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Abstract: With the development of the electric vehicle industry, electric vehicles have provided
more choices for people. However, the performance of electric vehicles needs improvement, which
makes most consumers take a wait-and-see attitude. Therefore, finding a method that can effectively
improve the performance of electric vehicles is of great significance. To improve the current per-
formance of electric vehicles, a convex optimization algorithm is proposed to optimize the motor
model and power battery parameters of electric vehicles, improving the overall performance of
electric vehicles. The performance of the proposed convex optimization algorithm, dual loop DP
optimization algorithm, and nonlinear optimization algorithm is compared. The results show that
the hydrogen consumption of electric vehicles optimized by the convex optimization algorithm is
95.364 g. This consumption is lower than 98.165 g of the DCDP optimization algorithm and 105.236 g
of the nonlinear optimization algorithm before optimization. It is also significantly better than the
125.59 g of electric vehicles before optimization. The calculation time of the convex optimization
algorithm optimization is 4.9 s, which is lower than the DCDP optimization algorithm and nonlinear
optimization algorithm. The above results indicate that convex optimization algorithms have better
optimization performance. After optimizing the power battery using a convex optimization algo-
rithm, the overall performance of electric vehicles is higher. Therefore, this method can effectively
improve the performance of current electric vehicle power batteries, make new energy vehicles
develop rapidly, and improve the increasingly serious environmental pollution and energy crisis
in China.

Keywords: convex optimization algorithm; electric vehicle; power battery; energy management
strategy; motor model

1. Introduction

With the acceleration of China’s economy and urban construction, the number of
domestic motor vehicles is growing rapidly [1]. The environmental pollution and energy
crisis due to the increase in the number of cars have posed a great threat to the natural
environment on which humankind depends [2]. More new clean energy vehicles have
been put into the market. Among them, the fuel cell electric vehicle (FCEV) is regarded
as the new energy vehicle with the best development prospect at present because of its
environmental protection and high performance [3]. In fuel cell electric vehicles, the
advantages of fuel cells lie in high energy utilization, low pollution, and renewability.
They can be used in fields such as automobiles, ships, and household appliances, greatly
improving energy utilization efficiency and reducing environmental pollution. As a new
type of power battery, the lithium battery has the characteristics of high energy density,
lightweight, long service life, good low-temperature performance, safety, and reliability.
However, the performance of most FCEVs on the market is limited by the lack of power
cell efficiency. Therefore, it is crucial to develop a technique that can efficiently improve
the performance of electric vehicle (EV) power batteries [4,5]. The convex optimization
algorithm (COA) is an optimization method based on convex sets (CS) and convex functions
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(CF). The algorithm has good performance in nonlinear optimization problems. It has been
widely used in automobile intelligent control and smart home systems [6–9]. Therefore, in
this study, COA is used to optimize the energy management strategy (EMS) and power
batteries of EVs. It is expected to improve the vehicle performance of EVs and promote the
development of FCEVs. In addition, this study also provides new ideas for the field of EV
performance optimization. At present, there is relatively little research on the application
of convex optimization algorithms in fuel cell efficiency optimization. In order to fill the
research gap in the combination of convex optimization algorithms and fuel cell efficiency
optimization, this study aims to use convex optimization algorithms to optimize the power
cell parameters of electric vehicles, thereby improving the overall performance of electric
vehicles. This study utilizes convex optimization algorithms to model the power battery and
motor models of electric vehicles, avoiding the influence of other factors in the parameter
optimization process. Furthermore, the application of a convex optimization algorithm
in the optimization of electric vehicle power battery parameters achieved an efficient and
accurate optimization process, overcoming the shortcomings of traditional methods. In
addition, the convex optimization algorithm improves the range and safety performance of
electric vehicles by reasonably adjusting parameters such as battery capacity, voltage, and
current. In addition, the study also proposed this method to fill the gap in optimization
methods for electric vehicle power batteries in China, making contributions to promoting
the development of the field of electric vehicle power battery optimization.

2. Related Work

For the energy control of EVs and hybrid EVs, scholars have put forward quite mature
theoretical results. Zhang et al. designed a new EMS to improve the stable operation
of FC hybrid EVs. They optimized the strategy through the Q-learning algorithm of the
double reward function and analyzed the parameters from the overall power demand of
the vehicle. The outcomes demonstrated that this technique enhanced the average overall
efficiency of the system to 52% [10]. Taking the hybrid EV as the research object, Wang
et al. analyzed the effect of waste heat recovery on the optimization of vehicle thermal
efficiency. The control parameters were optimized using a deep reinforcement learning
algorithm. The experiment showed that this method saved 2% energy for the vehicle and
optimized the state parameters of the battery [11]. To improve the endurance of the hybrid
EV and take into account the power performance and economic efficiency of the vehicle,
Hu et al. proposed a strategy of using deep reinforcement learning (DRL) for real-time
energy management. Through model simulation experiments, they confirmed the effective
performance of this method [12]. Guo et al. built the power demand model of a hybrid
EV on road cruises and ramps by analyzing the vehicle power performance. The energy
was controlled by the ARIMA method of data prediction. The simulation experiment
demonstrated that the energy consumption of the vehicle could be effectively reduced by
about 5–7% after using this method [13]. Coban et al. proposed the concept of vehicle
to grid (V2G) to promote the development of electric vehicles and their energy storage
systems. The characteristic of V2G charging points is the ability to have bidirectional
energy flow when charging electric vehicles/pure electric vehicles. Applying this concept
to practical applications, it has been found that after applying V2G, electric vehicles/pure
electric vehicles have the ability to manage power flow, and also improve the economic
energy balance. This study can find practical applications in evaluating the role of electric
vehicles and their integration into power system vehicle network systems [14].

In terms of EV battery management and battery parameter optimization, the Fouladi
team proposed an intelligent charging scheme based on a multi-objective optimization
algorithm to solve the correct charging for plug-in hybrid vehicles. This scheme minimized
energy consumption during charging and extended the battery life. The simulation analysis
of the charging scheme showed that the proposed scheme ensured the correct charging
of plug-in hybrid vehicles [15]. Zhang et al. discussed the system of plug-in hybrid EVs
through the internal combustion engine. The dynamic framework of vehicles was analyzed
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by scenarios, and the ecological impact of communication equipment and transportation
facilities on the driving of networked vehicles was also emphasized [16]. In view of the
current situation of EV energy scheduling and distribution, Mehrabi et al. proposed the
optimal scheduling of EVs in a large-scale intelligent energy distribution system to achieve
EV charging and discharging flexibility. The findings demonstrated that this method
achieved 20% of the final power load flattening improvement, which was conducive to
the economy of large-scale vehicle energy management [17]. Hannan et al. focused the
method of automobile energy management on the optimization of the EV’s lithium-ion
battery. A battery management system was proposed to evaluate the overall performance
of automotive batteries. The experiment demonstrated that the system improved the
efficiency of energy use and the battery life of new energy power vehicles, and provided
a reference for future EV manufacturing [18]. Mangoni et al. also proposed to optimize
the vehicle powertrain depending on the lightweight model. They analyzed the efficiency
of the vehicle transmission system by evaluating the battery status of EVs. Experiments
showed that this method could be effectively applied to the current EV [19].

In summary, the research results of domestic and foreign researchers on the power
energy system of EVs tend to mature. The methods of model construction and parameter
analysis are widely used. However, in the optimization, only simulation vehicle models
are used for experimental analysis, and the computational complexity is not paid attention.
The diversified combination of dynamic parameters in model construction often increases
the calculation cost. Therefore, this research proposes an EV energy optimization method
based on convex optimization, which is expected to provide a scientific reference for the
future new energy vehicle market. To highlight the advantages of the proposed method
in this study, the advantages and disadvantages of the above related works are compared
with the methods proposed in this study. The comparison results are shown in Table 1.

Table 1. Comparison of the proposed methods with previous methods.

Method Swot Concrete Content

Dual reward function
Q-learning algorithm

implementation strategy

Advantage The overall efficiency improvement
of automobiles is significant

Shortcoming High energy consumption

Deep reinforcement learning
algorithm optimization

Advantage Significant energy savings
Shortcoming Low efficiency enhancement

Vehicle to network concept
based on virtual
inertial control

Advantage Stronger ability to maintain voltage
and frequency stability

Shortcoming Not much improvement in overall
vehicle performance

Intelligent charging scheme
based on multi-objective
optimization algorithm

Advantage Reduce energy consumption and
improve battery life

Shortcoming Not much improvement in overall
vehicle performance

Optimal scheduling of EVs in
large-scale intelligent energy

distribution systems

Advantage Improvement of power load
flattening effect

Shortcoming Not much improvement in overall
vehicle performance

Energy optimization method
based on convex

optimization algorithm

Advantage

It can improve the performance of
power batteries, reduce energy

consumption, and thereby enhance
the overall performance of EVs

Shortcoming Insufficient performance
improvement
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3. EV Power Battery Optimization Based on COA
3.1. Establishment of EV Power System Mathematical Model

FCEVs can be separated into pure FC vehicles and hybrid EVs according to the energy
composition [20]. The hybrid power system of the FC and the power cell is the power
system widely used by major automobile manufacturers [21]. Among them, the power
cell is the auxiliary energy source, and the FC is the primary energy source. The FC is the
average power required by the vehicle system. The power battery provides the difference
between the maximum power and the average power, which greatly reduces the volume
of the FC and reduces the cost of the vehicle [22]. The power battery module has good
continuous tracking output performance under the condition of drastic load changes. This
can effectively compensate for the transient changes of the FC and effectively reduce the
dynamic changes of the FC, thus improving the service life [23,24]. The energy generated
by the automobile brake is input to the battery through the bus, thus reducing the hydrogen
consumption of the system and improving the economy of the whole vehicle. Figure 1
depicts the hybrid system structure of a FCEV.
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The cost-effectiveness of the hybrid system of the FC and the power battery is higher
than that of the pure FC. Therefore, the power system is selected for optimization [25]. In
this power system, the energy of the vehicle is provided by the power battery, FC, and
DC/DC converter. The power battery’s primary purpose is to supply the momentary
maximum power demand so that the system can maintain stable output power for a long
time. To optimize the capacity of the power battery better, the power system model of the
vehicle is built first. Considering the economy and practicability of FCEVs, the constructed
vehicle dynamics model includes only the longitudinal dynamics model of driving and
braking, not the vehicle’s vibration and driving stability. The expression of vehicle demand
torque T is shown in Formula (1) [26].

T(t) =
(δm

.
v(t) + 0.5ρCD A f v(t)2 + f mg cos θ(t) + mg sin θ(t))Rw

i0ηt
(1)

In Formula (1), Rw represents the wheel radius and the unit is m. The EV’s mass is
m and the unit is kg. g is the acceleration of gravity and the unit is m/s2. The rolling
resistance coefficient is f and the unit is N/kN. v is the speed of the EV and the unit is
km/h. CD is the air resistance coefficient and the unit is ns/m. The windward area is A f

and the unit is m2. ρ is the air density and the unit is kg/m3. θ is the road slope. i0 is the
final drive ratio. ηt represents the transmission efficiency. δ represents the coefficient of
rotation. To optimize the capacity of the power battery, the vehicle’s total mass is made up
of the mass of the vehicle itself and the mass of the power battery pack. The expression of
the total vehicle mass m is shown in Formula (2).

m = m0 + mbNb (2)
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In Formula (2), the basic mass of the car is mb and the unit is kg. mb is the mass of
a single power battery and the unit is kg. Nb represents the number of power batteries.
Table 2 shows the main parameters of a FCEV [27].

Table 2. Main Parameters of a FCEV.

Parameter Character Numerical Value Unit

Vehicle foundation quality m0 1768.6 kg
Wheel radius Rw 326 mm

Windward area A f 2.58 m2

Air drag coefficient CD 0.367 -
Rolling resistance coefficient f 0.0071 -

Final drive ratio i0 9.215 -
Maximum power of fuel cell Pf c,max 61 KW
Maximum voltage of fuel cell U f c,max 340 V

Rated power of fuel cell Pf c,rat 42 KW
Rated voltage of fuel cell U f c,rat 180 V

The drive motor is an important part of new energy vehicles and also a source of
power [28,29]. Special drive motors for new energy vehicles include DC motors, asyn-
chronous motors, permanent magnet synchronous motors, and switched reluctance motors.
Due to their high efficiency, easy control, wide speed range, high reliability, and high
specific power, permanent magnet synchronous motors are commonly applied in new
energy vehicles. Therefore, a permanent magnet synchronous motor is selected as the
driving motor. Power batteries and fuel cells together power the drive motor. The two are
effectively converted into mechanical energy to meet the torque TM required by the vehicle.
In addition, the friction brake Tbrk can be supplemented when the maximum battery cur-
rent or torque is reached. The selected drive motor model is TX115MS156. The maximum
torque, minimum torque, and maximum speed are 330 Nm, −330 Nm, and 12,000 rpm,
respectively. The torque and required power of the motor are shown in Formula (3).{

TM(t) = T(t)− Tbrk(t)
PM(t) = TM(t)ωM(t)

(3)

In Formula (3), PM represents the motor power and the unit is kw. ωM represents the
motor speed and the unit is r/min. The transmission system outputs the motor power to
the wheels, giving the car power its needs. The relationship between the required power
Pdem of the car and the motor power PM is shown in Formula (4).

Pdem(t) = PM(t)ηM (4)

In Formula (4), ηM represents the efficiency of the motor system. Formula (5) represents
the dynamic system balance.

Pf c(t) + Pb(t)− Pbloss(t) = PM(t) + Pa (5)

In Formula (5), Pf c represents the fuel cell power. Pb denotes the battery power in
watts. Pbloss is the power battery power loss. Pa is a constant representing the auxiliary
power of the vehicle. All three power units are kw. The primary goal of the research is to
improve the power battery of the hybrid power system. The power battery usually refers
to the battery that provides the power source for pure EVs, hybrid EVs, fuel cell EVs, etc.
At present, power batteries include lead acid, lithium ion, nickel metal hydride, etc. [28].
The lithiumion battery is an ideal power battery for EVs at present due to its high voltage,
long charging and discharging time, high specific energy, wide working range, safety and
reliability, and fast charging. As the core component of a FCEV, the power battery can not
only overcome the defect of poor dynamic characteristics but also effectively control the
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brake mechanism to make sure the car runs reliably and safely [30,31]. Detailed information
of the selected power batteries is shown in Table 3.

Table 3. Specific parameters of power batteries selected for the study.

Parameter Character Numerical Value Unit

Individual mass mb 0.275 kg
Total mass m1 38 kg

Battery capacity E 2.1 kw·h
Nominal voltage Ub,nom 350 V
Maximum power pb,max 70 kw
Minimum power pb,min −70 kw
Maximum SOC SOCmax 0.8 /
Minimum SOC SOCmin 0.3 /
Average power ηb,ave 0.9 /

The existing equivalent models mainly include RC, Rint, lead acid (LA), and neural
network (NN). The Rint model can reflect both the open-circuit voltage (OCV) and the
charging/discharging internal resistance, making it convenient for conducting this experi-
ment. Therefore, the Rint model is used as the equivalent model for this experiment. The
Rint model is composed of a voltage source and a variable resistor. The equivalent model
and structure of the power battery pack are shown in Figure 2.
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The structure of the power battery pack is shown in Figure 2a. Figure 2b is an
equivalent model. From Figure 2a, the quantity of batteries in series is 96 and the batteries
in parallel are 3. According to Kirchhoff’s voltage law, Formula (6) displays the equivalent
circuit’s equation.

Ub = Ub,oc − iRb (6)

In Formula (6), Ub,oc represents the OCV of the power battery and the unit is V. Rb
represents the internal resistance of the power battery and the unit is Ω. Ub represents the
terminal voltage of the power battery and the unit is V. i represents the internal current of
the power battery and the unit is A. The internal resistance Rb of the power battery is a
function of the state of charge (SOC). The expression is shown in Formula (7).

Rb =

{
Rcha(SOC), i < 0
Rdis(SOC), i ≥ 0

(7)

In Formula (7), Rcha(SOC) is the internal resistance of power battery charging and the
unit is Ω. Rdis(SOC) is the internal resistance of power battery discharge and the unit is Ω.
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When charging an electric vehicle, the resistance of the battery gradually decreases. When
discharging an electric vehicle, the resistance of the battery gradually increases [32]. The
expression of the power battery OCV is shown in Formula (8).

Ub,oc = Nb f2(SOC) (8)

In Formula (8), f2(SOC) is the lookup function of the SOC. Depending on the es-
tablished mathematical model, a method for solving the optimal control problem of the
dynamic model is proposed. It is to achieve the optimal matching of energy through the
energy distribution within a certain driving time. On the premise of ensuring energy
density, hydrogen consumption is reduced. The kinetic equation of the system is shown in
Formula (9).

SOC(t + 1) = SOC(t)−
Ub,oc(t)−

√
U2

b,oc(t)− 4Rb(t)(PM(t)− Pf c(t)− Pa(t) + Pbloss(t))

2QRb(t)
∆t (9)

In Formula (9), Q represents the battery capacity and the unit is Wh. Formula (9) is the
model of the dynamic system. Based on this model, an optimization operation is carried
out to improve the performance of the power battery.

3.2. Power Battery Optimization Strategy Based on COA

COA is the most commonly used mathematical method in optimal control at present.
This optimization strategy is based on CS and CF. It has been widely used in automobile
intelligent control, smart home systems, financial statistics, etc. COA is a method to study
the minimum problem of convex function under the given form [33]. COA is more likely
to be able to solve a problem if it can be made into a convex optimization problem or if
it already is one. At present, local approximation of the general nonlinear optimization
model by the convex optimization model is the main way to study problems with nonlinear
optimization. In the optimization control of new energy vehicles, the COA also gradually
shows its advantages. The CS in the COA means that if a set still contains the line segment
connecting any two points, this set is called a CS. Generally speaking, if each point in a
set can be reached by a line segment composed of any other point, the set is called a CS.
Figure 3 shows some typical convex and non-convex sets.
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Figure 3a–c show the set of squares with boundaries, the regular U, and the regular
hexagons with partial boundaries, respectively. Figure 3a,c are non-convex sets, and
Figure 3b is CS. The following defines the CF of the COA. In function f : Rn → R , if dom f
is a CS. (x, y) in the set satisfies x, y ∈ dom f , 0 ≤ θ ≤ 1. The expression is shown in
Formula (10).

f (θx + (1− θ)y) ≤ θ f (x) + (1− θ) f (y) (10)

In Formula (10), f represents a convex function. From a two-dimensional perspective,
the inequality shown in Formula (10) can be regarded as the connection of two points,
(x1, f (x1)) and (x2, f (x2)), on a convex function. The line is on the curve formed by the
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convex function f . If x1 6= y, 0 ≤ θ ≤ 1, Formula (10) is valid. In this case, f is strictly a CF.
Assuming that CF f is differentiable, the CS of CF f is dom f . The CF f needs to satisfy the
expression shown in Formula (11).

f (y) ≥ f (x) +∇ f (x)T(y− x) (11)

If Formula (11) satisfies any x, y ∈ dom f , for the first order of the CF, the theorem is a
necessary and sufficient condition. COA is a developed area of mathematics. The minimum
and minimum of CF on the CS can be found using this optimization technique. This method
can not only optimize the EMS but also optimize the capacity of the power battery. Three
conditions must be satisfied to solve the problem by using COA. First, the objective must be
a convex function when seeking the minimum optimization. When seeking the maximum
optimization, the objective must be a concave function. Second, inequality constraints must
be convex functions. The third condition is that the formula constraint must be affine. In
the dynamic system model of an EV, most variables are not convex functions. To better
use the COA to optimize variables, these variables are processed to fulfill the demands of
convex optimization. To optimize the power battery capacity while optimizing the EMS
of an EV, the battery proportion factor Sb is added in Formula (2). The scale factor is the
optimization variable in the COA to obtain the optimal capacity of the power battery. The
quantity of parallel power batteries affects the power battery capacity. The power battery’s
overall quality is also impacted by the scale factor. Therefore, the calculation expression of
vehicle mass is shown in Formula (12).

m = m0 + sbmbNb (12)

The efficiency of electric vehicle motors is a discrete value. Therefore, the formula
describing the electric vehicle motor model is a non-convex function. To better utilize the
COA of the motor model, the motor model is fitted to improve convexity. The assembled
motor model is shown in Figure 4.

Processes 2023, 11, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 4. Motor Model after Fitting. 

The motor power in the fitted motor model is a quadratic function of torque. The 
quadratic function is constrained to be convex. The expression of the constrained motor 
power is shown in Formula (13). 

 (13) 

In Formula (13), ,  , and  are coefficients of different dimensions. In the mo-
tor model, the motor torque, as well as speed, are also related to the threshold value. The 
specific relationship is shown in Formula (14). 

 
(14) 

In Formula (14), is the minimum torque at speed .  is 
the maximum torque at  speed. The power battery model proposed in the study is 
non-convex. Firstly, to optimize the power battery model, the OCV of the power battery 
should be approximated as a linear function. Formula (15) is the linear function expres-
sion. 

 (15) 

Secondly, the dynamic equation for a power battery is also simplified because the 
current function is not convex. SOC is replaced by the battery energy  as the state var-
iable for the optimization problem. At this time, Formula (16) illustrates the power bat-
tery’s dynamic equation. 

 (16) 

Finally, the approximate expression for the loss of power is shown in Formula (17). 

 (17) 

In Formula (17),  represents the average efficiency of the power battery. The en-
ergy E and PB of the power battery meet the constraint inequality shown in Formula (18). 

 
(18) 

-150

-50

50

150

Torque (Nm)

Po
w

er
 (K

W
)

-100

0

100

-400 -200 0 200 400

Approximate model
Original model

2
0 1 2( ( ), ) ( ( )) ( ( )) ( ) ( ( )) ( )M M M M M M MP T t t b t b t T t b t T tw w w³ + + !

0b 1b 2b

,min ,max

,max

( ( )) ( ( )) ( ( ))
0 ( )

M M M M M M

M M

T t T t T t
t

w w w
w w

£ £ì
í £ £î

,min ( ( ))M MT tw Mw ,max ( ( ))M MT tw

Mw

, 1 0( ) ( )b ocU t c SOC t c= +

E

( 1) ( ) ( )bE t E t tP t+ = +D

, ( ) (1 ) ( )b loss b bP t P th= -

bh

min max

,min ,max

( )
( )b b b

SOC E E t SOC E
P P t P

£ £ì
í £ £î

Commented [M12]: Please change the hyphen (-) 
into a minus sign (−, “U+2212”), e.g., “-1” should 
be “−1”. 

Commented [Eng Ed.13]: Please check that your 
intended meaning has been retained 

Figure 4. Motor Model after Fitting.

The motor power in the fitted motor model is a quadratic function of torque. The
quadratic function is constrained to be convex. The expression of the constrained motor
power is shown in Formula (13).

PM(TM(t), t) ≥ b0(ωM(t)) + b1(ωM(t))TM(t) + b2(ωM(t))T2
M(t) · · · (13)
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In Formula (13), b0, b1, and b2 are coefficients of different dimensions. In the motor
model, the motor torque, as well as speed, are also related to the threshold value. The
specific relationship is shown in Formula (14).{

TM,min(ωM(t)) ≤ TM(ωM(t)) ≤ TM,max(ωM(t))
0 ≤ ωM(t) ≤ ωM,max

(14)

In Formula (14), TM,min(ωM(t)) is the minimum torque at speed ωM. TM,max(ωM(t))
is the maximum torque at ωM speed. The power battery model proposed in the study is
non-convex. Firstly, to optimize the power battery model, the OCV of the power battery
should be approximated as a linear function. Formula (15) is the linear function expression.

Ub,oc(t) = c1SOC(t) + c0 (15)

Secondly, the dynamic equation for a power battery is also simplified because the
current function is not convex. SOC is replaced by the battery energy E as the state variable
for the optimization problem. At this time, Formula (16) illustrates the power battery’s
dynamic equation.

E(t + 1) = E(t) + ∆tPb(t) (16)

Finally, the approximate expression for the loss of power is shown in Formula (17).

Pb,loss(t) = (1− ηb)|Pb(t)| (17)

In Formula (17), ηb represents the average efficiency of the power battery. The energy
E and PB of the power battery meet the constraint inequality shown in Formula (18).{

SOCminE ≤ E(t) ≤ SOCmaxE
Pb,min ≤ Pb(t) ≤ Pb,max

(18)

The goal of FCEV EMS based on COA and power cell optimization is also to mini-
mize the hydrogen consumption of the system. Formula (19) is the cost function of the
optimization problem.

J =
N

∑
k=1

(a2Pf c(k)
2) + a1Pf c(k) + a0) (19)

In Formula (19), a2, a1, and a0 are the coefficients used to fit the quadratic term,
the primary term, and the constant term, respectively. P represents fitting the quadratic
function. By calculating this formula, the minimum hydrogen consumption of the system
can be obtained. In summary, the COA is used to enhance the parameters of the motor
model and the power battery model, respectively. Figure 5 depicts the precise procedure.
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From Figure 5, the general process of using convex optimization algorithms for op-
timizing the performance of electric vehicles is as follows. Firstly, a convex model of the
electric vehicle motor is constructed and the optimization model based on the convex
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optimization algorithm is established. Secondly, a convex model of the electric vehicle
fuel cell is constructed and optimized through convex optimization algorithms. Then, a
convex model of the electric vehicle power battery is constructed and optimized using
convex optimization algorithms. Finally, appropriate parameters are selected to improve
the vehicle performance of the electric vehicle.

4. Analysis of COA Performance Test Results

EVs often encounter various driving conditions in the actual driving process. To better
analyze the optimization effect of electric vehicles proposed in the study, representative
cycle test conditions are selected to test vehicle performance. The New European Driving
Cycle (NEDC) is based on the new European testing standards for electric vehicles, which
include many driving conditions and habits similar to the actual driving environment. The
purpose of this cycle is to evaluate the actual performance and range of electric vehicles,
making it more suitable for testing in actual driving environments. The WLTP cycle
is based on American automotive testing standards, which include more road driving
conditions and driving habits, making it more suitable as a testing standard for electric
vehicles when driving on actual roads. However, due to the fact that this cycle does not
fully simulate the actual driving environment, other factors need to be considered during
testing, such as the vehicle’s battery capacity, motor power, etc. Furthermore, the commonly
used operating conditions for domestic new energy vehicles are NEDC and the Urban
Dynamometer Driving Schedule (UDDS) cycle, rather than the WLTP cycle. Therefore, the
NEDC cycle and the UDDS cycle are selected as the standard cycle conditions for testing.
The speed–time curves of the two cycle conditions are shown in Figure 6.
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From Figure 6a, the NECD cycle includes 780 s of urban cycles. The process includes
four stages: starting, accelerating, slowing, and decelerating. The maximum speed is
50 km/h. In addition, it also includes the maximum speed of 400 s. The suburban working
condition is 120 km/h. From Figure 6b, the UDDS cycle also includes four stages: starting,
accelerating, slowing, and decelerating. The speed distribution is uniform. In this cycle, the
maximum speed is 92 km/h. The ADVISOR simulation software is used to simulate electric
vehicles. To analyze the optimization effect of the algorithm, the hydrogen consumption
and optimal battery capacity of the unoptimized electric vehicle under two cycle conditions
are tested. The test results of unoptimized electric vehicles under two cycle conditions are
shown in Table 4.
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Table 4. Comparison of the test results of the three algorithms.

Test Indicators
First Test Second Test Third Test

NEDC UDDS NEDC UDDS NEDC UDDS

Hydrogen
consumption (g) 123.216 125.482 122.335 126.154 123.057 125.134

Optimal power
battery capacity

(KW·h)
3.125 3.216 3.136 3.208 3.141 3.209

In Table 4, the average hydrogen consumption of electric vehicles without optimization
under the NEDC cycle is 122.869 g. The average hydrogen consumption under the UDDS
cycle is 125.590 g. The average optimal battery capacity under the NEDC and UDDS
cycles is 3.134 KW·h and 3.211 KW·h, respectively. To test the performance of the convex
optimization algorithm proposed in this study, comparative experiments are conducted
with the dual loop DP optimization algorithm and the nonlinear optimization algorithm.
Hydrogen consumption, computational time, power, etc. are used as comparison indicators.
The experimental parameters are: the capacity of the power battery is fixed at 2.1 kWh; the
quantified value of SOC is 2 × 10−4. The electric vehicles optimized by three optimization
algorithms were tested under the NEDC and UDDS cycle conditions. The test results are
shown in Table 5.

Table 5. Comparison of the test results of the three algorithms.

Algorithm

Double Loop DP
Algorithm

Convex Optimization
Algorithm

Linear Optimization
Algorithm

NEDC UDDS NEDC UDDS NEDC UDDS

Hydrogen
consumption (g) 98.162 100.358 101.364 106.963 105.236 110.69

Optimal power
battery capacity

(KWh)
2.769 2.769 2.036 2.159 2.556 2.634

Operation
time (s) 10,986 12,368 4.9 5.5 406.6 463.9

Table 5 compares the optimization results of three optimization algorithms in terms
of hydrogen consumption, optimal battery capacity, and calculation time. In the NEDC
working condition, the average hydrogen consumption optimized by the convex optimiza-
tion algorithm is 95.364 g. It is lower than the 98.165 g consumption of the double cycle
dynamic programming algorithm and the 105.236 g consumption of the linear optimization
algorithm. In addition, the optimal battery capacity and running time optimized by the
convex optimization algorithm are 2.094 KW·h and 4.9 s, respectively, which are superior
to the DCDP optimization algorithm and the linear optimization algorithm. In the UDDS
working condition, the average hydrogen consumption after convex optimization algo-
rithm optimization is 96.963 g, which is lower than the 100.358 g consumption of the DCDP
algorithm and 110.629 g consumption of the linear optimization algorithm. In addition,
the optimal battery capacity and running time optimized by the convex optimization algo-
rithm are 2.159 KW·h and 5.5 s, respectively, which are superior to the DCDP optimization
algorithm and the linear optimization algorithm. Through the above comparative analysis,
the performance of electric vehicles optimized by the convex optimization algorithm is
better. In addition, comparing Tables 4 and 5, the hydrogen consumption and optimal
power battery capacity of electric vehicles optimized by convex optimization algorithms
significantly decreased. Therefore, convex optimization algorithms can improve the per-
formance of electric vehicle power batteries. To better analyze the performance of the
convex optimization algorithm, the power of the DCDP algorithm and convex optimization
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algorithm in two two-cycle conditions is compared. In addition, in order to better compare
and analyze the performance of the convex optimization algorithm, the power of the dual
cycle dynamic programming algorithm and the convex optimization algorithm in two
two-cycle conditions is compared and analyzed. Sliding filters were used to filter data
during the optimization process. Figure 7 displays the power distribution diagram of the
two algorithms in the NEDC cycle.
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Figure 7. Power of Two Algorithms under the NEDC Condition.

Figure 7a shows the power curve of the COA under the NEDC condition. From
Figure 7, the power of a fuel cell is greater than 0, while the power of a power cell may be
less than 0. This phenomenon exists because when the maximum transient response power
of the fuel cell cannot meet the load demand, the power cell will switch to a discharge mode
to provide the remaining power. Therefore, the power of the fuel cell is always positive,
while the power of the power cell can be negative. From Figure 7a, the fuel cell power
fluctuates greatly during this cycle. The power range varies between 0–22 kW, and the
power of the power battery also fluctuates slightly. Figure 7b shows the power curve of the
DCDP under the NEDC condition. From Figure 7b, the power of the fuel cell fluctuates
greatly during this cycle, with a power range of −18–30 KW. The power of the power
cell fluctuates very little. The application effect of the power battery optimized by the
COA is better than that optimized by the DCDP algorithm under the NEDC condition.
Figure 8 depicts the FC efficiency curves of the two optimization algorithms under the
NEDC condition.
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Figure 8a shows the efficiency curve of the COA under the NEDC condition. From
Figure 8a, under this cycle condition, the FC’s working points are focused in the high-
efficiency area. The working points are relatively scattered, and the power range varies
from 0 to 22 kW. Figure 8b shows the efficiency curve of the DCDP under NEDC. From
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Figure 8b, the fuel cell’s working points are focused in the high-efficiency area. The working
points are relatively concentrated in the power range of 3–10 kW. According to the above
results, the application effect of the power battery optimized by COA is better than the
optimized DCDP under NEDC conditions. Figure 9 shows the power distribution diagram
of the two algorithms in the UDDS cycle.
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Figure 9. Power of Two Algorithms under the UDDS Condition.

Figure 9a shows the power curve of the COA under the UDDS condition. From
Figure 9a, the FC power fluctuates greatly during the UDDS working condition, and the
power range varies between 0–28 kW. The power of the power battery also fluctuates
greatly, ranging from −19 KW to 18 KW. Figure 9b shows the power curve of the DCDP
under UDDS. From Figure 9b, the power fluctuation of the FC is very small during the
UDDS working condition. Most of the power is below 7 KW. The power of the power
battery fluctuates greatly, ranging from −19 KW to 38 KW. From the above results, the
application effect of the power battery optimized by the COA is better than the DCDP under
the UDDS condition. Figure 10 shows the fuel cell efficiency curves of two optimization
algorithms under the UDDS condition.
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The COA’s efficiency curve under the UDDS condition is depicted in Figure 10a. The
working points of the fuel cells are relatively concentrated under the UDDS condition.
The working points are relatively scattered, and the power range varies between 0–28 kW.
Figure 10b depicts the efficiency curve of the DCDP under the UDDS condition. From
Figure 10b, the working points of fuel cells are very concentrated under the UDDS condition,
basically between 3 KW and 10 KW. According to the above results, the application effect
of the power battery optimized by COA is better than that optimized by DCDP under the
UDDS condition. In general, the COA can realize the synchronous optimization of battery
capacity and EMS. The optimal results of the two methods are not different. Although the
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capacity of the power battery solved by COA is different, this method has a high computing
speed. The power and efficiency are better than the DCDP. Therefore, the COA is used to
optimize the power battery, which can effectively improve the battery performance of EVs.

5. Conclusions

With the emergence of alternative fuel vehicles, the development of FCEVs has gener-
ated concerns because of the high-cost of performance. However, at present, the absence
of energy consumption mechanism optimization hinders the development of new energy
vehicles. To solve this problem, a convex optimization algorithm was studied to optimize
the motor model and power battery of FCEVs, aiming to improve the overall performance
of electric vehicles in this way. The convex optimization algorithm, double loop dynamic
programming algorithm, and nonlinear optimization algorithm were compared. The hy-
drogen consumption of electric vehicles optimized by the convex optimization algorithm
is 95.364 g. It is significantly better than the hydrogen consumption of electric vehicles
optimized by the dual cycle DP optimization algorithm of 98.165 g. The hydrogen consump-
tion of the nonlinear optimization algorithm is 105.236 g. In addition, the computation
time of the convex optimization algorithm optimization is 4.9 s, which is much lower than
the 10,986 s of the dual loop DP optimization algorithm and the 406.6 s of the nonlinear
optimization algorithm. The above results indicate that the application of the convex opti-
mization algorithm in the battery optimization of electric vehicles can effectively improve
the overall performance of electric vehicles. Overall, this article provides new contributions
and prospects for the following fields. (I) It can further improve the application fields of
convex optimization algorithms and promote the development of optimization algorithm
fields. (II) The overall performance of electric vehicles was improved, promoting the devel-
opment of new energy vehicles. (III) The power battery solution was optimized to promote
the development of the power battery field. Fuel cell electric vehicles are an important
direction of the global energy technological revolution, which is also an important means to
alleviate the energy crisis and reduce environmental pollution. Research was conducted on
the optimization of fuel cells. The convex optimization algorithm was used for optimization
design, achieving reasonable allocation of energy and power, and obtaining the optimal
power battery capacity. The convex optimization algorithm was compared with the dual
loop DP optimization algorithm and the nonlinear algorithm. The research results are as
follows. Firstly, by analyzing the topological structures of various fuel cell electric vehicle
power systems, a hybrid structure of a fuel cell and a power battery was selected and a
mathematical model of the hybrid power system was established. Secondly, the relevant
knowledge of convex optimization algorithms was described. The convexity of the dynamic
system model was ensured through approximate processing. The effectiveness of convex
modeling in this paper was verified through simulation experiments. Finally, the convex
optimization algorithm proposed in this study has good optimization effects on electric
vehicle power batteries. By optimizing electric vehicles through this method, the overall
performance of electric vehicles can be significantly improved. Due to the limitations of the
experimental conditions, the performance of this method was only verified in simulation
experiments. Verifying the algorithm’s performance in a real vehicle is the focus of our
next work.
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Abbreviation Specific meanings
DP Dynamic programming
FCEV Fuel cell electric vehicle
COA Convex optimization algorithm
CS Convex sets
CF Convex functions
EMS Energy management strategy
EV Electric vehicle
DRL Deep reinforcement learning
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