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Abstract: MXenes (Ti3C2Tx) have gotten a lot of interest since their discovery in 2011 because of
their distinctive two-dimensional layered structure, high conductivity, and rich surface functional
groups. According to the findings, MXenes (Ti3C2Tx) may block photogenerated electron-hole
recombination in the photocatalytic system and offer many activation reaction sites, enhancing the
photocatalytic performance and demonstrating tremendous promise in the field of photocatalysis.
This review discusses current Ti3C2Tx-based photocatalyst preparation techniques, such as ultrasonic
mixing, electrostatic self-assembly, hydrothermal preparation, and calcination techniques. We also
summarised the advancements in photocatalytic CO2 reduction, photocatalytic nitrogen fixation,
photocatalytic hydrogen evolution, and Ti3C2Tx-based photocatalysts in photocatalytic degradation
of pollutants. Lastly, the challenges and prospects of Ti3C2Tx in photocatalysis are discussed based
on the practical application of Ti3C2Tx.

Keywords: MXenes material; photocatalysis; preparation method; cocatalyst

1. Introduction

The study of 2D nanomaterials has grown in popularity since the discovery of
graphene in 2004 [1,2]. Because of graphene’s superior optical and electronic proper-
ties, researchers are particularly interested in studying 2D nanomaterials with layered
structures and other multifunctional characteristics, such as transition metal disulfides
(MoS2, WS2) [3,4], g-C3N4 [5,6], layered double hydroxides (LDHs) [7,8], etc. Additionally,
this 2D structure can significantly reduce the migration distance between the carrier and the
reaction interface, prevent the recombination of holes and photogenerated electrons, and
enhance photocatalytic performance [9]. In recent years, MXenes have recently become one
of the most popular 2D nanomaterials due to their diversified element composition, distinc-
tive 2D structure, wide surface area, rich surface terminal groups, and good photoelectron
characteristics [10–15]. Mn+1XnTx (MXenes) is a 2D layered structure material obtained
by etching Mn+1AXn (n = 1–3) phase, where M represents a transition metal (such as Ti,
Nb, V, Ta and Mo), A represents the third and fourth main group elements (such as Si, Ga
and Al) in the periodic table, X represents carbon or nitrogen, and T represents its surface
functional groups, such as -O, -F, -OH, etc. As shown in Figure 1, more than 50 MXenes
have been experimentally synthesized since the discovery of Ti3C2Tx MXene in 2011 [16].
Ti3C2Tx has emerged as the most extensively utilized MXenes material out of the several
MXenes materials identified due to its reasonably established preparation conditions.
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Figure 1. 2D MXenes material that has been reported [17]. 

2D Ti3C2Tx MXenes materials demonstrate that they can produce stronger and larger 
contact between the bulk phases and semiconductors, which often results in low conjunc-
tion at the interface, compared to other 2D layer materials (such as graphene and g-C3N4). 
The separation of charge carriers might be severely limited by the lower and weaker con-
junction [18]. Graphene’s oxidation will reduce its electronic conductivity and make car-
rier transfer less reliable, and the reduction process may interfere with certain of its elec-
tronic features [19]. However, Ti3C2Tx MXenes can easily get over these issues. 

There are many methods of synthesis of MXene materials. Direct HF etching and in-
direct in situ HF etching, which combine HCl and LiF, are the processes most frequently 
employed to create MXenes [20,21]. In addition, high-temperature etching, chemical va-
por deposition, molten-salt etching, and delamination with different organic intercalants 
(such as dimethyl sulfoxide [22], isopropylamine [23], and tetramethylammonium hy-
droxide [24]) have also been investigated to increase the production of MXenes. For mul-
tilayered MXenes, the primary method is HF and sometimes the delamination with inter-
calants; however, for delaminated MXenes, the most popular method is MILD etching. 
Figure 2 shows the chronology of MXenes produced using different etching techniques 
[25]. Ti3C2Tx materials have been widely used in research fields such as supercapacitors, 
gas sensors and electrocatalysts. In addition to the above applications, in recent years, 
Ti3C2Tx materials as co-catalysts or precursors have also set off a huge research upsurge in 
the field of photocatalytic environmental remediation and energy conversion. The single-
layer Ti3C2Tx MXenes material offers the following benefits over the multi-layer Ti3C2Tx 
MXenes material: 1. It might expose more active spots since it has a bigger surface area; 2. 
The smaller thickness of the single-layer Ti3C2Tx decreases the distance between photoin-
duced electrons moving to the catalyst’s surface, further lowering the combinative ratio 
of charge carriers, and enhancing the photocatalytic performance [26]. 3. Since water mol-
ecules may easily absorb on the surface of the single-layer Ti3C2Tx material due to its high 
waterproofness, photocatalytic hydrogen generation can occur more effectively. 

Little research has been conducted on the application of Ti3C2Tx-based photocatalysts 
in photocatalysis. However, a few reviews have been published on the synthesis and use 
of Ti3C2Tx materials thus far. Therefore, the most recent preparation and application ad-
vances of Ti3C2Tx-based photocatalysts in photocatalysis are discussed in this work to 

Figure 1. 2D MXenes material that has been reported [17].

2D Ti3C2Tx MXenes materials demonstrate that they can produce stronger and larger
contact between the bulk phases and semiconductors, which often results in low conjunction
at the interface, compared to other 2D layer materials (such as graphene and g-C3N4).
The separation of charge carriers might be severely limited by the lower and weaker
conjunction [18]. Graphene’s oxidation will reduce its electronic conductivity and make
carrier transfer less reliable, and the reduction process may interfere with certain of its
electronic features [19]. However, Ti3C2Tx MXenes can easily get over these issues.

There are many methods of synthesis of MXene materials. Direct HF etching and
indirect in situ HF etching, which combine HCl and LiF, are the processes most frequently
employed to create MXenes [20,21]. In addition, high-temperature etching, chemical vapor
deposition, molten-salt etching, and delamination with different organic intercalants (such
as dimethyl sulfoxide [22], isopropylamine [23], and tetramethylammonium hydroxide [24])
have also been investigated to increase the production of MXenes. For multilayered MXenes,
the primary method is HF and sometimes the delamination with intercalants; however,
for delaminated MXenes, the most popular method is MILD etching. Figure 2 shows
the chronology of MXenes produced using different etching techniques [25]. Ti3C2Tx
materials have been widely used in research fields such as supercapacitors, gas sensors and
electrocatalysts. In addition to the above applications, in recent years, Ti3C2Tx materials
as co-catalysts or precursors have also set off a huge research upsurge in the field of
photocatalytic environmental remediation and energy conversion. The single-layer Ti3C2Tx
MXenes material offers the following benefits over the multi-layer Ti3C2Tx MXenes material:
1. It might expose more active spots since it has a bigger surface area; 2. The smaller
thickness of the single-layer Ti3C2Tx decreases the distance between photoinduced electrons
moving to the catalyst’s surface, further lowering the combinative ratio of charge carriers,
and enhancing the photocatalytic performance [26]. 3. Since water molecules may easily
absorb on the surface of the single-layer Ti3C2Tx material due to its high waterproofness,
photocatalytic hydrogen generation can occur more effectively.

Little research has been conducted on the application of Ti3C2Tx-based photocatalysts
in photocatalysis. However, a few reviews have been published on the synthesis and
use of Ti3C2Tx materials thus far. Therefore, the most recent preparation and application
advances of Ti3C2Tx-based photocatalysts in photocatalysis are discussed in this work to
better understand the use of Ti3C2Tx materials in the field of photocatalytic environmental
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remediation and energy conversion. This review first introduces the synthesis methods
of Ti3C2Tx-based photocatalysts and then systematically reviews recent research on the
environmental and energy applications of Ti3C2Tx-based photocatalysts, such as photocat-
alytic degradation of organic pollutants, photocatalytic hydrogen evolution, photocatalytic
reduction of CO2, and photocatalytic nitrogen fixation. Finally, the issues raised by using
Ti3C2Tx materials in photocatalytic environmental remediation and energy science are
examined, as are the opportunities for future study.
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2. Synthesis of Ti3C2Tx-Based Photocatalysts

In recent years, one of the most successful approaches to manufacturing high-efficiency
photocatalysts has been the fabrication of composite materials. Ti3C2Tx is an attractive
study item in photocatalyst preparation due to its unique properties. Mechanical/ultrasonic
mixing, electrostatic self-assembly, calcination, and hydrothermal/solvothermal treatment
are the most generally utilized procedures for producing Ti3C2Tx-based photocatalysts.

2.1. Mechanical/Ultrasonic Mixing

The mechanical/ultrasonic mixing method is the most basic and widely used method
for producing Ti3C2Tx-based photocatalysts. To maintain intimate contact between Ti3C2Tx
and the photocatalyst interface, the synthesis method of intense mechanical stirring or
high-power ultrasonic vibration is typically used [27]. Liu et al. [28] produced a Ti3C2Tx/g-
C3N4 composite by ultrasonic, centrifugation, and drying after combining g-C3N4 aqueous
solution with Ti3C2Tx aqueous solution, as shown in Figure 3a. The 2D layered structure
of Ti3C2Tx/g-C3N4 did not change appreciably when varied quantities of Ti3C2Tx and
g-C3N4 were combined. Similarly, Tahir et al. [29] used an ultrasonic technique to create g-
C3N4/Bt/Ti3C2Tx photocatalyst composites. They began by combining the g-C3N4 solution
with the Bt suspension. The g-C3N4/Bt mixture was then treated with a small quantity of
Ti3C2Tx while vigorously stirred. The precipitate produced after centrifugation was dried at
100 ◦C for 24 h after being ultrasonically treated for 60 min. The entire procedure is depicted
in Figure 3b. The foregoing studies show that following mechanical/ultrasonic mixing
treatments, the contact surfaces of 2D g-C3N4 and 2D Ti3C2Tx may be intimately connected.
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C3N4 [28] (a), Synthesis process of g-C3N4/Bt/Ti3C2Tx photocatalyst [29] (b).

2.2. Electrostatic Self-Assembly

Electrostatic self-assembly combines two oppositely charged solutes to produce a
single or multilayer film on a substrate. The surface of the Ti3C2Tx material is heavily
charged with negative charges. Constructing with positively charged semiconductors
via electrostatic interaction is simple, resulting in 0D/2D, 1D/2D, or 2D/2D Ti3C2Tx-
based photocatalysts. Because monolayer Ti3C2Tx materials are particularly prone to
agglomeration, ultrasonic treatment is frequently required prior to mixing. For example,
Zheng et al. [30] sonicated 0D CdxZn1−xS (CZS) with 2D Ti3C2Tx, and the potential of CZS
was +29.6 mV, whereas Ti3C2Tx nanosheets had a potential of −22 mV. The CZS/Ti3C2Tx
composite is created due to the electrostatic attraction between the positively charged CZS
nanoparticles and the negatively charged Ti3C2Tx nanoparticles, as illustrated in Figure 4a.
The picture also shows that CZS nanoparticles are evenly distributed over the surface of
Ti3C2Tx nanosheets. Li et al. [31] recently synthesized the 1D/2D CdS/Ti3C2Tx composites
in Figure 4b using an electrostatic self-assembly technique. By electrostatic attraction,
Ti3C2Tx nanosheets and CdS nanowires may create a strong link, and the CdS nanowires
are evenly dispersed throughout the Ti3C2Tx nanosheets.

The fabrication of 2D/2D structured photocatalysts has gained increasing interest
in recent years. 2D/2D structures possess a bigger contact area and tighter interface
contact than 0D/2D and 1D/2D structures, which can increase the effective utilization
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of photogenerated electrons and holes [32]. Employing a two-step electrostatic assembly
approach, Sharma et al. [33] created a novel 2D-2D-2D ZnO-Bi2WO6-Ti3C2Tx ternary
nanocomposite photocatalyst material made of ZnO, Bi2WO6, and Ti3C2Tx. The interface
between the three components contacts and establishes a heterojunction structure, which is
favorable to preventing the recombination of photogenerated carriers, as can be shown in
Figure 4c.
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2.3. Calcination

For the production of various g-C3N4/Ti3C2Tx-based photocatalysts, calcination is
a heat treatment technique carried out in a temperature–controlled environment. It is
generally known that MXenes (Ti3C2Tx) materials are quickly oxidized in an atmosphere
with high temperatures and oxygen. Therefore, N2 is required as the protective gas for
the MXenes-based photocatalyst created via calcination. By calcining a combination of
multi-layer Ti3C2Tx and urea, Yang et al. [34] also created Ti3C2Tx/g-C3N4 composites
and built a 2D/2D heterostructure. According to the research above, the combination of
urea and Ti3C2Tx that is calcined in a single step is advantageous for further stripping
the accordion Ti3C2Tx. Recently, Zhou et al. [35] designed low-temperature calcination
composites of g-C3N4, Ti3C2Tx, and MoSe2. They effectively construct CXM heterojunction
by grinding, combining, and calcining ultra-thin Ti3C2Tx, g-C3N4, and MoSe2 at 400 ◦C for
two hours (Figure 5c,d). Strong interface contact between two-dimensional materials may
be established by this heterojunction, increasing the separation effect of photogenerated
carriers [36].

In addition, other non-Ti3C2Tx MXenes photocatalysts have also been obtained through
calcination. For example, Wan et al. [37] prepared g-C3N4/Mo2CTx photocatalyst compos-
ite by calcining the mixture of Mo2CTx and urea in one step. During the calcination process,
urea can release ammonia gas to peel off the multi-layer Mo2CTx further and generate
g-C3N4 on the surface in situ (Figure 5a,b). This calcination method avoids the tedious ul-
trasonic stripping process of Mo2CTx and greatly improves the yield of ultra-thin Mo2CTx.
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Figure 5. Preparation mechanism (a), SEM pattern of g-C3N4/Mo2CTx [37] (b), TEM pattern (c),
preparation mechanism of CXM [35] (d).

2.4. Hydrothermal/Solvothermal

The hydrothermal/solvothermal process allows synthesising composites with high
crystallinity and predictable shape since it is carried out in a confined container at high
temperature and pressure. Recently, the hydrothermal approach has been used to create
several Ti3C2Tx-based photocatalysts. For instance, the hydrothermal technique was used
by Zou et al. [38] to synthesize MoS2/Ti3C2Tx composite. It is evident from Figure 6a
that the Schottky heterojunction is formed by the uniform distribution of the crystal MoS2
phase on the Ti3C2Tx layer. Creating 2D/2D MXene matrix composites has also often
employed the hydrothermal/solvothermal process. For example, Chen et al. [39] adopted
the solvothermal approach to creating 2D/2D CdS/Ti3C2Tx composites. The creation of
a 2D/2D heterojunction is clearly shown in Figure 6b by the distinguishable interface
between Ti3C2Tx and CdS.

The hydrothermal/solvothermal method has also been used to obtain other non-
Ti3C2Tx MXenes photocatalytic compounds. Using an in-situ metal ion derivation method,
Cui et al. [40] synthesized 2D/2D Bi2WO6/Nb2CTx composites. To create 2D/2D Bi2WO6/
Nb2CTx composites, Bi2+ was adsorbed onto the surface of Nb2CTx during the synthesis
and then combined with an aqueous solution of Na2WO4·2H2O containing a tiny quantity
of CTAB. This reaction took place for 24 h at 120 ◦C. Figure 6c depicts the mechanism of
synthesis as can be observed in Figure 6c, a 2D Bi2WO6 and a 2D Nb2CTx nano slice success-
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fully combined to produce a Schottky circuit, which effectively prevents the recombination
of electrons and holes.
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2.5. Other Methods

High-energy ball milling and wet chemical oxidation are also employed to create
Ti3C2Tx-based photocatalysts in addition to calcination oxidation and hydrothermal oxida-
tion. For instance, Li et al. [41] generated TiO2-C composites by high-energy ball milling
using Ti3C2Tx as a precursor (Figure 7a). TiO2-C nanoflakes have strong photocatalytic
activity because titanium dioxide nanoparticles are uniformly and firmly scattered over
amorphous carbon, resulting in intimate contact between titanium dioxide and carbon.
However, the dotted line in the illustration illustrates that titanium dioxide nanoparticles
also have some surface flaws. Some of these structural flaws are brought on by the process
of stripping Ti2AlC using high-energy ball milling [42], and another portion is brought on
by the fracture of the original structure brought on by the activation of a few electrons in
the titanium dioxide lattice by the mechanical force of ball milling. These flaws enable the
development and nucleation of titanium dioxide when Ti2CTx is oxidized to TiO2 during
high-energy ball milling [43]. In conclusion, the high-energy ball milling technique has a
tight relationship to the structure and characteristics of the TiO2-C composites that have
been created.

It is generally recognized that a photocatalyst’s micro-morphology can affect how effec-
tively it performs as a photocatalyst. Through a series of processes, including hydrothermal
oxidation, ion exchange, and heat treatment, Tran et al. [44] created the safflower-shaped
TiO2/Ti3C2Tx heterostructure (Figure 7b). A 2D Ti3C2Tx thin sheet’s layered structure is
broken down into nanoparticles after hydrothermal treatment and ion exchange. They
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discovered that after heating the agglomerated nanoparticles, nanorods began to grow
radially from the nanoparticles, eventually forming a composite that appeared like a bit of
safflower. The recombination of photogenerated carriers may be successfully prevented by
this special nano-flower structure, which promotes charge transfer.
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3. MXenes (Ti3C2Tx) Materials for Photocatalytic Applications
3.1. Photocatalytic Degradation of Pollutants

Numerous water resources are being contaminated by organic chemicals due to the
quick expansion of contemporary industry and the acceleration of urbanization, with ir-
reparable harm to human health and the environment. As a result, there is a lot of worry
about the remediation of water pollution. Adsorption, biological treatment, peroxymono-
sulfate activation, Fenton oxidation, photocatalysis, and other techniques have all been
used in recent years to reduce contaminants in water [45–47]. Among them, photocatal-
ysis is a simple and evident method of photooxidation and photoreduction technology
degradation, with carbon dioxide and water as the end products [48,49].

Among the different photocatalysts that may efficiently degrade organic pollutants,
Ti3C2Tx-based photocatalysts have recently emerged as a research hotspot. Furthermore,
several investigations have demonstrated the potential of composite materials made of
metallic Ti3C2Tx and other semiconductor photocatalysts to degrade various contami-
nants [50]. Wang et al. [51], for instance. Using a hydrothermal technique aided by ultra-
sound, 2D/2D Ti3C2Tx/SnNb2O6 composites with interfacial Schottky connections were
created. When used to photo-catalytically degrade rhodamine B (RhB), Ti3C2Tx/SnNb2O6
showed good results (Figure 8a).

Regarding the shape and structure of composite materials, 2D/2D heterostructures
exhibit greater photocatalytic activity than 0D/2D and 1D/2D heterostructures under the
same circumstances. This is because 2D/2D heterostructures maximize the area of con-
tact between the two materials while simultaneously offering additional surface reaction
activation sites for photocatalysis. Furthermore, since Ti3C2Tx has a lower escape work
than SnNb2O6, electrons will flow from it to that material until equilibrium, establishing
a potential barrier at the interface that considerably aids in separating photogenerated
electrons and holes. Recently, Shao et al. [52] discovered that 2D/2D CoAl-LDHs/Ti3C2Tx
nanocomposites had a favorable impact on the breakdown of tetracycline hydrochloride
(TCH) (Figure 8b). Furthermore, the photocatalytic activity is outstanding due to the syner-
gistic interaction between CoAl-LDHs and Ti3C2Tx and the Schottky junction generated on
its contact surface (Figure 8c).
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3.2. Photocatalytic Hydrogen Evolution

Today, the most significant energy source used worldwide is still fossil fuels. However,
our energy use is rising together with the quick growth of human society. Therefore, find-
ing alternative renewable energy sources is so crucial. Because it has cleaner combustion
byproducts and a greater energy density than fossil fuels, hydrogen is well known to be a
suitable energy source to replace them [53]. Water electrolysis, coal gasification, electro-
catalysis, and photocatalysis are now the most widely utilized processes for producing
hydrogen [54–66]. However, due to its sustainability and absence of secondary emissions,
photocatalytic hydrogen generation is the most promising of these preparation techniques.
Numerous types of photocatalysts, including metal sulfide, titanium dioxide, barium ti-
tanate, and g-C3N4, have been investigated thus far for hydrogen production. However,
these photocatalysts still show quick photogenerated carrier recombination and limited
light consumption. Therefore, creating novel photocatalysts for hydrogen production by
photocatalysis is crucial.

Ti3C2Tx has recently been discovered to efficiently separate photogenerated electrons
and holes in the field of photocatalytic hydrogen synthesis because of its acceptable Fermi
energy level and strong conductivity [67,68]. Therefore, there is a lot of interest in employing
Ti3C2Tx as electron acceptors and transporters in producing hydrogen via photocataly-
sis. Using the solvothermal technique, Cao et al. [69] created composites of Ti3C2Tx and
ZnxCd1−xS photocatalysts. The experimental results demonstrate that Ti3C2Tx/ZnxCd1−xS
has a very good photocatalytic hydrogen evolution effect, up to 14.17 mmol/(h*g), and
that this effect is due to the promotion of carrier separation and the enhancement of the
oxidation ability of the valence band with a suitable energy band structure (Figure 9a).
Meanwhile, it can be seen that Ti3C2Tx/ZnxCd1−xS has good photocatalytic stability, which
is due to the introduction of Ti3C2Tx to inhibit the photo-corrosion of metal sulfides [70].

It is generally recognized that the photocatalyst’s shape significantly impacts how
effectively it functions as a catalyst. Due to its two-dimensional ultra-thin structure, two
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dimensions, and huge surface area, 2D/2D heterostructure significantly impacts photo-
catalysis. Based on this assumption, Chen et al. [39] created and produced a special 2D/2D
CdS/Ti3C2Tx composite photocatalyst with a good photocatalytic hydrogen evolution
effect (1.73 mmol/(h*g)) that is higher than that of pure CdS nanoflakes (0.37 mmol/(h*g))
(Figure 9b). This is due to the heterojunction created by the composite of 2D/2D CdS
and Ti3C2Tx, which prevents the quick recombination of photogenerated carriers and
encourages the transmission of photogenerated electrons. The above research showed
that a Ti3C2Tx-based photocatalyst could significantly enhance the yield of photocatalytic
hydrogen evolution compared with a single semiconductor photocatalyst.
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3.3. Photocatalytic Reduction of CO2

In recent decades, individuals have made significant efforts in photocatalytic CO2
reduction to address both the global warming trend and the energy dilemma. The re-
duction of CO2 to hydrocarbons (methane, methanol, formaldehyde, formic acid, etc.)
and the release of oxygen during photocatalytic CO2 reduction is a process that mimics
the photosynthesis of natural plants. As a result, numerous photocatalysts have been
developed and manufactured. However, reducing carbon dioxide by photocatalysts is still
difficult because of the interaction of photogenerated carriers, the low thermodynamic
stability of carbon dioxide molecules, and the weak adsorption and activation abilities
of carbon dioxide molecules [71–74]. Therefore, the development of photocatalysts with
strong carbon dioxide reduction activity is urgently needed.

Recently, Li et al. [75] shown that Ti3C2Tx may be utilized to construct Ti3C2Tx/ZnO
photocatalyst, which can increase the reduction performance of ZnO photocatalyst to carbon
dioxide, and ZnO photocatalyst as a co-catalyst without noble metals. The conversion
rate of CO and methane is about seven times and 35 times that of pure ZnO, respectively.
The good metal-like conductivity and electron-rich environment of the surface-alkalized
Ti3C2Tx, which favor the separation and transport of photogenerated electrons and holes,
are responsible for its higher photocatalytic activity. In addition, the surface terminal
-OH group may provide many sites for the adsorption and activation of carbon dioxide
molecules. Similarly, Tang et al. [76] employed g-C3N4 and alkalized Ti3C2Tx as a cocatalyst
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to make Ti3C2Tx-OH/g-C3N4. Compared to pure g-C3N4, its carbon dioxide photocatalytic
reduction increased 5.9 times. According to the study, the -OH terminal groups on the
surface of Ti3C2Tx may effectively promote the photo-induced transfer of electrons from
semiconductors to Ti3C2Tx-OH (Figure 10). The photocatalytic activity of CO2 reduction
can also be improved by the substantial number of active sites that -OH terminal groups
can provide for the adsorption and activation of acidic CO2 molecules.
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3.4. Photocatalytic Nitrogen Fixation

As a necessary component of all living things, nitrogen (N) plays a significant role in
forming proteins and nucleic acids. The traditional Haber-Bosch method, which currently
relies on the reaction of nitrogen and hydrogen to form ammonia at high temperatures and
pressures (500–600 ◦C, 20–50 MPa), is still used to artificially fix nitrogen. However, this
process uses a lot of energy and produces a lot of greenhouse gases, which are extremely
harmful to the environment. Therefore, the need for a sustainable artificial nitrogen
fixation method is important. Photocatalytic technology is one of the most successful ways
of artificial nitrogen fixation [77–82]. Ti3C2Tx materials have been the subject of much
investigation in photocatalytic nitrogen fixation.

Ti3C2Tx has enormous promise as a cocatalyst in applying photocatalytic nitrogen
fixation. Through experimental investigation and theoretical calculation, Chen et al. [83]
recently demonstrated the photocatalytic nitrogen fixation capability of a 2D/2D Bi4O5Br2/
Ti3C2Tx composite. As shown in Figure 11a,b, without using a sacrificial agent, the photocat-
alyst with a mass ratio of 15% Ti3C2Tx has a maximum photocatalytic nitrogen fixation rate
of 277.74 µmol/(g*h). Bi4O5Br2 and the Ti3C2Tx contact form a special ohmic heterojunction
that allows electrons to move without a potential barrier. Through an internal electric field,
photogenerated electrons may be readily transported from Bi4O5Br2 to Ti3C2Tx.

Furthermore, creating a Bi4O5Br2/Ti3C2Tx 2D/2D heterojunction enhances the expo-
sure of active edge sites, shortens the electron transfer path, and increases the efficiency of
nitrogen fixation. Similarly, Hou et al. [84] created an in situ Ti3C2Tx/TiO2 photocatalyst
using a one-step calcination technique and successfully fixed nitrogen by photocatalysis
under full-spectrum illumination. As a result, Ti3C2Tx-based photocatalysts appear to be a
potential photocatalytic nitrogen-fixing material because they can create heterojunction via
in-situ growth and boost photogenerated carrier separation efficiency.
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Figure 11. Bi4O5Br2/Ti3C2Tx photocatalytic nitrogen fixation curve, nitrogen fixation rate and
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fixation NH4+ [85] (b).

3.5. Photocatalytic Applications of Ti3C2Tx-Derived Materials

Two-dimensional metal carbonates are regarded as good precursors of synthetic com-
posites, whereas the use of Ti3C2Tx derivative photocatalysts in the field of photocatalysts
has recently gained significant interest from academics. Recent research has demonstrated
that the photocatalytic activity of the system may be increased by mixing two-dimensional
Ti3C2Tx materials with TiO2 nanoparticles. For instance, Peng et al. [86] produced a pho-
tocatalyst (TiO2(001)/Ti3C2Tx) generated from Ti3C2Tx that exposed the uranium dioxide
cut (Figure 12a). Under the same conditions, the removal rate of methyl orange (MO) is
significantly higher than that of the particle TiO2/Ti3C2Tx, which can effectively inhibit
the composition of photogenic electrons and holes, improving the photocatalyst degra-
dation effect of the methyl orange (MO). TiO2(001)/Ti3C2Tx exhibits good photocatalyst
degradation properties for methyl orange (MO) under ultraviolet light. However, in
TiO2/Ti3C2Tx, the photogenic electron and hole oxidation restore voltage is lower than
before the electron transfer, which somewhat restricts the generation of photo-catalytically
active compounds [87]. To address this issue more effectively, a Z-type heterogeneous cat-
alytic system has been investigated. This system fixes the shortcomings of the conventional
heterogeneous catalytic system, makes it easier to separate the photon electron from the
hole, and maximizes the oxidation-restoration power level of the heterogeneous system [88].
Wu et al. [89] created a triple composite photocatalyst of TiO2/Ti3C2Tx/AgI with Z-type
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heterogeneous nodes using straightforward solvent, thermal procedures, and co-deposition
techniques. As a result, the AgI-TiO2 Z-type heterogeneous bond may be formed using the
Ti3C2Tx layer as a load transfer bridge (Figure 12b), and the TiO2/Ti3C2Tx/AgI composite
material shows effective photocatalytic capabilities for the destruction of TCH.
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The Ti3C2Tx-derived photocatalysts have also sparked a huge research boom in hy-
drogen evolution. The separation efficiency of photoinduced carriers has been markedly
enhanced by the in-situ growth of TiO2 on the surface of Ti3C2Tx when combined with other
semiconductors, thus improving photocatalytic hydrogen efficiency [90]. Yang et al. [91]
prepared a PtO/TiO2/Ti3C2Tx composite photocatalyst by depositing PtO nanoparticles
on the in-situ synthesized TiO2/Ti3C2Tx, as shown in Figure 13a, after calcination and
oxidation at different time, Ti3C2Tx formed TiO2/Ti3C2Tx composites with varying de-
grees of oxidation. The photocatalytic hydrogen evolution rate was TiO2/Ti3C2Tx-12 h
> TiO2/Ti3C2Tx-20 h > TiO2/Ti3C2Tx-4 h, which showed that the increase in titanium
dioxide content 12 h before the heating reaction could improve the hydrogen production
efficiency. After 12 h, the Ti3C2Tx content decreased, resulting in a decrease in hole transfer
efficiency, thereby reducing hydrogen evolution efficiency. When PtO nanoparticles are
deposited on the surface of TiO2/Ti3C2Tx, the hydrogen production efficiency of photocat-
alysts is significantly increased to 2.54 mmol/(h*g), and Ti3C2Tx serves as a hole acceptor
for titanium dioxide and PtO in this photocatalyst system, facilitating the separation of
photogenerated electrons and holes. Yang et al. [92] used the two-step water thermal
location growth method to synthesize the three-dimensional heterogeneous photocatalyst
Ti3C2Tx/TiO2/CuInS2 (Figure 13b), and the following factors are primarily responsible for
the good photocatalytic effect: 1. Increase the narrow band gap semiconductor CuInS2′s
ability to absorb light; 2. Improve charge separation by the synergy of S-type heterojunc-
tions between CuInS2 and TiO2 and the interface Schottky junction of Ti3C2Tx/CuInS2;
3. There are several active areas on the Ti3C2Tx surface, which could enhance charge
carries separation. Table 1 summarises the photocatalytic H2 evolution performances of the
common Ti3C2Tx-derived photocatalysts.
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curves, photoluminescence patterns and mechanism diagrams [91] (a) Data and mechanism diagram
of hydrogen evolution effect of Ti3C2Tx/TiO2/CuInS2 [92] (b).

Table 1. Summary of photocatalytic activity of Ti3C2/TiO2 composites for H2 evolution.

Photocatalysts Sacrificial Regent H2 Production Rate
(µmol/(h*g)) Light Source

Ti3C2/TiO2 [93] Methanol 2650 200 W
Hg lamp

Cu2O/Ti3C2/TiO2 [48] Methanol 1496 300 W
Xenon lamp

Ti3C2/TiO2/UiO-66-NH [90] Na2SO3 1980 300 W
Xenon lamp

Ti3C2/TiO2/Ru [94] Methanol 235.3 300 W
Xenon lamp

WS2/Ti3C2/TiO2 [95] Triethanolamine 3409.8 300 W
Xenon lamp

LDS-S-Ti3C2/TiO2 [96] Methanol 333 300 W
Xenon lamp

Ti3C2/TiO2
(Nanoflowers) [97] TEOA 526 300 W

Xenon lamp

MoS2/Ti3C2/TiO2 [98] TEOA 6425.297 300 W
Xenon lamp

Hou et al. [84] synthesized Ti3C2Tx/TiO2 photocatalyst in situ by one-step calcination
technology and achieved a good photocatalytic nitrogen fixation effect under full-spectrum
radiation. It can be seen that Ti3C2Tx-derived photocatalyst can form heterojunctions
through in-situ growth, improve the separation efficiency of photogenerated carriers, and
is a promising photocatalytic nitrogen fixing material. On this basis, Gao et al. [85] syn-
thesized Ti3C2Tx/TiO2/Co by introducing Co into Ti3C2Tx-derived photocatalysts using
a two-step calcination method, which achieved high efficiency and stable photocatalytic
nitrogen fixation. As shown in Figure 11b, the NH3 yield without any pore sacrifice was as
high as 110.45 µmol/(g*h) under an N2 environment and UV-visible light. This is attributed
to the improvement of carrier transfer and separation by in-situ growth of Ti3C2Tx/TiO2
heterojunction by calcination, Co doping effectively regulates the chemical adsorption equi-
librium of reactant N2 and product ammonia on the catalyst surface, and Ti3C2Tx/TiO2/Co
photocatalysis shows certain cyclic stability due to the presence of Ti3C2Tx. From the above
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experiments, it can be seen that Ti3C2Tx has great application prospects in photocatalytic
nitrogen fixation.

3.6. Photocatalytic Applications of Non-Ti3C2Tx MXenes

Aside from the widespread use of Ti3C2Tx materials in photocatalytic applications,
some non-Ti3C2Tx materials have significantly advanced in photocatalysis in recent years.
For example, the new MXene 2D niobium carbide (Nb2CTx), which has a lower Fermi level
than Ti3C2Tx, was used as an excellent co-catalyst. Recently, Makola et al. [99] used an
in-situ calcination method to prepare a 2D/2D Nb2CTx@g-C3N4 metal-free Schottky junc-
tion photocatalyst with different loading percentages of Nb2CTx. The varying quantities
of Nb2CTx loaded onto the g-C3N4 had no discernible effect on the chemical composi-
tion and structure. However, due to alterations in band edge locations, the produced
heterostructures had narrower energy band gaps than g-C3N4.

Furthermore, the development of the Schottky junction, where Nb2CTx functions as
an electron sink, considerably reduced electron recombination rates. The electrochemical
tests revealed that the samples had increased photocatalytic activity following the creation
of the heterostructure. The band edge diagram demonstrates good band locations for the
composites to be employed in various photocatalytic applications, including CO2 reduction,
photooxidation, and species reduction. To further specific applications, Huang et al. [100]
recently demonstrated the photocatalytic hydrogen generation capability of a 1D/2D
CdS/Nb2CTx MXene composite. The photocatalyst’s maximal photocatalytic hydrogen
production rate with a purity of 60 mg Nb2CTx is 5.3 mmol/(g*h), which is 1.7 times greater
than that of pristine CdS. The findings above are due to the special properties of Nb2CTX
MXene (high conductivity, 2D structure, and enough active sites) and the close interface
contact. In the meantime, the CdS/Nb2CTX combination can efficiently increase the number
of free radicals and the separation and transmission of photoexcited electron-hole pairs.
The studies mentioned above can serve as references for the design of non-Ti3C2Tx as a
co-catalyst for better photocatalytic applications. However, there are currently limited
studies on non-Ti3C2Tx materials in photocatalysis.

4. Major Properties of Ti3C2Tx MXenes Materials in Photocatalysis
4.1. Facilitating the Separation of Photogenerated Electrons and Holes

To address the poor efficiency of photocatalysis, the primary method is to increase
the separation efficiency of photogenerated carriers. Using Ti3C2Tx as a co-catalyst may
generally successfully prevent the recombination of photogenerated electrons and holes in
the photocatalytic system because of the material’s suitable Fermi energy level and strong
electrical conductivity. In addition, numerous experimental findings demonstrate that
Ti3C2Tx with a semiconductor photocatalyst can produce a heterojunction (ohmic or Schot-
tky contact). The metal-semiconductor Schottky contact will form on the contact surface of
the two when the work function of the metal is greater than that of the semiconductor in
the n-type semiconductor, and a Schottky barrier can form inside it that can be used as an
electron absorber to stop electron backflow [101]. On the other hand, a metal-semiconductor
ohmic contact will form on the contact surface of the two when the work function of the
metal in an n-type semiconductor is lower than that of the semiconductor [102].

In contrast to Schottky contact, Ohmic contact is not constrained by an energy barrier,
allowing photogenerated electrons to move spontaneously from Ti3C2Tx to semiconductors
until they achieve equilibrium [103]. Furthermore, the kinetics of the photocatalytic reaction
may be efficiently accelerated by ohmic contact, increasing the photocatalytic efficiency.
In conclusion, the heterojunction structure created by combining semiconductors with
Ti3C2Tx materials may effectively prevent the recombination of photogenerated carriers,
enhancing photocatalytic activity.
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4.2. Providing a Large Number of Modifiable Active Sites

The structure and surface characteristics of the material, in addition to the material’s
inherent features, have a significant influence on the catalytic activity. The two-dimensional
planar structure of the Ti3C2Tx material not only reduces the transmission distance of the
widely produced charge carriers and offers additional surface-active areas for photocataly-
sis. There are currently two techniques that are often used to produce Ti3C2Tx materials.
One involves using HF to peel directly, while the other involves using a solution of HCL
and LiF to peel indirectly. The two strategies result in distinct terminal groupings. The
latter has more -O/-OH terminals than the Ti3C2Tx etched using hydrochloric acid or
lithium fluoride, which mostly has -F terminals. The photocatalytic process is somewhat
influenced by the various end groups. For instance, Ran et al. [104] showed that the photo-
catalytic hydrogen precipitation rate rose with a decrease in the terminal group -F to -O
ionization ratio. However, the result was not particularly satisfactory. The -F exposed to the
Ti3C2Tx surface renders the external atomic charge saturated since the halogen elements
are in group VIIA. From a thermodynamic perspective, the Ti3C2Tx surface is highly stable,
making it challenging for the externally photoexcited electrons to reach it.

The Ti3C2Tx surface is negatively charged due to the -F and -OH terminals from a
kinetic perspective, making Coulomb gravity difficult to attract foreign electrons with
the same negative charge. At the same time, Li et al. [105] demonstrated through theory
and experimentation that Ti3C2Tx at the -F and -OH terminals covered up their active
surface sites, resulting in their catalytic ammonia production and efficiency for nitrogen
fixation. In conclusion, Ti3C2Tx, functionalized with a non-active group, is unsuitable for
a cocatalyst in the photocatalytic reaction. This significantly restricts the application of
Ti3C2Tx materials in the area of photocatalysis. To address the issues mentioned above,
Zhong et al. [106] replaced the passivation groups (-F, -O/-OH) on the Ti3C2Tx surface with
diamino ethanethiol (AET) using a straightforward sonication process. As a result, they
produced surface-modified CdZnS/Ti3C2Tx-AET nanosheets with high surface activity.
The surface-modified CdZnS/Ti3C2Tx-AET had much better catalytic activity than the
original CdZnS and CdZnS/Ti3C2Tx and outperformed most of the reported Ti3C2Tx-
based catalysts. Therefore, adding the right functional groups to Ti3C2Tx surfaces may
significantly increase the interfacial carrier transfer activity, create many active sites, and
broaden the use of Ti3C2Tx materials in photocatalysis.

4.3. Enhancing Photocatalytic Stability by Inhibiting Anti-Photocorrosion

Various semiconductor photocatalysts for environmental cleaning have been produced,
such as AgNO3 and CdS. However, aside from the combination of photoinduced electrons
and holes substantially restricting photoactivity, the issues caused by photogenerated
holes-induced anti-photocorrosion greatly restrict its practical applicability.

Cai et al. [107] prepared the Ag3PO4/Ti3C2 MXene Schottky catalyst to solve the above
issues via a driven self-assembly approach. It not only has great light degradation capabili-
ties for dye, but it also has superior photocatalytic stability compared to pure Ag3PO4. After
eight cycles (Figure 14a), the photocatalytic capabilities of pure Ag3PO4 reduced by ap-
proximately 92.2%, suggesting a larger quantity of breakdown induced by photocorrosion.
In contrast, the Ag3PO4/Ti3C2 composite has a relatively small loss of after-light catalysis
performance (about 31.6% in eight cycles), indicating that its anti-photocorrosion is inhib-
ited, which is attributed to a full and tight interface contact between Ag3PO4 and Ti3C2, a
single-directional electron flow captured by Ti3C2 through the Schottky barrier, and Ti sites
with higher redox reactivity on the surface of Ti3C2. Similarly, Xie et al. [70] used Ti3C2
as a precursor to create 2D/2D CdS/Ti3C2 heterostructures using a simple electrostatic
self-assembly technique. CdS/Ti3C2 showed high photoactivity for 4-nitroaniline (4-NA)
degradation. Meanwhile, Ti3C2 inhibited CdS photocorrosion. As shown in Figure 14b,
the degradation of 4-NA over pure CdS nanosheets gradually declines, implying that the
use of ammonium formate as hole scavengers cannot entirely prevent photocorrosion of
CdS. CdS-0.5% MXene, on the other hand, has better stability for 4-NA conversion. The
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close connection between CdS nanosheets and Ti3C2Tx is advantageous in exerting the
“Cd2+ confinement effect” of Ti3C2Tx, hence improving the stability of CdS-based photocat-
alysts. In summary, introducing Ti can effectively enhance the stability of photocatalyst
composite materials.
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5. Summary and Outlook

Since Ti3C2Tx material initially appeared in 2011, its use in photocatalysis has gar-
nered much interest. The preparation techniques for Ti3C2Tx-based photocatalysts that are
often utilized include mechanical or ultrasonic mixing, electrostatic self-assembly, the wa-
ter/solvothermal approach, and the calcination method, as discussed in this study. Ti3C2Tx
is typically used as a cocatalyst in the field of photocatalytic environmental remediation
and energy conversion, including organic pollutant degradation, water decomposition for
hydrogen production, carbon dioxide reduction, and photocatalytic nitrogen fixation, due
to its adjustable element composition, unique 2D layered structure, large surface area, rich
surface ends, and good photoelectron properties. Furthermore, theoretical research and
numerous tests demonstrate that the semiconductor photocatalyst and Ti3C2Tx can create
a heterojunction (ohmic contact or Schottky contact), which can successfully facilitate the
separation of photogenerated carriers. Additionally, by appropriately altering the many
terminal sites on its surface, the photocatalytic efficacy may increase further. However,
contrary to studies on other 2D materials, Ti3C2Tx is still in its infancy, and several problems
need to be resolved before it can be applied broadly.

1. Ti3C2Tx is currently synthesized using procedures that are still mostly difficult, time-
consuming, and yield-poor. To synthesize Ti3C2Tx on a wide scale, it is important to
develop an affordable, effective, and ecologically friendly process.

2. MXenes materials have not been thoroughly studied in comparison to Ti3C2Tx. For
instance, there aren’t many studies on V2CTx, Nb2CTx, and the composites they’re
formed from, such as V2O5/V2CTx, Nb2O5/Nb2CTx, etc. Therefore, future research
into non-Ti3C2Tx MXenes photocatalysts is quite promising. Additionally, V2CTx
and Nb2CTx materials perform better than Ti3C2Tx MXenes, which may result in
discoveries in the field of photocatalysis.

3. The ease with which Ti3C2Tx may oxidize in oxygen-containing environments is
widely recognized. However, the Ti3C2Tx structure’s decomposition will impact the
photocatalytic activity. Numerous methods have been suggested thus far to increase
the stability of Ti3C2Tx, such as enhancing the preparation conditions, introducing
antioxidants, etc. Photocatalysts based on Ti3C2Tx will perform at a higher level in
energy and environmental applications if the problem of oxidation resistance can
be resolved.
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