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Abstract: The Maximum Power Point Tracking method is a mainstream method for improving the
operational efficiency of photovoltaic power generation, but it is difficult to adapt to the rapidly
changing environment and lacks good steady-state and dynamic performance. To achieve fast
and accurate tracking of the Maximum Power Point Tracking, the optimization of the contraction
expansion coefficient of the Quantum Particle Swarm Optimization algorithm is studied, and then
the Levy flight strategy is introduced to optimize the algorithm’s global convergence ability, thereby
constructing the Hybrid Quantum Particle Swarm Optimization algorithm. Finally, the Hybrid
Quantum Particle Swarm Optimization combined with the Maximum Power Point Tracking algorithm
is obtained. The research results showed that the Hybrid Quantum Particle Swarm Optimization
combined with the Maximum Power Point Tracking algorithm can always converge to the theoretical
minimum value with a probability of more than 94% in the Roserock function and Rastigin function
tests. The tracking error of the Hybrid Quantum Particle Swarm Optimization combined with
the Maximum Power Point Tracking algorithm was less than 1% under lighting conditions. The
convergence time of the Hybrid Quantum Particle Swarm Optimization combined with the Maximum
Power Point Tracking algorithm in arbitrary shadow occlusion environments can reach a stable state
within 0.1 s. In summary, the Hybrid Quantum Particle Swarm Optimization combined with the
Maximum Power Point Tracking algorithm proposed in the study has excellent performance and
very wide applicability. To a certain extent, it improves the total power generation capacity of the
photovoltaic power generation system and the power generation efficiency of the photovoltaic array.

Keywords: HQPSO; PPG; MPPT; local shadow occlusion; LF strategy; photovoltaic array

1. Introduction

At present, solar photovoltaics has become one of the most important renewable energy
sources in the world. With the continuous development of technology and the expansion
of industrial scale, the cost of solar photovoltaic power generation is also continuously
decreasing [1–3]. According to data from the International Energy Agency, the cost of solar
photovoltaic power generation (PPG) has decreased by nearly 80% in the past decade [4].
In addition, the installed capacity of global solar PPG is constantly increasing. According
to the International Energy Agency’s prediction, the installed capacity of global solar
photovoltaic power generation will reach 1.4 trillion watts by 2030, and China is the largest
solar photovoltaic market in the world, with its installed capacity accounting for one-third
of the world’s [5]. PPG has significant energy, environmental protection, and economic
benefits, making it one of the highest-quality green energy sources. According to the
World Wildlife Fund’s analysis of the effectiveness of reducing carbon dioxide emissions,
installing a one-square-meter PPG system is equivalent to planting 100 square meters of
trees. In addition, PPG technology can fundamentally solve environmental problems such
as smog and acid rain. The development of PPG technology and related industries can
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provide unlimited imagination space for the future of Nenpark society, such as using the
electricity generated by the PPG system to support the operation of ecological circulation
systems in universities and transforming idle land with harsh natural conditions into
an ecological home for a green economy. However, there are many problems with PPG
technology at present, such as being greatly affected by geographical location, output power
being affected by weather, light intensity, and temperature, low photoelectric conversion
efficiency, and the high initial cost of PPG systems. To address the above issues, the
study first designs the structure of the PPG system and photovoltaic cells then designs the
Maximum Power Point Tracking (MPPT) method, and finally introduces the Levy flight
strategy optimization Quantum Particle Swarm (OPSO) algorithm. In addition, it optimizes
the Contraction expansion coefficient (CE). From this, Hybrid Quantum Particle particle
swarm optimization (HQPSO) can be obtained, and finally, HQPSO combined with the
MPPT (H–M) algorithm can also be obtained.

The research aims to propose an algorithm that can better and more quickly adapt
to environmental changes, with relatively good steady-state and dynamic performance,
thereby promoting the healthy development of PPG, maximizing the utilization of solar en-
ergy, and improving the stability of the system and the conversion efficiency of photovoltaic
cells. Balbino et al. designed an improved MPPT method without mechanical and voltage
sensors for small wind turbine systems. Through simulation and experiments on a 1.5 kw
small wind turbine system, the tracking efficiency of this method was close to 97.64% [6].
Zhang et al. proposed a hybrid MPPT method based on an iterative learning control and
disturbance observation algorithm to propose the goal of fast and accurate tracking of
MPPT. The policy and hardware results confirmed the effectiveness of this method [7].
In summary, the MPPT method for PPG systems currently needs further improvement.
The innovation points of the research are as follows: First, an HQPSO combined with the
MPPT algorithm (H–M) is proposed; Then, the Levy flight strategy is introduced to further
improve the reliability of the OPSO algorithm in global convergence. The research structure
is mainly divided into four parts. The first part is a summary of relevant research results.
The second part is the design of the maximum power point tracking control algorithm
based on the HQPSO algorithm. The third part is the validation of the effectiveness and
practicality of the proposed algorithm. The last part is a summary of the research.

2. Related Works

For a long time, the world’s total energy consumption has continued to grow. Today’s
global energy supply is mainly fossil energy. However, with the large-scale development
and utilization of hundreds of years, the world is facing problems such as resource deple-
tion. From the global total resource reserves in 2020, the reserves of oil, coal, and natural
gas resources were 237.33 billion tons, 1074.11 billion tons, and 188.07 trillion cubic meters.
According to the current world average mining intensity, the total reserves are insufficient
to meet the current development status of population growth, industrialization, and ur-
banization. Therefore, carrying out renewable-energy-related technologies will play an
extremely important role in ensuring world energy supply and promoting clean energy
development. Li et al. found that the application of metal nanoparticles led to the improve-
ment of the efficiency of solar cells due to the plasma effect. Therefore, the study explored
the different situations of related mechanisms on the basis of metalized perovskite solar
cells. The results showed that in a properly designed perovskite structure with multi-layer
slender metal nanoparticles, the absorption of photons can be increased and the binding
energy of excitons can be reduced at the same time. Thus, the efficiency can be improved
through metallization, which cannot be achieved in traditional p–n junction batteries [8].
To achieve efficient photovoltaic power generation prediction in smart city energy manage-
ment, Sun et al. studied and designed a model based on a multi-scale short-term memory
recurrent neural network that can predict very short-term photovoltaic power generation.
The experimental results showed that the model can stably assist in predicting the energy
consumption of photovoltaic power generation [9]. To meet the demand for fast charging
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of new energy vehicles, Zhang and others introduced distributed PPG technology and
proposed a scheme for installing a distributed generation system for fast charging stations
for electric vehicles. This scheme planned the layout of the station and analyzed the op-
erational efficiency of the station. The results confirmed that this scheme achieved the
design goal of the rationalization and intelligence of fast charging stations and provided a
reference for the construction of urban fast charging networks [10]. Bhende et al. developed
a control scheme for power sharing between photovoltaic water pumping units, which was
used for the collaborative control of independent and grid-connected photovoltaic water
pumping systems. In the case of high photovoltaic power infiltrating into weak current
networks, a disturbance and observation optimization algorithm for sharing offload power
between photovoltaic units was studied and designed. The simulation results verified the
performance of the control scheme [11]. Wu et al. proposed a supercapacitor as a control
system and a sensing circuit for accurately detecting the output current and current change
rate of solar power generation systems to solve the problem of indirection and instability
of the output voltage of PPG modules. The experimental results showed that the control
system can effectively suppress the output voltage fluctuation of the PPG module and
enhance the reliability of load power consumption [12].

MPPT technology is a mainstream method for achieving the healthy development
of PPG, maximizing the use of solar energy, and improving the system stability and
conversion efficiency of photovoltaic cells. It continuously adjusts the output characteristics
of photovoltaic cells through technical means to maintain them working near the maximum
power point [13]. Combining the costs of PPG systems, MPPT technology is the simplest
and most effective method to improve power generation efficiency and reduce operating
costs [14]. To improve the efficiency of photovoltaic systems and reduce the cost of solar
cells, Alrasheed et al. studied and developed an MPPT system using a dual-axis motor
feedback tracking system. The simulation results confirmed that the system can be more
efficient and cost-effective and achieve maximum power transmission [15]. Nasr et al.
proposed a dual-objective control strategy based on MPPT to ensure the maximum overall
efficiency of wireless power transmission systems. Experiments verified that the power
transmission efficiency of this strategy only decreased by 2% [16]. Inspired by the fact that
solar energy was the foundation of PPG and plant growth, Pachaivannan et al. designed a
new crowded plant height optimization algorithm for solar photovoltaic MPPT. The results
showed that the performance of this method was superior to the MPPT control strategy
based on the perturbation observation algorithm [17].

In summary, there are many research achievements related to PPG systems and MPPT
technology, but there is currently a lack of MPPT technology that adapts to rapid changes
in the external environment. To investigate an algorithm with enhanced adaptability to
changing environments, as well as to improve steady-state and dynamic performance, the
study focuses on using QPS as a foundation for optimization, specifically by optimizing the
CE coefficient and implementing the LF strategy. This leads to the development of a novel
HQPSO algorithm. Finally, the HQPSO algorithm is combined with the MPPT method to
construct the H–M algorithm.

3. MPPT Control Algorithm Establishment Based on HQPSO
3.1. Structural Design of the PPG System and Photovoltaic Cells

Currently, there are many technologies that utilize solar energy, including two types of
technologies that directly use sunlight and heat. One type does not change its form, which
is passive solar energy technology; another type of energy conversion technology is active
solar energy technology, including PPG technology, which converts solar radiation into
electrical energy. The PPG system is divided into a grid-connected system and an off-grid
system based on whether it is connected to the external power grid. The corresponding
structure diagram is shown in Figure 1.
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Figure 1. Schematic diagram of the PPG system structure for grid-connected and off-grid.

Figure 1a shows the structure of a grid-connected PPG system. The solar cell array
usually needs to be connected to the inverter through a combiner box for grid connection,
thereby transmitting electrical energy to the grid. There is no need to store electrical energy
during the transmission. Figure 1b shows the structure of the off-grid PPG system. It
is not connected to the power grid and can be combined with energy storage batteries,
charging controllers, or inverters for power supply activities. The solar controller can
control the output current and voltage changes of the solar cell array, which is composed
of numerous solar cells with semiconductor characteristics. The MPPT method used in
the controller can enable the entire photovoltaic system to work at maximum power while
controlling the charging and discharging of battery components. In addition, the solar
cell array has different characteristics in different environments, laying a solid practical
foundation for the design of subsequent related algorithms. The load of the PPG system is
divided into DC and AC. The AC load needs to convert the DC voltage through an inverter
to obtain the available AC voltage for the load. The system structure of the DC load is
simple. The voltage output from the solar cell array can be directly output to the load after
being boosted or reduced by a voltage controller. The main raw material of photovoltaic
cells is silicon, whose principle is to convert solar energy into light energy through the
photovoltaic effect of semiconductor devices. When the P–N junction of a semiconductor
device is irradiated by light, the light energy is absorbed by the semiconductor material,
and a voltage is generated at both ends thereof. If a short circuit occurs in the P–N junction,
a current will be generated. Photovoltaic cells are a nonlinear DC current source that
provides power that depends on temperature and sunlight intensity. According to the
principle of photovoltaic cells, the corresponding equivalent circuit can be obtained by
simplifying the photovoltaic cell circuit, as shown in Figure 2.
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In Figure 2, the equivalent circuit of a photovoltaic cell consists of a current source ISH ,
a diode VD, a series resistor RS, and a parallel resistor RP. The output current EE can be
obtained through Kirchhoff’s law, and the calculation is shown in Equation (1) [18].

I = ISH − IVD − IP (1)

In Equation (1), IVD represents the current flowing through VD. IP represents the
parallel current. The calculation of IVD is shown in Equation (2).

IVD = IOD

[
exp

(
q(U + IRS)

ZmT

)
− 1
]

(2)

IOD in Equation (2) represents the reverse current of VD; q represents the amount of
electronic charge, which is 1.6 × 10−19 C; U is the battery output voltage; Z is the quality
factor of VD; m represents the Boltzmann constant, which is 1.38 × 10−23 J/K; T stands
for absolute temperature. The photovoltaic array is composed of multiple photovoltaic
modules in parallel, and the output current I can be obtained as Equation (3).

I = NP IP − NP IOD

exp

 q
(

U
NS

+ IRS
NP

)
ZmT

− 1

− U + IRS
RP

NP (3)

In Equation (3), NP and NS are the number of batteries in series and in parallel,
respectively. Generally, the RS inside a photovoltaic cell consists of the resistance carried by
the contact electrode and the resistance of the semiconductor material itself, with a small
resistance value; due to the non-ideal characteristics and doping of P–N junctions, RP has a
large resistance value. Both are internal resistances of photovoltaic cells, with RS = 0 and
RP being infinite under ideal conditions. When checking out a circuit model, the effect of
RP on the circuit is ignored to facilitate circuit calculations. Under standard test conditions,
namely radiation intensity of 1000 W/m2 and temperature of 25 ◦C, an engineering model
is established based on the technical indicators provided by the battery manufacturer, as
shown in Equation (4) [19].

I = ISC

{
1− A1

[
exp

(
U

A2UOC

)
− 1
]}

A1 =
(

1− IM
ISC

)
exp

(
−U

A2UOC

)
A2 =

(
UM
UOC
− 1
)[

Ln
(

1− IM
ISC

)]−1

(4)
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In Equation (4), ISC and UOC respectively represent the battery short-circuit current
and battery open-circuit voltage under standard test environments. IM and UM represent
the maximum power point current and voltage under the standard test environment,
respectively. In practical applications, it is difficult to meet standard test conditions, so it
is necessary to modify the parameters of Equation (4) using the current temperature and
illumination amplitude to build a new engineering model. The corrected result using the
compensation coefficient is shown in Equation (5).

U∗OC = U∝[1− a(T − TS)] ln[e + b(G− GS)]

I∗SC = ISC
G
GS

[1 + c(T − TS)]

U∗M = UM[1− a(T − TS)] ln[e + b(G− GS)]

I∗M = IM
G
GS

[1 + c(T − C)]

(5)

U∗OC and U∗M in Equation (5) are the corrected battery open circuit voltage and max-
imum power point voltage, respectively. Both a and b represent voltage compensation
coefficients. T and TS represent the temperatures of the measured and standard test envi-
ronments, respectively. G and GS represent the illumination amplitude under the measured
and standard test environments, respectively. c is the current compensation coefficient.
I∗SC and I∗M are the corrected battery short-circuit current and maximum power point cur-
rent, respectively. IM represents the maximum power point current in a standard test
environment. e represents the base number of natural logarithms.

3.2. Design of the MPPT Method

The main methods for obtaining maximum power from photovoltaic arrays include
mechanical tracking and electrical tracking. Mechanical tracking is physical tracking in
which the direction of a photovoltaic panel is changed within a day based on pre-calculated
and defined angles. Electrical tracking refers to tracking the maximum tracking point
on the I–U curve or P–U curve of a photovoltaic panel. In general, power electronic
equipment is used as a point tracker in renewable energy generation, which can track the
maximum power point to achieve maximum efficiency. In summary, MPPT technology
improves the photoelectric conversion efficiency of solar systems, reducing the solar panels
required to obtain a specific amount of output. The output of a photovoltaic system has
a non-linear relationship with light intensity, battery temperature, and load conditions.
Under certain external conditions, the system can operate at a certain range of voltage and
power. The principle of MPPT technology is to actively find the voltage or current at which
the photovoltaic array operates through a given temperature and irradiance to achieve
maximum power output. The MPPT is controlled through a conversion circuit, and its
position in the PPG system is shown in Figure 3.
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In Figure 3, the MPPT control circuit calculates the current and voltage output from
the photovoltaic array to obtain a control signal. Then, the control signal is applied to the
DC conversion circuit to adjust the output current and voltage of the array operation. In
a linear circuit, when the impedance of both the external load and the power supply is
conjugate, the external load can obtain maximum output power. In PPG systems, although
DC/DC converter circuits are all nonlinear, they can be considered linear for a relatively
short period of time. The traditional single-peak MPPT method has a simple principle.
Currently, the widely used methods with high accuracy include Disturbance Observation
(DO) and Incremental Conductivity (IC). The principle of the DO method is to increase or
decrease the voltage across the photovoltaic cell at fixed time intervals. The control signal
for the next step is determined based on the subsequent power change direction. The MPPT
module increases or decreases the output voltage or current of the photovoltaic array in
a determined small step length within each cycle. The DO method does not require too
many parameters in practical applications, and the accuracy of the sensor does not need to
be very high. However, after this method, the photovoltaic array can only oscillate around
the maximum power point, resulting in partial power loss. The IC method is based on the
slope of the photovoltaic array P–U curve at the maximum power point of 0. The output
power of the photovoltaic cell is Equation (6).

P = U·I (6)

Taking the derivative of U, the slope of the photovoltaic cell power curve at the
maximum power point is 0, positive on the left-hand side, and negative on the right-hand
side. To sum up, a flowchart of the IC method can be obtained, as shown in Figure 4.
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Figure 4. Process of the IC method.

In Figure 4, U(m) and I(m) represent the current voltage and current of the photo-
voltaic cell, respectively. Ure represents the reference voltage that forces the photovoltaic
array to operate. The IC method determines whether the current operating point is located
to the left or right of the maximum power point by comparing its conductance variation
with conductance. Then it controls the increase or decrease of the output voltage to achieve
tracking of the maximum power point. However, due to the use of derivative algorithms,
the output of the IC method is unstable, and low-accuracy sensors are not suitable.



Processes 2023, 11, 1456 8 of 16

3.3. Construction of the MPPT Control Algorithm Based on HQPSO

Under local shadow conditions, there are multiple relative maximum power points
in the P–U characteristic curve of a photovoltaic array. It is difficult to track the absolute
maximum power points with traditional MPPT. Therefore, it is necessary to utilize a multi-
peak MPPT method. Currently, the mainstream MPPT algorithm is based on sliding mode
variable structure control (SMVSC), namely the S–M algorithm, and the MPPT method
is based on Particle Swarm Optimization (PSO). The working principle of SMVSC is to
use a high-speed switching control law to make the state trajectory of the system reach
the pre-designed state space surface within a certain time while keeping the subsequent
trajectory stable on the surface. The switching function of the converter C is expressed as
Equation (7).

C =

{
0, D ≥ 0

1, D < 0
(7)

When C is 0, the switch is open; when C is 1, the switch is closed. D is calculated using
Equation (8).

D = I + U
dI
dU

(8)

The control system based on the S–M algorithm has a fast response speed and is easy
to operate in practical applications. However, in practical applications, it is difficult for the
algorithm to move completely in accordance with the sliding mode toward the equilibrium
point. Instead, it traverses both sides of the synovial surface, resulting in chattering, which
cannot be avoided. The PSO algorithm updates each particle’s speed and position based on
its best previous solution and the best solution sought by the current population. Equation
(9) is used to iteratively update the velocity and solution of particles. vk+1

i = ζvk
i + d1rand()

(
Pk

i − sk
i

)
+ d2rand()

(
Pk

b − sk
i

)
sk+1

i = sk
i + vk+1

i

(9)

In Equation (9), ζ represents the inertial factor. d1 and d2 are acceleration variables,
respectively. rand() is a random vector obtained from the uniform distribution of each
particle size [0, 1]n. Pi and Pb represent individual and global optimal solutions, respectively.
To avoid divergence, vk+1

i is typically [−vmax, vmax], i = 1, 2, · · · , n, in which vmax is the
maximum particle velocity. However, the PSO algorithm is prone to falling into the local
optimization, so PSO optimization is introduced to optimize the MPPT method. Supposing
there are W particles in the N space, and position of the particle i at the moment t is
Si(t) =

(
ui1(t), · · · , uiN(t)

)
, the optimal position of i is Oi(t) = (oi,1(t), · · · , ui,N(t)). For

the minimization problem, Oi(t) is shown in Equation (10).

Oi(t) =

{
Si(t), f (Si(t)) < f (Oi(t− 1))

Oi(t− 1), f (Si(t)) ≥ f (Oi(t− 1))
(10)

In Equation (10), f (Si(t)) is the fitness value corresponding to the position of i at
the time t. f (Oi(t− 1)) means the fitness value corresponding to the individual optimal
position of i at time t. The global optimal position OS(t) of the population is calculated
using Equation (11).  OS(t) = Oos(t)

os = arg min
1≤i≤W

( f (Oi(t)))
(11)
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The os in Equation (11) is the subscript of the globally optimal position particle. The
evolution of i under dimension j is shown in Equation (12).

Si,j(t + 1) = oi,j(t)±
Li,j(t)

2 ln
[

1
xi,j(t)

]
oi,j(t) = αj(t)Oi,j(t) +

[
1− αj(t)

]
OSj(t)

Li,j(t) = 2ψ
∣∣mb− Si,j(t)

∣∣ (12)

In Equation (12), if xi,j(t) ∼ X(0, 1) and xi,j(t) > 0.5, + is taken, and vice versa−; oi,j(t)
is the attractor of i in the j dimension at the t iteration; Li,j(t) represents the characteristic
length of the δ potential progression; αj(t) ∼ X(0, 1) and OSj(t) indicate that j is the global
optimal location in space; ψ represents the contraction expansion coefficient CE; mb is the
average of the globally optimal locations. When tracking the maximum power point, it is
always expected that the MPPT method will track to the theoretical maximum power point
as much as possible, find the global maximum power point with lower operating costs, and
maintain the results. Therefore, the study optimizes the CE coefficient and position update
equation to form a new HQPSO algorithm, as shown in Figure 5.
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The steps of the HQPSO algorithm are as follows. To adapt ψ to changes in particle
fitness values during the optimization process, a variable CE coefficient strategy is studied.
This causes each particle to have a corresponding ψ, and the expression is shown in
Equation (13).

ψ =

{
ψmin − (ψmax−ψmin)·( f− fmin)

fav− fmin
, f ≤ fav

ψmax, f > fav
(13)

In Equation (13), ψmin and ψmax respectively represent the minimum and maximum
values of the CE coefficient; f is the individual optimal fitness value of the current particle;
fmin and fav are the minimum and average fitness values of all particles, respectively. Based
on the impact of CE coefficients on algorithm performance studied previously, ψmax = 1 and
ψmin = 0.5 are selected [20]. In addition, in order to increase the diversity of the population
and optimize the performance of the algorithm, research is conducted to introduce an LF
strategy during the update process to avoid the algorithm falling into local optimization.
The step size of LF is a function of time t. By using Mantegna simplification and Fourier
transform, Equation (14) can be obtained.

LF(χ) ∼ α·η

|v|
1
χ

, 1 < χ ≤ 2 (14)
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The χ in Equation (14) is a power function that determines the shape of the LF
distribution. Both v and η follow a standard normal distribution, and the expression of α is
shown in Equation (15).

α =

Γ(1 + χ)· sin πη
2

Γ
[

1+χ
2

]
·χ·2

χ−1
2

 (15)

The Γ of Equation (15) is a standard gamma function. To sum up, the H–M algorithm
can be obtained by combining the HQPSO algorithm with the MPPT method. The process
is shown in Figure 6.
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4. H–M Algorithm Performance and Application Analysis in the PPG System
4.1. Performance Analysis of the H–M Algorithm

To verify the performance of the F-M algorithm proposed in the study, the commonly
used Sphere function, Roserock function, and Rastigin function were selected for testing.
The experimental platform was Matlab software, and the experimental parameters were set
as follows. The functional dimension was 5; the MAXITER was 1000; the population size
was set to 10, 20, and 40, respectively. Convergence occurred when the objective function
was less than 0.0000001.

It ran the H–M, PSO, and OPSO independently 50 times on three test functions to
obtain test results for different algorithms, as shown in Table 1. From Table 1, in the
Sphere function, when the number of particles was small, the OPSO algorithm could
always reach the convergence condition. Moreover, both the PSO algorithm and the OPSO
algorithm slightly improved tracking accuracy after the population number reached 40.
When optimizing Roserock, the PSO algorithm has been unable to converge. The OPSO
algorithm had a probability of finding the theoretical minimum of about 80%. In the
Rastigin function, the OPSO algorithm had better multimodal optimization ability and
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higher convergence probability than the PSO algorithm. Comparing the H–M algorithm
with the OPSO algorithm, for the Sphere function, the H–M algorithm could always find
the minimum value in the two types of population sizes, and the optimization ability was
greatly improved. For the Roserock function and the Rastigin function, the H–M algorithm
could always converge to the theoretical minimum with a probability of more than 94%.
With a particle count of 20, it achieved the effect of the OPSO algorithm with a particle
count of 40. In the three functions, the convergence rate of the H–M algorithm significantly
improved. It increased by nearly 60% under two types of population, and the average
convergence iteration number also decreased by more than 180 times. Based on the above
analysis, it can be concluded that the performance of the H–M algorithm is more stable.

Table 1. Test results of different algorithms.

Function Algorithm Population
Size Maximum Minimum Mean Value Standard

Deviation

Average
Number of

Convergence
Iterations

Convergence
Rate/%

Sphere

PSO
10 2.23 × 10−3 1.44 × 10−20 8.09 × 10−5 3.62 × 10−4 685 68
20 5.43 × 10−19 7.68 × 10−35 2.32 × 10−20 1.02 × 10−19 163 100
40 4.01 × 10−33 2.98 × 10−48 8.17 × 10−35 5.61 × 10−34 130 100

OPSO
10 1.12 × 10−6 1.73 × 10−18 2.33 × 10−8 1.01 × 10−19 216 98
20 6.07 × 10−36 2.98 × 10−44 1.33 × 10−37 8.50 × 10−37 128 100
40 2.46 × 10−45 3.51 × 10−51 1.85 × 10−46 4.11 × 10−46 114 100

H–M
10 0 0 0 0 157 100
20 0 0 0 0 80 100
40 0 0 0 0 33 100

Rosebrock

PSO
10 6.38 1.01 × 10−4 0.659 1.49 1000 0
20 4.97 1.05 × 10−4 0.721 1.52 1000 0
40 2.67 2.48 × 10−4 0.864 1.62 1000 0

OPSO
10 5.97 0 0.133 1.23 612 76
20 3.93 0 0.673 1.07 504 80
40 1.38 0 0.274 0.388 433 80

H–M
10 0.972 0 0.139 0.334 427 98
20 0.701 0 0.061 0.210 318 97
40 3.60 × 10−3 0 9.69 × 10−5 5.25 × 10−4 225 95

Rastrigin

PSO
10 16.8 0 0.653 1.02 1000 0
20 13.9 1.75 × 10−15 4.61 3.10 984 4
40 7.96 0 3.02 1.91 973 6

OPSO
10 17.7 0.0091 2.64 3.13 1000 0
20 2.98 0 0.936 0.829 918 16
40 1.99 0 0.577 0.746 845 38

H–M
10 2.17 0 0.854 0.643 786 89
20 1.79 0 0.339 0.512 713 96
40 0.325 0 0.0597 0.0236 653 94

To further verify the multimodal optimization ability of the H–M algorithm, 50 exper-
iments were conducted on the Rastigin function when the population size was ten. The
best-performing one was selected to obtain the corresponding fitness change curve results
of the two algorithms, as shown in Figure 7. From Figure 7, the H–M algorithm could
achieve the theoretical optimal value by only iterating 632 times. The OPSO algorithm still
could not converge after 992 iterations. Based on the above results, the H–M algorithm has
the highest stability, optimization accuracy, and convergence speed. It can effectively solve
complex multimodal problems and avoid the occurrence of local optimization.
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4.2. Application Analysis of the H–M Algorithm in the PPG System

To verify the ability of the H–M algorithm to track the maximum power point in a
PPG system, a system was established using the Simulink module of Matlab software.
The required photovoltaic array MPPT system included photovoltaic arrays, conversion
circuits, MPPT modules, PWM generators, and load resistors. Three sets of comparative
experiments were conducted in the constructed system simulation model, namely no
shadow occlusion, shadow occlusion, and shadow mutation.

Figure 8 shows the output power results of MPPT control using different algorithms
without shadow occlusion. The ideal output power of the photovoltaic array was 913.2 W.
Figure 8 shows that the error between the four algorithms and the ideal output power was
less than 0.05%. The output power curve of the DO algorithm was the smoothest, but it
started to stabilize at 0.405 s, and it took a long time to reach a stable state. The time taken
for the four algorithms to reach a stable state from longest to shortest was DO, PSO, OPSO,
and H–M. The H–M algorithm only needed 0.059 s to reach a stable state. In summary, in
the absence of shadow occlusion, the tracking accuracy of the four algorithms was basically
the same, but the tracking efficiency of the H–M algorithm was improved by an average of
80% compared to the other three algorithms.

To better evaluate the algorithm during local shadow occlusion, 20 independent
experiments were conducted on four algorithms, and the results obtained are shown in
Table 2. Under partial shadow occlusion, the P–U characteristic curve of the photovoltaic
array contained three peaks, and the theoretical value of the maximum output power was
590.9445 W. Table 1 shows that the DO algorithm cannot jump out of local optimization.
The final output power was 296.1452 W. The minimum output power of the PSO algorithm
was 296.1452 W. This indicated that the algorithm was also prone to falling into local
optimization problems, and the maximum convergence time was 0.403. However, its
tracking performance was improved compared to the DO algorithm. From the maximum
output power, the PSO algorithm, OPSO algorithm, and H–M algorithm could track the
global maximum power point. However, the average output power results showed that
the tracking performance of the OPSO algorithm and the H–M algorithm could always
converge to the maximum value with a higher probability, with convergence times of
0.239 s and 0.125 s, respectively.
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Table 2. Operation results of different algorithms in local shadow occlusion.

Algorithm DO PSO OPSO H–M

Average output
power/W 296.1452 467.3259 572.0456 589.6970

Maximum output
power/W 296.1452 590.0347 590.5799 590.4539

Minimum output
power/W 296.1452 296.1452 505.0121 587.8071

Average time/s 0.251 0.403 0.239 0.125

To better compare the tracking performance of the maximum power point of the
algorithm, the primary output power closest to the average output power in Table 2
was selected from 20 experiments to obtain the MPPT output power curves of different
algorithms under local shadow occlusion, as shown in Figure 9. Figure 9 shows that the DO
algorithm started to reach a local optimal value at 0.2497 s and started to oscillate, resulting
in premature convergence and poor stability. The H–M algorithm had the highest tracking
accuracy of 99.61% and the shortest convergence time of 0.099 s.
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Due to the poor performance of the DO algorithm in local shadows, only the other
three algorithms were compared for shadow mutation conditions. The mutation was
performed in 0.6 s under partial shadow occlusion. The results are shown in Figure 10.
Figure 10 showed that the tracking results before 0.6 s were consistent with the static
shadow occlusion results. After 0.6 s, the irradiance of the photovoltaic module changed
from 800 W/m2 to 600 W/m2, and the P–U characteristic curve of the photovoltaic array
changed to two peaks. The PSO algorithm fell into local optimization after a sudden change
in shadow and returned to stability after a large fluctuation of 0.235 s. The convergence
time difference between the OPSO algorithm and the H–M algorithm was 46 ms. The error
between the H–M algorithm and theoretical value was 0.8%, and the error of the OPSO
algorithm was 4%. After the shadow mutation, the curve of the H–M algorithm had no
significant fluctuations and was smoother. This indicates that the dynamic performance of
the H–M algorithm is better. In summary, the algorithm proposed in the study is applicable
to traditional photovoltaic arrays composed of series modules, as well as photovoltaic
systems with equivalent resistors at the output end.
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5. Conclusions

The MPPT method can adjust the DC output of the photovoltaic inverter by sending
signals from the detected external environment to maximize the power generation effect
of the photovoltaic inverter. However, the traditional MPPT method is difficult to use in
the case of uneven illumination. Therefore, the research optimizes the OPSO algorithm
to obtain the HQPSO algorithm. Then, the H–M algorithm is established by combining
the HQPSO algorithm with the MPPT method. The experimental results showed that in
the Roserock function and Rastigin function tests, the H–M algorithm always converged
to the theoretical minimum with a probability of more than 94%. In addition, with a
particle count of 20, it achieved the effect of the OPSO algorithm with a particle count of 40.
Furthermore, in the three functions, the convergence rate of the H–M algorithm significantly
improved by nearly 60% under two types of population, and the average convergence
iteration number also decreased by more than 180 times. The tracking error of the H–M
algorithm under lighting conditions was less than 1%, and compared with the other three
methods, the H–M algorithm had the shortest convergence time in any shadow occlusion
environment, reaching a stable state within 0.1 s. This indicated that the tracking results
of the proposed method had extremely high stability and dynamic performance and can
adapt well to changes in the environment. In addition, under partial shading conditions,
this method can significantly improve the power generation efficiency of the photovoltaic
array, thereby increasing the total power generation of the PPG system. In summary, the
H–M algorithm proposed in the study can effectively improve the photovoltaic conversion
efficiency of PPG systems, providing methods for photovoltaic industry-related projects
around the world to further promote solar power generation technology. However, there
are still shortcomings in the research. The research only focuses on the MPPT method and
optimization of photovoltaic arrays under local shadow occlusion. The output terminal of
the entire photovoltaic system uses a form of equivalent resistance, which is also a preset
fixed resistance. In the future, further research can be conducted combining inverter circuits
and grid connections to make their applicability more extensive.
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