that can quickly respond to
the rapid energy change of wave energy. In addition, model predictive control was applied to the
four-leg converter analyzed in this paper because it is suitable for application to atypical topologies.
For performance analysis of various types of topology, the loss and efficiency of each converter
were analyzed by applying a loss analysis model, and output current harmonics and leakage current
characteristics, capacitor voltage fluctuation rate, etc., were additionally analyzed at various switching
frequencies. In conclusion, the three-level four-leg converter showed up to 2.28% and 2.7% higher
efficiency under balanced and unbalanced operating conditions.

Keywords: multilevel topology; three-phase four-leg topology; model predictive control; symmetric
operation; asymmetric operation; power losses; efficiency

1. Introduction

Excessive use of fossil fuel power plants has produced abundant greenhouse gases,
a major cause of climate change. Renewable energy can partially replace fossil-fueled
power plants and has been proposed as an alternative to address climate change. For
this reason, wave energy has been attracting attention in the past 20 years to alleviate
the energy demand problem, and the development of wave energy systems has been
carried out [1]. The global theoretical wave energy potential is estimated at 16,000 TWh
per year [2,3], which could make a significant contribution to meeting the growing global
energy demand. In particular, the temporal characteristics of wave energy can compensate
for the discontinuity of other renewable energy sources, such as wind power and solar
power [4–6].

An important goal of renewable energy is to lower the cost of electricity generation
through increased energy efficiency. In other words, an efficient converter topology has been
emphasized in terms of power converters due to increased energy costs and environmental
concerns. One possible way to achieve higher converter efficiency is to operate at a lower
switching frequency. However, wave energy converters need to reduce the volume and
weight of passive components to reach high power densities due to space constraints.
This requires high switching frequencies. However, a two-level converter based on IGBT
(Insulated Gate Bipolar Transistor) causes excessive loss when the switching frequency is
increased, but wave energy converters are still applied to most of them. Therefore, it is
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difficult to meet both efficiency requirements and technical performance requirements with
a two-level converter, and three-level converters for wave energy converters have been
discussed [7–9]. Excellent efficiency at higher switching frequencies due to low switching
losses despite the increased complexity and high initial cost makes the three-level topology
attractive for wave power applications.

From a wave power system point of view, the benefits of using a three-level converter
are not limited to the converter itself. The main parts of this modern three-phase AC-DC-AC
converter system are shown in Figure 1. On the grid side, electromagnetic interference (EMI)
input filters are usually required to attenuate current harmonics. From there, the three-
level output voltage waveform reduces the boost inductance required and, consequently,
the boost inductor volume and losses. Also, on the generator side, harmonic losses are
significantly reduced when a three-level voltage waveform is applied. The positive impact is
reduced mechanical insulation stress and reduced overvoltage due to long motor cables [10],
which can be problematic in two-level converter applications [11].
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In this paper, the competitiveness of the three-level topology for wave power applica-
tions is analyzed in terms of efficiency and performance. The paper characterizes topology
loss and efficiency, topology output current harmonics and leakage current. Additionally,
because of the nature of wave energy converter, it is necessary to supply power to an
independent load, so the analysis is focused on the four-leg topology to respond to unbal-
anced loads. An unbalanced load is caused by unbalance of three-phase and single-phase
loads in independent operation and can occur when nonlinear loads, such as factories and
warehouses (for example, island microgrids), increase rapidly. The power range considered
is limited to 5–30 kW, considering a single wave power operating area. Many fields already
use various topologies of multilevel converters [12] and apply control methods [13], but in
this study, an analysis was performed based on the topology applied to wave power devices
so far. In [12], research on obtaining fast responses by applying artificial intelligence-based
indirect space vector control was also conducted. Likewise, in [13], research on cascaded
H-bridge converters for large-capacity converters was conducted, but it has not yet been
applied to wave power devices.

Unlike the control methods for various topologies described above, the four-leg-based
power converters focused on in this study have a special configuration, so they are not
suitable for conventional linear controllers (PI controller-based pulse width modulation,
PI-based PWM) or three-dimensional space vector pulse widths. Complexity increases in
modulation (SVPWM) application [14–18]. Obviously, many studies have been conducted,
and applicability is not impossible, but model-based current control is more advantageous
for converters with special configurations because it can configure a simple and intuitive
controller [19,20]. That is, even if complex control variables exist in an unusual topology,
such as a four-wire converter, it may have the advantage of being easy to apply. Recently,
many academic studies have been conducted on the application of model prediction to
various topologies [21–23].

In conclusion, we analyze the four topologies that have been widely applied to the
existing wave power generation. The four-leg topology of the two-level converter and three-
level neutral clamp converter [24] is for comparison. More multilevel converters may be
considered in the future [25,26]. In addition, each topology was analyzed for performance
by applying model predictive control to reflect unusual behavioral characteristics. This
model’s predictive control is excellent in responding to rapidly changing wave energy due
to its fast response. Performance for each topology compares efficiency and performance
under varying conditions, including balanced load and unbalanced load conditions. In
addition, the performance comparison according to the control sampling frequency affects
the topology efficiency. These analyses can provide criteria for a topology suitable for wave
power generation and provide guidelines for applicability.

2. Three-Phase Four-Leg Topology Configurations and Control Method

The power converter for wave energy converter consists of an AC/DC converter
that converts the AC power of a generator into DC power and a DC/AC inverter that
converts DC power into AC power. Along with the technological advancement of the wave
energy converter, the power conversion system for wave energy converter also needs the
application of a multilevel converter according to the increase in capacity. Among other
renewable energy sources, wind turbines use two-level power converters for tens of kW to
hundreds of kW generators, but multilevel converters are applied for generators of MW or
higher. As a result, the increase in output power has made it inevitable to apply multilevel
converters. Multilevel converters (three-level NPC type converters) are not only applied in
various fields but also have various advantages, such as reducing harmonics according to
the increase in output voltage level and reducing the size of passive filters, so they will be
applied to wave power generators. Figure 1 compares the output characteristics of the two-
level topology and the three-level topology under the wave power single module rating
(30 kW) operating condition. The three-level topology exhibits excellent performance, such
as low total harmonic distortion and low voltage stress under the same input conditions.
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In other words, the three-level topology may have sufficiently excellent performance in
wave energy converters.

General three-wire power converters have limitations in application depending on
the operating conditions of the load. In other words, normal current control is not possible
in an unbalanced load operation. These limitations can be protected by the operation of
a four-wire power converter. In addition, the four-wire power converter has an excellent
advantage in leakage current control in terms of safety. Since the wave energy converter
needs independent operation and response to unbalanced loads, in this study, a characteris-
tic analysis was performed using a four-leg topology. Figure 1 shows a three-level, four-leg
topology for application in a wave power system with leakage capacitors.

In this paper, various four-leg topologies were compared and analyzed to select a
suitable topology for application to wave energy converter. Comparison is performed from
a two-level topology that has been widely applied in the past to a three-level topology
to improve output performance. In this study, a total of four types of topologies were
compared, and Figure 2 shows the configuration of the topology applied in this study. In
order to apply the wave power characteristics, the analysis was focused on the AC/DC
converter related to the input energy. DC/AC inverters have similar operating charac-
teristics and are not described separately. The topology of the four-leg type is a rectifier
with a two-level three-leg four-wire structure (Figure 3a), a three-phase two-level four-leg
structure rectifier (Figure 3b), and a three-level three-leg four-wire structure. It consists of a
rectifier (Figure 3c) and a rectifier with a three-level, four-leg structure (Figure 3d).

In this paper, a model predictive control that can have a fast response is applied
to respond to wave energy. In addition, the model predictive control can provide the
convenience of control due to the characteristics of the four-leg topology having nonlinear
characteristics. Furthermore, in the case of a three-level topology, the model predictive
control can have sufficient advantages because the control variable increases.

In order to apply the model predictive control to the converters shown in Figure 3,
the relationship between the switching state and the output voltage according to each
converter must be considered. That is, it is necessary to observe the change of the control
variable according to the switching state of each converter. The control of the converter
consists of two parts. It can be seen in Figure 4 that a part of the capacitor voltage control is
added to the three-level converter rather than the two-level converter. This part increases
the complexity of the control.
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The current control part of applying the model predictive control to the converter can
be expressed as follows by using the R-L filter (R f , L f ) and the input voltage (vabc_in) and
the input current (iabc_in) for the input AC voltage of the converter.va_in

vb_in
vc_in

 = R f

ia_in
ib_in
ic_in

+ L f
d
dt

ia_in
ib_in
ic_in

+

va_con
vb_con
vc_con

 (1)

Equation (1) can be expressed as follows if the next step current is predicted based on
the discrete model.ia_in(k + 1)

ib_in(k + 1)
ic_in(k + 1)

 =
(

1− L−1
f TspR f

)ia_in(k)
ib_in(k)
ic_in(k)

+ L−1
f Tsp

va_in(k)− va_con(k)
vb_in(k)− vb_con(k)
vc_in(k)− vc_con(k)

 (2)

Based on Equation (2), the optimal switching state can be selected by predicting the
load current of the next step using all voltage states that the converter can make and
comparing it with the reference current. The magnitude of the reference current shown in
Figure 4 is based on the difference between the reference DC-Link voltage and the current
DC voltage, using a PI controller to configure the controller [27]. Then, the phase of the
input current is extracted based on the PLL algorithm to control the power factor to one.
The current reference generated in this way can obtain the predicted reference current
based on Lagrange extrapolation [28].

The optimal switching state is selected through an optimization problem, and the
optimization method is as follows.

Gcurrent =
∣∣i∗abc_in(k + 1)− iabc_in(k + 1)

∣∣ (3)

Capacitor voltage control is essential for a three-level converter, and the variability of
the capacitor voltage based on the current of the capacitor is expressed as:

d
dt

[
Vcu
Vcl

]
= C−1

dc

[
icu
icl

]
(4)

icu, icl denote currents flowing through the upper capacitor and the lower capacitor,
and C−1

dc denotes the capacitance of the capacitor, respectively. If this is expressed in
discrete-model like current control, the next step capacitor voltage can be calculated as
follows: [

vcu(k + 1)
vcl(k + 1)

]
=

[
vcu(k)
vcl(k)

]
+ C−1

dc Tsp

[
icu(k)
icl(k)

]
(5)
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As a result, the optimization method of the three-level converter is as follows and
consists of a part for current control and a part for capacitor voltage balancing control.

Gtotal =
∣∣∣i∗abc_in(k + 1)− iabc_in(k + 1)

∣∣∣
+λcap|vcu(k + 1)− vcl(k + 1)|

(6)

In the case of the three-level converter, it can be superior to the conventional two-level
converter in terms of output performance, but the number of voltage vectors to be consid-
ered for current control and capacitor voltage balancing control increases significantly [29].
The voltage vectors and switching states to be considered in the converters applied in this
study are shown in Tables 1–4 below.

Table 1. Input voltage according to the switching state of the two-level three-leg.

Voltage
Vectors

Switching
State

Voltage Voltage
Vectors

Switching
State

Voltage

va vb vc va vb vc

v1 PPP 1 1 1 v5 NPP 0 1 1

v2 NNN 0 0 0 v6 PNN 1 0 0

v3 NNP 0 0 1 v7 PNP 1 0 1

v4 NPN 0 1 0 v8 PPN 1 1 0

Table 2. Input voltage according to the switching state of the two-level four-leg.

Voltage
Vectors

Switching
State

Voltage Voltage
Vectors

Switching
State

Voltage

va vb vc va vb vc

v1 PPPP 0 0 0 v9 PPPN 1 1 1

v2 NNNP −1 −1 −1 v10 NNNN 0 0 0

v3 PNNP 0 −1 −1 v11 PNNN 1 0 0

v4 PPNP 0 0 −1 v12 PPNN 1 1 0

v5 NPNP −1 0 −1 v13 NPNN 0 1 0

v6 NPPP −1 0 0 v14 NPPN 0 1 1

v7 NNPP −1 −1 0 v15 NNPN 0 0 1

v8 PNPP 0 −1 0 v16 PNPN 1 0 1

Table 3. Three-level three-leg input voltage state according to the switching state.

Voltage
Vectors

Switching
State

Voltage Voltage
Vectors

Switching
State

Voltage

va vb vc va vb vc

v1 PPP 0.5 0.5 0.5 v15 ONO 0 −0.5 0

v2 NNN −0.5 −0.5 −0.5 v16 PON 0.5 0 −0.5

v3 OOO 0 0 0 v17 OPN 0 0.5 −0.5

v4 POO 0.5 0 0 v18 NPO −0.5 0.5 0

v5 ONN 0 −0.5 −0.5 v19 NOP −0.5 0 0.5

v6 PPO 0.5 0.5 0 v20 ONP 0 −0.5 0.5

v7 OON 0 0 −0.5 v21 PNO 0.5 −0.5 0

v8 OPO 0 0.5 0 v22 PNN 0.5 −0.5 −0.5

v9 NON −0.5 0 −0.5 v23 PPN 0.5 0.5 −0.5

v10 OPP 0 0.5 0.5 v24 NPN −0.5 0.5 −0.5

v11 NOO −0.5 0 0 v25 NPP −0.5 0.5 0.5

v12 OOP 0 0 0.5 v26 NNP −0.5 −0.5 0.5

v13 NNO −0.5 −0.5 0 v27 PNP 0.5 −0.5 0.5

v14 POP 0.5 0 0.5



Processes 2023, 11, 1463 8 of 21

Table 4. Input voltage according to the switching state of the three-level four-leg.

Voltage
Vectors

Switching
State

Voltage Voltage
Vectors

Switching
State

Voltage

van vbn vcn van vbn vcn

v1 NNNN 0 0 0 v42 OOOP −0.5 −0.5 −0.5

v2 NNNO −0.5 −0.5 −0.5 v43 OOPN 0.5 0.5 1

v3 NNNP −1 −1 −1 v44 OOPO 0 0 0.5

v4 NNON 0 0 0.5 v45 OOPP −0.5 −0.5 0

v5 NNOO −0.5 −0.5 0 v46 OPNN 0.5 1 0

v6 NNOP −1 −1 −0.5 v47 OPNO 0 0.5 −0.5

v7 NNPN 0 0 1 v48 OPNP −0.5 0 −1

v8 NNPO −0.5 −0.5 0.5 v49 OPON 0.5 1 0.5

v9 NNPP −1 −1 0 v50 OPOO 0 0.5 0

v10 NONN 0 0.5 0 v51 OPOP −0.5 0 −0.5

v11 NONO −0.5 0 −0.5 v52 OPPN 0.5 1 1

v12 NONP −1 −0.5 −1 v53 OPPO 0 0.5 0.5

v13 NOON 0 0.5 0.5 v54 OPPP −0.5 0 0

v14 NOOO −0.5 0 0 v55 PNNN 1 0 0

v15 NOOP −1 −0.5 −0.5 v56 PNNO 0.5 −0.5 −0.5

v16 NOPN 0 0.5 1 v57 PNNP 0 −1 −1

v17 NOPO −0.5 0 0.5 v58 PNON 1 0 0.5

v18 NOPP −1 −0.5 0 v59 PNOO 0.5 −0.5 0

v19 NPNN 0 1 0 v60 PNOP 0 −1 −0.5

v20 NPNO −0.5 0.5 −0.5 v61 PNPN 1 0 1

v21 NPNP −1 0 −1 v62 PNPO 0.5 −0.5 0.5

v22 NPON 0 1 0.5 v63 PNPP 0 −1 0

v23 NPOO −0.5 0.5 0 v64 PONN 1 0.5 0

v24 NPOP −1 0 −0.5 v65 PONO 0.5 0 −0.5

v25 NPPN 0 1 1 v66 PONP 0 −0.5 −1

v26 NPPO −0.5 0.5 0.5 v67 POON 1 0.5 0.5

v27 NPPP −1 0 0 v68 POOO 0.5 0 0

v28 ONNN 0.5 0 0 v69 POOP 0 −0.5 −0.5

v29 ONNO 0 −0.5 −0.5 v70 POPN 1 0.5 1

v30 ONNP −0.5 −1 −1 v71 POPO 0.5 0 0.5

v31 ONON 0.5 0 0.5 v72 POPP 0 −0.5 0

v32 ONOO 0 −0.5 0 v73 PPNN 1 1 0

v33 ONOP −0.5 −1 −0.5 v74 PPNO 0.5 0.5 −0.5

v34 ONPN 0.5 0 1 v75 PPNP 0 0 −1

v35 ONPO 0 −0.5 0.5 v76 PPON 1 1 0.5

v36 ONPP −0.5 −1 0 v77 PPOO 0.5 0.5 0

v37 OONN 0.5 0.5 0 v78 PPOP 0 0 −0.5

v38 OONO 0 0 −0.5 v79 PPPN 1 1 1

v39 OONP −0.5 −0.5 −1 v80 PPPO 0.5 0.5 0.5

v40 OOON 0.5 0.5 0.5 v81 PPPP 0 0 0

v41 OOOO 0 0 0

3. Four-Leg Topology Loss Analysis Model

Estimating the power dissipation allows us to estimate the efficiency of each converter,
and this estimate can be used to evaluate various converter topologies before assembling
and testing the converter. Therefore, the power loss estimation provides the designer with
an optimization method. It can also accurately estimate semiconductor thermal stresses
under various operating conditions to design appropriate protection strategies to prevent
excessive thermal stresses.
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A simple model that describes a semiconductor in terms of voltage source drop and
resistance is useful for determining conduction losses but not suitable for estimating switch-
ing losses. As an alternative to simple and complex semiconductor models, simulations
with ideal switches and diodes can be fast. With an ideal switch, there is a close match
between the simulated current and voltage if the conduction voltage drop of the real device
is insignificant. Therefore, a method was introduced to estimate the power dissipation in
the simulation using an ideal switch and then introduce a post-process to reflect the actual
semiconductor behavior. A flow chart of the power device loss calculation is shown in
Figure 5.
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Figure 5. The flowchart of power device loss calculation for a three-phase four-wire DC/AC inverter.

High-speed simulation by PSIM, together with the ideal model of the power device,
can be used to determine the voltage and current of the switching device at the moment
of switching. A post-processor program using linear equations is run to calculate total
device losses based on switching energy losses and on-state voltage losses over voltage,
current, and junction temperature. SiC Mosfet turn-on energy loss (EON), turn-off energy
loss (EOFF), and diode reverse recovery loss based on the data sheet as a function of DC
voltage (VDC), collector current (IC), junction temperature (Tj), and gate resistance (Rg)
(EREC) is calculated. Finally, SiC Mosfet power dissipation and diode power dissipation are
calculated based on the switching frequency (fsw) [30].

A post-processor program is used to calculate semiconductor losses after a quick
simulation using ideal switches and diodes. Switching moments are detected using sharp
edges in voltage and current waveforms. A positive voltage edge occurs at the moment of
turning off, and a negative voltage at the moment of turning on. At each switching moment,
the turn-on voltage value, turn-on current, turn-off voltage and turn-off current are sensed
according to the positive or negative voltage edge. At that time, the post-processor uses
linear functions derived from the datasheet to calculate the SiC Mosfet turn-on energy loss
(EON), SiC Mosfet turn-off energy loss (EOFF) and diode turn-off energy loss (EREC). The
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turn-on power (PON), turn-off power (POFF), and diode turn-off losses (PREC) are calculated
as follows:

PON =
1
T ∑ EON (7)

POFF =
1
T ∑ EOFF (8)

PREC =
1
T ∑ EREC (9)

The SiC Mosfet conduction loss (PSiC-Mosfet_COND) and diode conduction loss (PDIODE_COND)
are calculated.

PSiC−Mosfet__COND =
1
T

∫
VCE·IC (10)

PDIODE_COND =
1
T

∫
VF·IF (11)

The total SiC-Mosfet losses are:

PSiC−Mosfet_TOTAL = PSiC−Mosfet__COND + PON + POFF (12)

The total diode losses are computed in the same way as SiC-Mosfet losses, except
diode turn-on losses, are considered to zero

PDIODE_TOTAL = PDIODE_COND + PREC (13)

CREE’s C3M0021120K (1200 V) and C3M0025065K (650 V) devices, which are silicon
carbide power MOSFETs, were applied to the converter loss analysis, respectively. In
addition, for the reverse diode, Silicon Carbide Schottky Diode was applied, and CREE’s
C4D40120D was applied. Through this, loss analysis was performed among the operating
characteristics of each converter. It derives a topology suitable for the wave power device
through the efficiency analysis of each converter.

4. Comparison of Simulations and Results

In this study, four types of topologies shown in Figure 3 were compared to select a
topology suitable for wave power operating conditions. The operating conditions of the
wave power generation were simulated under the rated operating conditions of 30 kW.
In this study, each converter performed the operation by applying the model predictive
control. The parameters of the wave power generator are shown in Table 5 below.

Table 5. Parameter for OWC-WEC Simulation.

Parameters Values

Vin (input voltage) 432.56 V
Rin (input restistance) 0.233 Ω
Lin (input inductance) 2.0344 mH
Cdc (DC capacitance) 4400 µF

Vdc (DC voltage) 850 V

Figure 6 compares the output characteristics of each converter under the wave power
rating conditions shown in Table 1 to confirm the performance of each converter. Model
predictive control was applied to each converter. As analyzed above, it can be seen that the
three-level converter is superior to the two-level converter in input current performance or
input voltage performance. Also, it can be seen that the three-level converter is excellent
in leakage current performance. Among them, it can be seen that the three-level four-leg
converter has the best leakage current performance. In conclusion, a three-level four-
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leg converter with the best input current or output performance and leakage current
performance would be most suitable for a power converter for a wave power generator.
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Figure 7 shows the dynamics of the input current for each converter. Since the wave
energy of the wave power generation system changes rapidly, it must be able to follow the
rapidly changing current. Model predictive control can quickly follow current changes.
Figure 7 shows the current dynamics of each converter according to the reference current
change. It can be seen that all converters follow the reference current quickly because model
predictive control is applied, even if the input energy changes rapidly due to the nature of
the wave power generation. In addition, it can be seen that the three-level converter more



Processes 2023, 11, 1463 13 of 21

accurately tracks the reference current than the two-level converter, and the current ripple
is reduced, even if all converters exhibit a fast response. That is, if the model predictive
control is applied to the converter for the wave power device, an advantage can be obtained.
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Figure 8 shows the components of the prototype for topology performance verification.
Performance verification was compared by applying the two-level type and the three-level
type, respectively. For the semiconductor switching element of each topology, CREE’s
C3M0021120K was applied for the two-level type, and CREE’s C3M0025065K was applied
for the three-level type. Detailed specifications of each device are shown in Table 6 below.
Each topology applied the same control board, gate driver and load system, and a picture of
the applied equipment is inserted in Figure 8. Through this, a performance analysis of each
topology was performed. The part about signal distortion should also be considered [31].
The load parameters and operating switching frequencies for the experiment are shown in
Table 7.
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Table 6. Semiconductor switching device specifications for topology performance verification.

Applied Topology VDS ID (25 ◦C) RDS(ON)

C3M0021120K (1200 V) Two-Level Type 1200 V 100 A 21 mΩ
C3M0025065K (650 V) Three-Level Type 650 V 97 A 25 mΩ

Table 7. Induction Motor Parameter for inverter experiment.

Parameters Values

Rs (stator restistance) 2 Ω
Rr (rotor restistance) 1.56 Ω

Ls (stator inductance) 54 mH
Lr (rotor inductance) 54 mH

Lm (mutual inductance) 51.5 mH
Tsp (sampling period) 200 µs

Figure 9 shows the output waveform to check the operation and performance of
the converter hardware. Figure 9 shows that the three-phase current and three-phase
line voltage appear well in normal operation. In addition, it can be confirmed that the
transient response performance is appropriately controlled by the output current size
change and frequency change. Through this, it was possible to verify the corresponding
algorithm through each hardware. In addition, it can be confirmed through Figure 9d that
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the algorithm operates without problems, even under balanced load and unbalanced load
conditions.
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Figure 9. Output waveforms to verify converter operation: (a) steady-state operation, (b) tran-
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Figure 10 shows the loss distribution of each converter element during balanced
operation under rated conditions. The loss distribution is shown for each element in a-
phase. For the loss analysis, the method described in Part 3 was applied. It can be seen that
the three-level converter shows much less loss in each device than the two-level converter.
In addition, it can be seen that the loss distribution in each device is also more balanced in
the three-level converter.

Figure 11 shows the loss distribution of each converter element during unbalanced
operation under rated conditions. The unbalanced operation resulted in a 1.2-fold increase
in the power of a-phase. Accordingly, the overall loss increased. It was confirmed that
the loss of the three-level converter was much less than that of the two-level converter in
the balanced operation. Also, the loss distribution in each device was more balanced in
the three-level converter. However, it can be seen that the distribution of each device is
relatively constant in the three-level four-leg converter that can cope with the unbalanced
operation than the three-level three-leg four-wire converter. Table 8 shows the total losses
of the converter during balanced and unbalanced operations. When considered compre-
hensively, it can be seen that the performance of the three-level four-leg converter is the
best under the wave power characteristics condition.
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Figure 11. Comparison of power losses performance of four-leg converter (a-phase) in asymmetric
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Table 8. Power losses under symmetric and asymmetric operation for AC/DC converter in rated
operation.

Two-Level
Four-Wire

Two-Level
Four-Leg

Three-Level
Three-Leg
Four-Wire

Three-Level
Four-Leg

Losses [W]
Symmetric operation 597.75 478.89 305.79 258.26

Asymmetric operation 899.14 752.88 693.64 490.48

Figure 12 compares the input current THD, output voltage ripple, leakage current
magnitude, average switching frequency, converter loss and efficiency of each converter
according to the sampling frequency change. As the sampling frequency increases, it can



Processes 2023, 11, 1463 17 of 21

be seen that the THD of the input current and the output voltage ripple decrease. The
three-level, four-leg converter used in this study exhibits the lowest input current THD
and low voltage ripple over all switching frequency ranges. In addition, even when the
sampling frequency was changed, the three-level converter performed better than the two-
level converter in terms of leakage current, and the three-level four-leg converter showed
the best performance. It was also confirmed that the average switching frequency of the
three-level four-leg converter was the lowest, and accordingly, it showed much superior
performance than the conventional wave power converter in terms of loss and efficiency of
the converter.
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Figure 12. Comparison of output performance of four-leg converter according to sampling frequency
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Figure 13 compares the current THD, leakage current size, power converter loss and
efficiency according to the output power change. It can be seen that the current THD
and leakage current decrease as the output power increases, similar to the characteristics
according to the sampling frequency change. In addition, it can be seen that loss and
efficiency also improve as the output power increases. Depending on the output power
change, the three-level converter showed better performance than the two-level converter,
and the three-level four-leg converter showed the best performance.
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Figure 13. Comparison of output performance of four-leg converter according to output power:
(a) THDi, (b) leakage current, (c) total loss, and (d) efficiency.

Figure 14 shows the distribution of losses of each inverter element under a balanced
load under rated conditions. The loss distribution is shown for each element in a-phase. As
in the converter analysis, it can be seen that the three-level converter shows much less loss
in each device than the two-level converter. In addition, Figure 15 shows the distribution of
losses of each inverter element during unbalanced operation under rated conditions. The
unbalanced operation increased the overall loss because the a-phase power increased by a
factor of 1.2. It was confirmed that the loss of the three-level converter was much less than
that of the two-level converter in the balanced operation. Similar to the converter analysis,
the three-level inverter shows lower losses than the two-level inverter. The maximum
efficiency difference was 2.28% higher for the three-level four-leg converter in balanced
operation and 2.7% higher in unbalanced operation. Table 9 shows the efficiency of the
power converter for wave power generation incorporating the converter-inverter during
balanced and unbalanced operations.
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Table 9. Total Efficiency under symmetric and asymmetric operation for DC/AC inverter in rated
operation.

Two-Level
Three-Leg
Four-Wire

Two-Level
Four-Leg

Three-Level
Three-Leg
Four-Wire

Three-Level
Four-Leg

Total
Efficiency [%]

Symmetric
operation 96.0 96.8 97.96 98.28

Asymmetric
operation 94.0 95.0 95.4 96.7

5. Conclusions

In order to increase the energy efficiency of the wave power generator, it is essential
to increase the efficiency of the power converter. Efficient converters must operate at low
switching frequencies, which increases the weight and volume of passive components,
which can exceed space constraints. Therefore, in this paper, we compare the performance
of various types of topologies, from the two-level topology to the three-level topology
applied to the existing wave power generation device. In particular, analysis was performed
focusing on a four-leg type topology that can cope with unbalanced operation, and model
predictive control was applied to apply to abrupt energy changes and atypical topologies.
As a power converter for wave power generation, a three-level, four-leg topology with the
best current harmonics, leakage current performance, DC voltage fluctuation rate and loss
is suitable. This was the best performance of the three-level four-leg topology, even with the
switching frequency change affecting the topology performance. The three-level four-leg
back-to-back converter showed up to 2.28% and 2.7% higher efficiencies under balanced
and unbalanced operating conditions. In conclusion, a three-level, four-leg topology is
most suitable as a power converter for wave power generation under the same conditions.
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