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Abstract: The comprehensive topological isomorphism of liquid–vapor, fusibility, and solubility
diagrams in the proper sets of variables is proven with the aid of van der Waals equations of the shift
in phase equilibrium. Analogues of Gibbs–Konovalov and Gibbs–Roozeboom laws are demonstrated
in solubility diagrams of ternary and quaternary systems under crystallization of different types of
solid solutions. For the demonstration, the quaternary reciprocal system K+, NH+

4

∣∣∣∣Cl−, Br− −H2O
and its ternary subsystems with modeling of the liquid phase within the framework of the classical
Pitzer formalism are mainly used. An algorithm for calculating solubility equilibria in these systems
is given.

Keywords: phase diagram topological isomorphism; incomplete Gibbs potential metric;
Gibbs–Konovalov laws; Gibbs–Roozeboom rules; reciprocal solid solutions; alyotrope

1. Thermodynamics Backgrounds
1.1. Van der Waals Equation of the Shift in Phase Equilibrium in the Metric of Gibbs Potential

Let us consider an n-component heterogenium system and introduce the (n–1)-dimensional

vectors of compositions
→
X
(i)

= (x(i)1 , x(i)2 . . . x(i)n−1), where x(i)j is mole fraction of the j-th
component in the i-th phase.

Let us consider a heterogenium equilibrium between two phases, α and β. The follow-
ing parameters are independent variables of phase states in the metric of Gibbs potential:
temperature, T; pressure, P; and mole numbers of components, ni (or mole fractions). The
(α–β) equilibrium shift can be described by the following system of differential van der
Waals equations in vector–matrix form in the variables of phase α (Equation (1)) and phase
β (Equation (2)), plus an additional equation (Equation (3)):

(
→
X
(α)
−
→
X
(β)

)Ĝ(α)d
→
X
(α)

= S(α→β)dT −V(α→β)dP (1)

(
→
X
(β)
−
→
X
(α)

)Ĝ(β)d
→
X
(β)

= S(β→α)dT −V(β→α)dP (2)

Ĝ(α)d
→
X
(α)

+∇S(α)dT −∇V(α)dP = Ĝ(β)d
→
X
(β)

+∇S(β)dT −∇V(β)dP (3)
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where V(τ) and S(τ) are the molar volumes and entropies of the corresponding phase
(τ = α or β); ∇V(τ) and ∇S(τ) are the gradients of these properties with respect to con-

centration, (∂V(τ)/∂x(τ)i )
T,P,x(τ)k 6=x(τ)i,n

and (∂S(τ)/∂x(τ)i )
T,P,x(τ)k 6=x(τ)i,n

);
→
X
(τ)

is a vector that

characterizes the state of the figurative point of the phase τ in the concentration space of

system; d
→
X
(τ)

is a vector characterizing the displacement of
→
X
(τ)

according to displacement
of the two-phase equilibrium; Ĝ(τ) is an operator corresponding to the matrix of the second
derivatives G(τ)

ij :

G(τ)
ij =

 ∂2G(τ)

∂x(τ)i ∂x(τ)j


T,P,x(τ)k 6=x(τ)i,n

(4)

where G(τ) is the molar Gibbs energy potential of the phase τ. According to the phase
stability criterion, the matrices of the Ĝ(τ) operators and corresponding quadratic bilinear
forms are nondegenerate. Additionally, according to the phase diffusion stability criterion,
the matrices corresponding to the quadratic bilinear form Ĝ(τ) are defined positively:

(d2G(τ))T,P = ∑n−1
i=1 ∑n−1

j=1 G(τ)
ij dx(τ)i dx(τ)j > 0 (5)

and according to Sylvester’s criterion, the following system of determinants (minors of
main diagonal) should be determined positively:

∆(τ)
n−1 =

∣∣∣∣∣∣∣∣
G(τ)

1,1 · · · G(τ)
1,n−1

...
. . .

...
G(τ)

n−1,1 · · · G(τ)
n−1,n−1

∣∣∣∣∣∣∣∣ > 0

∆(τ)
n−2 =

∣∣∣∣∣∣∣∣
G(τ)

21 · · · G(τ)
2,n−2

...
. . .

...
G(τ)

n−1,1 · · · G(τ)
n−1,n−2

∣∣∣∣∣∣∣∣ > 0

· · ·

∆(τ)
2 =

∣∣∣∣∣∣G
(τ)
ii G(τ)

ij

G(τ)
ji G(τ)

jj

∣∣∣∣∣∣ > 0

∆(τ)
1 = G(τ)

ii > 0

(6)

The physical senses of parameters

S(α→β) = [S(β) − S(α) + (
→
X
(β)
−
→
X
(α)

)∇S(α)]

S(β→α) = [S(α) − S(β) + (
→
X
(α)
−
→
X
(β)

)∇S(β)]

V(α→β) = [V(β) −V(α) + (
→
X
(β)
−
→
X
(α)

)∇V(α)]

V(β→α) = [V(α) −V(β) + (
→
X
(α)
−
→
X
(β)

)∇V(β)]

(7)

are, correspondently, the entropy and volume changes in the process of the isothermal–
isobaric formation of one mole of phase β from an infinitely large mass of phase α, and
vice versa.

1.2. Incomplete Gibbs Potential(s) and Van der Waals Equation of Phase Equilibrium Shift in
Its Metric

Let us introduce the incomplete Gibbs potential (or Korjinskii’s potential [1]) for an
n-component system:

G[w] = G− µ1n1 = ∑n
i=2 µini (8)
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where µi and ni are the chemical potential and mole number of the i-th component. Such
potentials can be invented in many ways, but here, we will consider only the case when the
first component is a solvent—water, for example—that is, n1 = nw.

Let us again consider an n-component heterogenium system and introduce the

(n − 2)-dimensional vectors of compositions
→
Y
(i)

= (y(i)1 , y(i)2 . . . y(i)n−1), where y(i)j is the
mole fraction of the j-th component (in the i-th phase) in the concentration space reduced
with respect to the mole number of the solvent. These are the Janecke indices of solutes:

yi = ni/ ∑n
j=2 nj (9)

The following parameters are independent variables of phase states in the metric of
incomplete Gibbs potential (8): temperature, T; pressure, P; Janecke indices, yi; chemical
potential of solvent, µw. Similar to the previous one, the (α–β) equilibrium shift can be
described by the following system of differential van der Waals equations in the vector–
matrix form:

(
→
Y
(α)

−
→
Y
(β)

)Ĝ[w](α)d
→
Y
(α)

= S[w](α→β)dT −V[w](α→β)dP + n[w](α→β)
w dµw (10)

(
→
Y
(β)

−
→
Y
(α)

)Ĝ[w](β)d
→
Y
(β)

= S[w](β→α)dT −V[w](β→α)dP + n[w](β→α)
w dµw (11)

Ĝ[w](α)d
→
Y
(α)

+∇S[w](α)dT −∇V[w](α)dP +∇n[w](α)
w dµw =

Ĝ[w](β)d
→
Y
(β)

+∇S[w](β)dT −∇V[w](β)dP +∇n[w](β)
w dµw

(12)

where V[w](τ), S[w](τ), or n[w](τ)
w are the molar volume, entropies, or solvent mole num-

ber of phase τ, which are calculated without taking into account the solvent (per mole
solutes). Further, ∇V[w](τ), ∇S[w](τ), ∇n[w](τ)

w are the gradients of these properties with re-
duced concentration,

(
∂V[w](τ)/∂y(τ)i

)
T,P,y(τ)k 6=y(τ)i,n−1,µ(τ)

w
,
(

∂S[w](τ)/∂y(τ)i

)
T,P,y(τ)k 6=y(τ)i,n−1,µ(τ)

w
,(

n[w](τ)
w /∂y(τ)i

)
T,P,y(τ)k 6=y(τ)i,n−1,µ(τ)

w
, correspondently;

→
Y
(τ)

is a vector, characterizing the state

of the figurative point of the phase τ in the solvent-reduced concentration space; d
→
Y
(τ)

is a vector characterizing the displacement of
→
Y
(τ)

according to displacement of the
two-phase equilibrium; Ĝ[w](τ) is an operator, corresponding to the matrix of the second
derivatives G[w](τ)

ij :

G[w](τ)
ij =

 ∂2G[w](τ)

∂y(τ)i ∂y(τ)j


T,P,y(τ)k 6=y(τ)i,n−1,µ(τ)

w

(13)

According to the phase stability criterion and Sylvester’s criterion, the reduced ana-
logues of expressions (5) and (6) remain valid:(

d2G[w](τ)
)

T,P,µW
= ∑n−1

i=2 ∑n−1
j=2 G[w](τ)

ij dy(τ)i dy(τ)j > 0 (14)
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∆[w](τ)
n−2 =

∣∣∣∣∣∣∣∣
G[w](τ)

1,1 · · · G[w](τ)
1,n−2

...
. . .

...
G[w](τ)

n−2,1 · · · G[w](τ)
n−2,n−2

∣∣∣∣∣∣∣∣ > 0

∆[w](τ)
n−3 =

∣∣∣∣∣∣∣∣
G[w](τ)

2,1 · · · G[w](τ)
2,n−2

...
. . .

...
G[w](τ)

n−2,1 · · · G[w](τ)
n−2,n−2

∣∣∣∣∣∣∣∣ > 0

· · ·

∆[w](τ)
2 =

∣∣∣∣∣∣G
[w](τ)
ii G[w](τ)

ij

G[w](τ)
ji G[w](τ)

jj

∣∣∣∣∣∣ > 0

∆[w](τ)
1 = G[w](τ)

ii > 0

(15)

Parameters

S[w](α→β) = [S[w](β) − S[w](α) + (
→
Y
(β)

−
→
Y
(α)

)∇S[w](α)]

S[w](β→α) = [S[w](α) − S[w](β) + (
→
Y
(α)

−
→
Y
(β)

)∇S[w](β)]

V[w](α→β) = [V[w](β) −V[w](α) + (
→
Y
(β)

−
→
Y
(α)

)∇V[w](α)]

V[w](β→α) = [V[w](α) −V[w](β) + (
→
Y
(α)

−
→
Y
(β)

)∇V[w](β)]

n[w](α→β)
w = [n[w](β)

w − n[w](α)
w + (

→
Y(β) −

→
Y(α))∇nW

(W)(α)]

n[w](β→α)
w = [n[w](α)

w − n[w](β)
w + (

→
Y(α) −

→
Y(β))∇nW

(W)(β)]

(16)

have the physical senses of entropy, volume, and change in solvent mole number in the
isotherm–isobaric-solvent–isopotential process of formation of one mole of phase β from
an infinitely large mass of phase α and vice versa in the concentration space, reduced with
respect to the mole number of the solvent.

For some additional details and references, see [2].

1.3. Isotherm–Isobaric Solubility Diagram of Ternary Systems. Analogues of Three
Gibbs–Roozeboom Rules, Three Gibbs–Konovalov Laws

For fusibility diagrams of binary systems at P = const, the van der Waals Equations (1)–(3)
have a very simple form, for example:(

x(s)1 − x(l)1

)
Ĝ(s)

1,1 dx(s) = S(s→l)dT (17)

where s and l denote solid and liquid phases, correspondently. Similarly, for liquid–vapor
diagrams of binary systems, we have(

x(l)1 − x(v)1

)
Ĝ(l)

1,1dx(l) = S(l→v)dT (at P = const) (18)

or (
x(l)1 − x(v)1

)
Ĝ(l)

1,1dx(l) = –V(l→v)dP (at T = const) (19)

The van der Waals equation of the shift in solubility equilibrium (10)–(12) in the ternary
system at T, P = const is as follows:(

y(s)1 − y(l)1

)
Ĝ[w](s)

1,1 dy(s)1 = n[w](s→l)
w dµw (20)

Equations (17)–(20) in the appropriate variables are isostructural, being S(s→l) > 0,
S(l→v) > 0, V(l→v) > 0, and n[w](s→l)

w > 0, according to physical sense; and Ĝ(s)
1,1 >0,
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Ĝ(l)
11 > 0 and Ĝ[w](s)

1,1 > 0, according to the criterion of the stability. So, we can formulate
analogues of three Gibbs–Roozeboom rules and three Gibbs–Konovalov laws.

First Rule (Law). Mathematically:(
dT/dx(l)1

)
P
> 0 if x(s)1 > x(l)1 (21)(

dT/dx(l)1

)
P
> 0 and

(
dP/dx(l)1

)
T
< 0 if x(l)1 > x(v)1 (22)

In other words, (21): the melting temperature of solid solutions in binary systems at
constant pressure increases as the content of the component whose content in the solid
solution is higher than in the liquid phase increases; (22): in binary systems, the boiling
temperature of solutions at constant pressure and constant temperature decreases as the
content of the component whose content in the solution is higher than in the vapor increases.

Analogue:
(dµw/dy(s)1 )T,P > 0 if y(s)1 > y(l)1 (23)

The chemical potential of the solvent (or its thermodynamic activity or partial pressure)
at constant pressure and temperature in the ternary system increases as the reduced
(calculated without taking into account the solvent) content in the solid solution of the
component—whose solventless content in the solid solution is higher than in the liquid
solution—increases.

These laws are not of a general nature, and are valid for multicomponent systems only
in special cases, which we will discuss below.

Second Rule (Law). (
dT/dx(l)1

)
P
= 0 if x(s)1 = x(l)1 (24)

(
dT/dx(l)1

)
P
= 0 and

(
dP/dx(l)1

)
T
= 0 if x(l)1 = x(v)1 (25)

The melting temperature (of both solid solutions and constant composition phases) at
constant pressure in a binary system passes through the extremum when the compositions
of liquid and solid phases coincide.

When the liquid composition is coincident with the vapor composition, both the boil-
ing point of the solution at constant pressure and its vapor pressure at constant temperature
pass through an extremum (binary azeotrope).(

dµw/dy(s)1

)
T,P

= 0 if y(s)1 = y(l)1 (26)

The chemical potential of the solvent (or its thermodynamic activity or partial pressure)
at constant pressure and temperature in the ternary system passes through the extremum
when the composition of the liquid phase coinsides with the composition of the solid one
in a solvent-free concentration space.

This rule (law) is absolutely general in nature, and is valid for systems with arbitrary
numbers of components and any type of phases at equilibrium.

Moreover, at the equilibrium solid phase of constant composition (the formation of a
congruently soluble compound on the solubility diagram or the formation of a congruently
melting compound on the melting diagram), one can determine the type of extremum,
(µw)T,P or (T)P, respectively. It is always maximum. Indeed, let us differentiate, for
example, Equation (1):

(
→
X
(l)
−
→
X
(s)
)Ĝ(l)d

→
X
(l)

= S(l→s)dT −V(l→s)dP (27)
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where dP = 0, and one passes through the point of the congruently melting compound

(distectic), i.e.,
→
X
(l)

=
→
X
(s)

and d
→
X
(s)

= 0:

d
→
X
(l)

Ĝ(l)d
→
X
(l)

+ (
→
X
(l)
−
→
X
(s)
)Ĝ(l)d2

→
X
(l)

+ (
→
X
(l)
−
→
X
(s)
)D̂G

(l)
d
→
X
(l)

=

S(l→s)dT + S(l→s)d2T
(28)

where operator D̂G
(l)

corresponds to the matrix of the second derivatives DG(l)
ij = G(l)

ij (i ≥ 2)
in all lines except the first one, where we must set the following members:
DG(l)

1,j =
(

∂∆(l)
n−1/∂X(l)

j

)
T,P,xk 6=j,n

. Finally, we obtain:

d
→
X
(l)

Ĝ(l)d
→
X
(l)

= S(l→s)d2T (29)

The term d
→
X
(l)

Ĝ(l)d
→
X
(l)

is positively determined according to the criterion of the
binodal stability quadratic form, whereas S(l→s) < 0. So, (d2T)P < 0 and TP should pass
through the maximum.

It can be proven quite similarly for solubility diagrams that

d
→
Y
(l)

Ĝ[w](l)d
→
Y
(l)

= n[w](l→s)
w d2µw (30)

and so
(
d2µw

)
T,P < 0 and µw should pass through the maximum (distonic point).

The solubility diagram of the NaCl–CdCl2–H2O system [3] in coordinates “partial
water pressure, Pw, Janecke index of CdCl2, yCdCl2” can be used as an example (Figure 1).
It is clear that all three functions—(1) Pw; (2) water activity: aw = Pw/P0

w (where P0
w is

pressure under pure water); (3) chemical potential of water: µw = µ0
w + RT ln aw—change

in the same direction, so it does not matter which of them will be used to build the
solubility diagram.
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Figure 1. Diagram of solubility of the ternary system NaCl–CdCl2–H2O at 25 ◦C [3]. E is ternary
eutonics, D is ternary distonics.

Another example is the Na+, Cd2+
∣∣∣∣∣∣Cl−, S¯H2O quaternary reciprocal system at 25 ◦C,

where the activity of water passes through the maximum at the point of the ternary
compound NaCl·CdSO4·5H2O (Figure 2, [3]).
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Figure 2. Solubility diagram of the Na+, Cd2+
∣∣∣∣∣∣Cl−, SO2−

4 —quaternary reciprocal system at
25 ◦C [3]. The thin dashed and solid lines are isopotentials of water in the crystallization field of the
ternary compound. The end of the arrow points to the point of the compound and simultaneously to
the maximum activity of water.

Third rule (law).
Let us rewrite Equation (17) for the liquid phase:(

x(l)1 − x(s)1

)
Ĝ(l)

1,1dx(l) = S(l→s)dT (31)

and Equations (18) and (19) for the vapor phase:(
x(v)1 − x(l)1

)
Ĝ(v)

1,1 dx(v) = S(v→l)dT (32)

(
x(v)1 − x(l)1

)
Ĝ(v)

1,1 dx(v) = –V(v→l)dP (33)

Let us do the same with Equation (20):(
y(l)1 − y(s)1

)
Ĝ[w](l)

1,1 dy(l)1 = n[w](l→s)
w dµw (34)
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Let us now divide Equations (31)–(34) into Equations (17)–(20) in pairs. According
to Equation (16), effects (α→ β) and (β→ α) have the opposite sign, whereas the second
derivatives G(τ)

ii are always positives. Thus, we obtain and prove the following inequalities:(
dx(s)1

dx(l)1

)
P
= − S(s→l)

S(l→s)

G(s)
1,1

G(l)
1,1

> 0(
dx(v)1

dx(l)1

)
P
= − S(v→l)

S(l→v)

G(v)
1,1

G(l)
1,1

> 0(
dx(v)1

dx(l)1

)
T
= −V(v→l)

V(l→v)

G(v)
1,1

G(l)
1,1

> 0(
dy(s)1

dx(l)1

)
P
= − n[w](s→l)

w

n[w](l→s)
w

G[w](s)
1,1

G[w](l)
1,1

> 0

(35)

In other words, in binary systems, the compositions of liquid and vapor (both at
T = const and at P = const) when moving along the liquid–vapor curve and the compositions
of the melt and solid solution (at P = const) when moving along the melting curve always
change in the same direction.

Likewise, the compositions of liquid and solid solutions calculated without taking
into account the solvent, when moving along the solubility curve in a ternary system
(at T, P = const), always change in the same direction.

These laws are not of a general nature, and are valid for multicomponent systems only
in special cases, which we will discuss below.

2. Algorithm of Calculation of Ternary Solubility Diagrams under Solid
Solution Formation

The cumbersome wording of the considered laws (which become even more confusing
in the case of quaternary systems) requires illustrations. For this purpose, we will use the
solubility diagram of the reciprocal quaternary system K+, NH+

4

∣∣∣∣Cl−, Br− −H2O (and its
subsystems), which was chosen due to the following reasons:

• A large set of data on the concentration dependences of excess thermodynamic func-
tions for all binary subsystems of the quaternary system is available.

• A large set of data on solubility for all ternary subsystems of the quaternary system
(including the composition of equilibrium solid solutions) is also available. More-
over, there is a set of data concerning mixing the thermodynamic functions of binary
solid solutions.

• In the ternary subsystems are realized different types of solid solutions: continuous
series, and solid solutions with miscibility gaps.

• There are excellent (in our opinion) experimental data of solubility for the quaternary
system itself, including the composition of ternary solid solutions.

• In the quaternary system are realized monovariant curves corresponding to the equi-
libria of saturated liquid with two different solid solutions.

• Analogues of Gibbs–Konovalov rules and Gibbs–Roozeboom laws may be installed,
and demonstrate almost everything by the examples of ternary subsystems and qua-
ternary reciprocal systems when the composition is moving along curves of open
evaporation–crystallization, incomplete extrema, and thermodynamic simplification.

The algorithm of calculation (in particular based on the classic Pitzer equations [4–6])
of the solubility diagrams for ternary [7–9] (this section provides links to some pioneer
publications only; the total number of papers on this topic is vast) and quaternary [7,10]
systems, quaternary reciprocal systems [7,11], diagonal cuts of quaternary reciprocal sys-
tems [12], and more component systems [7,13] with constant composition solid phases has
been widely used for several decades.

Articles devoted to the calculation of solubility diagrams under the formation of solid
solutions, both in ternary and quaternary systems, are undoubtedly rarer [14–19]. This
paper contains some generalizations of the last ones.
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2.1. Binary Subsystem Treatment

Parameters for the all binary subsystems are summarized in Table 1. They are suitable
for the description of full concentration ranges up to saturation. Note that in this paper,
the authors did not seek to describe the excess functions of the solutions as accurately as
possible. The aim of the work was to illustrate strict thermodynamic laws. In this case, if
the model is thermodynamically consistent (as Pitzer’s model is), the parameter sets are
not decisive.

Table 1. Binary parameters of Pitzer’s equations in the NH+
4 , K+

∣∣∣∣Cl−, Br− −H2O quaternary
system at 25 ◦C.

System
Binary Parameter Values

β(0) β(1) β(2) C(ϕ) α1 α2

NH4Cl−H2O 0.05201 0.1922 — −0.00301 2.0 –

KCl−H2O 0.04632 0.2222 — −0.000397 2.0 –

NH4Br−H2O 0.04240 0.06454 0.0981 −0.00222 2.0 1.0

KBr−H2O 0.02543 0.2307 — −0.00156 2.0 –

Parameters for the KCl−H2O system were calculated from a smoothed array [20] of
experimental data. For the KBr−H2O system, we used experimental data [21–23]. For
the NH4Cl−H2O system, we calculated parameters from isopiestic data [24,25]. For the
NH4Br−H2O system, we introduced the additional parameter β(2) with the degree value
α2 = 1. The parameter fitting was based on the original data [23,25–27], with the obvious
dropping points [23,26] discarded and the overlapping data [19,22] used only once.

For all binary subsystems, the standard deviations of the calculated values of osmotic
coefficients from experimental ones, σϕ, did not exceed 0.0014.

The thermodynamic potentials of the binary solid phases, calculated taking into
account the activity coefficients of all solution components (or logarithms of solubility
products, ln SP), are represented in Table 2.

Table 2. Solubility and thermodynamic potentials of binary solid phases in the
NH+

4 , K+
∣∣∣∣Cl−, Br− −H2O quaternary system at 25 ◦C.

Solid Composition Syngony a Solubility, m(s), mole/kg H2O ln SP

KCl
cfc 4.769 b 2.064

cub e 6.2 ± 1.2 2.7 ± 0.5

KBr
cfc 5.72 c 2.595

cub e 6.5 ± 1.0 2.9 ± 0.4

NH4Cl
cub 7.393 b 2.853

cfc e 9.3 ± 0.9 3.3 ± 0.2

NH4Br
cub 7.993 d 3.115

cfc e 9.6 ± 0.3 3.47 ± 0.07
a Hereafter: cfc—cubic face-centered lattice, cub—cubic lattice. b Corresponding values at 25 ◦C (26.23% and
28.34%) are recommended in [28]. c Value at 25 ◦C (40.5%) is recommended in [29]. d Average value at 25 ◦C from
the data of 12 articles (43.91 ± 0.07%). e The solid phase of this syngony is metastable at 25 ◦C.

2.2. Ternary Subsystem Treatment
2.2.1. Parametrization of Ternary Liquid Solutions

For three of the four ternary subsystems, isopiestic data on water activity in the region of
homogeneous liquid solutions are available in the literature. In the KCl−KBr−H2O [22,30]
and KBr−NH4Br−H2O [23] systems, water isoactivity lines are straight, i.e., these systems
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obey Zdanovskii’s rule. In the NH4Cl−NH4Br−H2O system [25,31], very weak deviations
from the straightness of water isoactivity lines are observed, which are comparable with the
accuracy of the measurements. It is reasonable to assume that in the KCl−NH4Cl−H2O
system, the water isoactivity lines will be also straight (or very close to straightness).
Accordingly, calculations of Pitzer’s ternary parameters were performed using “artificial
arrays” of water isoactivity lines [32]. In all cases, the obtained values of the ternary
parameters were very small, less than 0.0006 by module.

As we are going to describe the quaternary reciprocal system NH+
4 , K+

∣∣∣∣Cl−,−H2O,
we need to unify the parameters θCl,Br and θK,NH4 in conjugated ternary systems. We put
them equal to zero. Further calculations showed that all other parameters can also be set equal
to zero without losing the accuracy of the description of the water activity data. Accordingly,
we accepted θK,NH4 = θCl,Br = ΨK,NH4,Cl = ΨK,NH4,Br = ΨK,Cl,Br = ΨNH4,Cl,Br = 0.0. It is
pertinent to note that in the general case, the straightness of the water isoactivity lines does
not mean that the Pitzer ternary parameters are zero and vice versa.

2.2.2. Solubility Equilibrium Data for the KCl−KBr−H2O Subsystem

The KCl− KBr−H2O system ranks among the first in the number of publications
devoted to the study of solubility diagrams with solid solutions. At 25 ◦C alone, at
least a dozen papers are devoted to this system [33–45] (in papers [34,38,39,41,45], the
composition of the solid phase was not determined). In general, all of the mentioned
experimental data are in good agreement with each other; only data [44] are somewhat
different. A continuous series of solid solutions, KClxBr1−x, are realized in this system.
Approximations of phase equilibrium curves by polynomials were carried out in [46,47]; the
calculation of the solubility diagram was performed in [48]. Moreover, densities of saturated
solutions [33,42,45], densities and parameters of crystal lattice of solid solutions [49]; and
some other solution characteristics, for example, enthalpies of crystallization of solid
solutions [50], were investigated at 25 ◦C.

A number of papers were devoted to the calculation of the Gibbs energy of solid
solution formation using different methods [51–54]; these data are in reasonable agreement
with each other.

2.2.3. Solubility Equilibrium Data for the NH4Cl−NH4Br−H2O Subsystem

The NH4Cl −NH4Br −H2O system was studied in less detail. The experimental
solubility data [40,55] refer only to 25 ◦C. Evidence of these papers is in almost perfect
agreement. Data on water pressure under saturated solutions and solid solution densities
are also given in [55], while the dissolution heats of solid solutions are given in [31].

The Gibbs free energy of solid solution formation was calculated in
papers [31,52,53,55,56]. Data from earlier work [55] suggest that the NH4ClxBr1−x solid
solutions undergo decomposition due to diffusion instability. However, this conclusion has
not been confirmed in later works, including by the authors themselves. So, a continuous
series of solid solutions is realized in this system.

2.2.4. Solubility Equilibrium Data for the KCl−NH4Cl−H2O Subsystem

Numerous papers have been devoted to the study of phase equilibria in this system,
seven of which contain data at 25 ◦C [33,40,57–61]. However, in papers [59,61], only the
compositions of the liquid phase are presented, while on the contrary, there are no complete
data for the liquid phase in paper [61]. In paper [60], the composition of a single point is
given, and the data of [33] have a very large scatter and do not agree well with the results of
other works. Some data from [59] also fall out of the general set. From the other properties
of equilibrium phases in the system, one can note the measurements of the density of
saturated solutions in [33,59].

Two series of solid solutions, Kx(NH4)1−xCl and (NH4)xK1−xCl, are realized in this
system. It is not quite correct to talk about a miscibility gap in a series of solid solutions
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here, since due to different crystal lattices, these solutions do not have a unified equation
of state.

2.2.5. Solubility Equilibrium Data for the KBr−NH4Br−H2O Subsystem

Phase equilibria at 25 ◦C in this system were studied in [33,40,62,63]. A considerable
amount of consistent data were obtained, excepting two points from [33]. Note that in
paper [62], the recalculation of the composition of “wet residues” into mole fractions of
components in the solid phase is performed imprecisely, and in paper [63], it is necessary
to combine the data of Tables 1 and 2 to obtain data on the liquid phase compositions
with four significant digits instead of two. Data on the density of saturated solutions are
represented in paper [33], and information on water activity in saturated solutions and the
calculation of Gibbs energy of solid solution formation is available in paper [63].

Again, two series of solid solutions, Kx(NH4 )1−xBr and (NH4)xK1−xBr, are realized
in this system.

2.2.6. Algorithm of Ternary Solubility Diagram Calculation

Regardless of the type of crystallizing solid solutions, the first calculation step is to
calculate the Gibbs free energy of solid solution formation, ∆G, from the experimental solu-
bility data. In the case of the CA−C′A−H2O system, where the (CA)X(C

′A)1−X·νH2O
solid solutions are crystallized, we can write:

∆G
RT

= x(s)CA·νH2O

[
ln a(l)CA − ln SP(s)

CA·νH2O

]
+
(

1− x(s)CA·νH2O

)[
ln a(l)C′A − ln SP(s)

C′A·νH2O

]
+ νH2O ln a(l)H2O (36)

where a(l)i is activity of the i-th salt or water in the liquid phase, x(s)CA·νH2O is the mole
fraction of CA·νH2O in the solid solution. Of course, the same equation is valid, mutatis
mutandis, for the CA−CA′ −H2O system with the (CA)X(CA′)1−X·νH2O solid solutions,
and ν can be equal to zero.

SP(lattice)
Salt·νH2O is the thermodynamic potential of the solid solution component (thermo-

dynamic solubility product), and is defined and is calculated as

ln SP(lattice)
Salt·νH2O =

1
RT

[
µ

0(lattice)
Salt·νH2O − µ

0(l)
Salt·νH2O

]
= ln a(l,sat)

Salt + νH2O ln a(l,sat)
H2O (37)

where the superscript “lattice” emphasizes that the solid solution component possesses
the same crystal lattice (syngony) as the solid solution itself (which may correspond to
a metastable state); µ

0(lattice)
Salt·νH2O is its standard chemical potential in a state such as this;

µ0(l) is the normalized standard chemical potential of the component in the liquid phase;
a(l,sat)

i is the activity of the i-th component in the liquid solution saturated with respect
to the solid phase in the aforesaid state. A compound can possess several SPs, but each
of them is invariant at fixed T and P. It should be additionally noted that according to
the criterion of bimodal and spinodal thermodynamic stability, the solubility of the solid
solution components (and the corresponding values of thermodynamic potentials, SP) in
the metastable state should always be higher than in the stable state.

At this stage, for systems with a continuous series of solid solutions, the essential
point is the need to check the consistency of solubility in binary subsystems and ternary
systems and choose consistent values of ln SP; the procedure for such a check is described
in [15,64]. It is somewhat more difficult to calculate ∆G in ternary systems under the
formation of two series of solid solutions because part of the ln SP values cannot always be
directly determined from the binary solubility data. The methods of action in this case are
considered in paper [18].

We approximated the determined values of ∆G with a subregular solution model (of
course any other model can be used as well):

∆Gex = ∆G−∑i=KCl,KBr

[
x(s)i ln x(s)i

]
= x(s)KClx

(s)
KBr

[
α0 + α1

(
x(s)KCl − x(s)KBr

)]
(38)



Processes 2023, 11, 1405 12 of 41

where α0 and α1 are adjustable parameters. Strictly speaking, a subregular model was
required only for the KCl–KBr solutions; in the other three cases α1 = 0, that is, the model
of regular solutions, was used—see Table 3. The results of the calculations of ∆G for the
systems under consideration are shown in Figure 3a,b.

Table 3. Parameters of regular and subregular models for solid solutions at 25 ◦C.

System * α0, kJ/mol α1, kJ/mol System * α0, kJ/mol α1, kJ/mol

NH4Cl−KCl (cub) 7.7 ± 1.8 — NH4Cl−KCl (c f c) 3.8 ± 0.2 —

NH4Br−KBr(cub) 8.5 ± 1.2 — NH4Br−KBr(c f c) 2.9 ± 0.3 —

KCl−
KBr(cub) 3.6 ± 0.5 — KCl−

KBr(c f c)
3.64 ± 0.05
3.63 ± 0.06

0.5 ± 0.1
—

NH4Cl−NH4Br(cub) 3.8 ± 0.1 — NH4Cl−NH4Br(c f c) 3.7 ± 0.7 —

* cub—cubic lattice, cfc—cubic face-centered lattice.

The subregular model provides us with the activity coefficients of solid solution
components, f (s)i : RT ln f (s)KCl =

(
x(s)KBr

)2[
α0 + α1

(
3x(s)KCl − x(s)KBr

)]
RT ln f (s)KBr =

(
x(s)KCl

)2[
α0 + α1

(
x(s)KCl − 3x(s)KBr

)] (39)

The final calculations are reduced to solving a system of equations derived from the
phase and chemical equilibrium conditions. In the general case, it looks like ln a(l)CA + νH2O ln a(l)H2O = ln SP(s)

CA·νH2O + ln a(s)CA·νH2O

ln a(l)C′A + νH2O ln a(l)H2O = ln SP(s)
C′A·νH2O + ln a(s)C′A·νH2O

(40)
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Figure 3. (a) Calculated values of excess Gibbs energy of solid solution formation in experimental
points (open signs) and their approximation by regular model (solid lines) and subregular model
(dotted lines) in the systems K+, NH+

4

∣∣∣∣Br−–H2O (left) and K+
∣∣∣∣Cl−, Br−–H2O (right) at 25 ◦C.

(b) Calculated values of excess Gibbs energy of solid solution formation in experimental points (open
signs) and their approximation by regular model (solid lines) in the systems K+, NH+

4

∣∣∣∣Cl−–H2O
(left) and NH+

4

∣∣∣∣Cl−, Br−–H2O (right) at 25 ◦C.

The results of calculations of the liquidus are presented in Figure 4, and the distri-
bution diagrams of the salt components between the equilibrium phases are presented
in Figure 5a,b. In the K+

∣∣∣∣Cl−, Br−–H2O system, both solid phase models reproduce the
experimental liquidus well, but the distribution diagram is somewhat better reproduced by
the subregular solution model than by the regular solution model.
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Figure 4. Experimental (open signs) and calculated (solid lines) data on the composition of satu-
rated solutions in ternary systems K+, NH+

4

∣∣∣∣Cl−–H2O , K+, NH+
4

∣∣∣∣Br−–H2O , K+
∣∣∣∣Cl−, Br−–H2O ,

NH+
4

∣∣∣∣Cl−, Br−–H2O at 25 ◦C (in salt molalities). Data falling out of the general set: a number of
triangles with a base on the right [33], stars [44,45], a few pentagons [61].
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solid solutions in solvent-free concentration space (Janecke indexes). 
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Figure 5. (a) The systems K+, NH+
4

∣∣∣∣Br−–H2O (left) and K+
∣∣∣∣Cl−, Br−–H2O (right) at 25 ◦C: exper-

imental (open signs) and calculated (solid lines) data on the distribution of salt components between
liquid and solid solutions in solvent-free concentration space (Janecke indexes). (b) The systems
K+, NH+

4

∣∣∣∣Cl−–H2O (left) and NH+
4

∣∣∣∣Cl−, Br−–H2O (right) at 25 ◦C: experimental (open signs) and
calculated (solid lines) data on the distribution of salt components between liquid and solid solutions
in solvent-free concentration space (Janecke indexes).

2.2.7. Classification of Solid Solutions on Ternary Solubility Diagrams

Without encroaching on Roozeboom’s classification, in our opinion, it is convenient to
distinguish six basic types of solid solutions in the light of the aforesaid work.

Types I: Continuous series of solid solutions without miscibility gaps.
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This is the most trivial case: the hydrate composition and syngony of both components
of solid solutions are the same. SP values can be found from the solubility of components in
binary subsystems and ∆G values are calculated in experimental points from Equation (36).
The monovariant solubility curve is the geometric place of points that satisfy the system of
two nonlinear Equations (40) with respect to three unknown variables, the composition of
the saturated ternary liquid solution (for example, CA and C’A molalities), and the mole
fraction of one of the solid solution components. Any of these variables can be fixed before
solving the system.

According to the derived above analogues of the Gibbs–Roozeboom rules and Gibbs–
Konovalov laws, three subtypes are possible.

Subtype Ia: Extrema of water activity are absent.

This is a fairly common type, but it is not represented in the ternary systems considered
here. Let us consider as an example the diagram of the TbCl3–GdCl3–H2O at 25 ◦C,
Figure 6 [65].
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Figure 6. Diagram of solubility as water activity vs. Janecke index of the TbCl3–GdCl3–H2O system
at 25 ◦C under formation of the TbxGd1−xCl3·6H2O solid solutions.

Subtype Ib: A minimum of water activity is present.

Two such ternary systems are presented among those considered here, namely
KCl− KBr−H2O and NH4Cl−NH4Br−H2O. For both systems, we calculated stable
and metastable variants of the diagram (Figures 7 and 8). In all cases, the minimum water
activity in the saturated solutions is realized when the compositions of equilibrium phases
in the solvent-reduced concentration space are equal, in full accordance with the analogue
of the second Gibbs–Roozeboom rule and Gibbs–Konovalov law. We propose to call such a
minimum alyotrope (“α” + “λύω” + “τρóπoς”, “no change on dissolving”), by analogy with
azeotropes (“α” + “ζέω” + “τρóπoς”, “no change on boiling”) in liquid–vapor diagrams.
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Figure 7. Solubility diagram of water activity vs. Janecke index of the KCl–KBr–H2O system at 25 ◦C.
Solid points correspond to the formation of stable solid solutions on the base of face-centered (cfc)
lattice, while open circles correspond to metastable cubic (cub) solution formation. Hereafter, A(3) is
alyotrope point.
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25 ◦C. Solid points correspond to the formation of stable solid solutions on the base of cubic (cub)
lattice, while open circles correspond to the metastable face-centered (cfc) solution formation.
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Subtype Ic: A maximum of water activity is present.

There are no such examples in the ternary systems under consideration. Moreover,
we looked through the reference data for more than 130 ternary water–salt systems with a
continuous series of solid solutions, and could not find a single example where the water
activity (or the molar fraction of water, which is almost equivalent) in saturated solutions
passes through the maximum.

This is surprising, since for liquid–vapor diagrams and fusibility diagrams of binary
systems, which are topologically isomorphic to solubility diagrams of ternary systems [7],
diagrams with both minimum and maximum TP(x) and PT(x) are well known. This is the
only case among all those known to the authors that does not correspond to the postulate
of complete topological equivalence of liquid–vapor diagrams, melting diagrams, and
solubility diagrams in the corresponding sets of variables.

Type II: Discontinuous series of solid solutions with miscibility gaps due to diffusion instability.

In this case, the solubility diagram consists of two curves corresponding to the crys-
tallization of the same solid solution (with the same qualitative (hydrate) composition
and uniform syngony) decaying at the nonvariant point due to diffusion instability (this
occurs when there are strong positive deviations of the solid solution from ideality). As
before, the SP values are available from the binary solubilities of its components, and
system (40) describes both curves with 0 ≤ x(s)1 ≤ x(lim1)

1 and x(lim2)
1 ≤ x(s)1 ≤ 1, where

lim1 and lim2 symbolize the broadness of the diffusion instability of the solid solutions and
x(lim1)

1 < x(s)1 < x(lim2)
1 is the miscibility gap.

As is well known, the equation for the loss of phase diffusion stability (or spinodal
curve) for a binary solid solution, s, is as follows:(

∂2G(s)

∂x(s)i
2

)
T,P

= 0 or

(
∂µ

(s)
i

∂x(s)i

)
T,P

= 0 (41)

Within the model of regular (or subregular) solutions, Equation (41) is reduced to
an algebraic quadratic (or cubic) equation, which allows one to find both the x(lim1)

1 and

x(lim2)
1 roots.

Alternatively, we can calculate the composition of the nonvariant point by solving
a system of four equations similar to Equation (40) with respect to two liquid phase
composition variables (molalities, for example) and two solid phase composition variables
(x(lim1)

1 and x(lim2)
1 ).

Moreover, if we have reliable experimental data on the composition of solid solutions
at the point of decomposition, we can determine their nonideality parameters directly with
Equation (41).

In reality, such a case is rare. However, two (partially metastable) diagrams can be
presented for the ternary systems under consideration; see Figures 9 and 10.

Type III: Discontinuous (different) series of solid solutions with miscibility gaps due to
difference in syngony.

In this case, the solubility diagram also consists of two curves, corresponding to the
crystallization of two solid solutions with the same qualitative composition but different
syngony. It is more correct to speak not about a miscibility gap, but about two series of
different solid solutions, because these solutions do not have a common equation of state
in principle.

Here, we have four SP values, two for each of the solid solution components possessing
the corresponding crystal lattice. However, only two of them can be determined directly,
since in most cases there are no data on the binary solubility of the component in an alien
syngony. The missing SP values can be determined simultaneously with fitting the solid
phase model parameters from experimental solubility data.
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Figure 9. Solubility diagram of water activity vs. Janecke index of the KCl−NH4Cl−H2O system at
25 ◦C. All solid solutions have cubic syngony (cub). Solid points correspond to stable part of diagram;
open cycles respond metastable one. Hereafter, E(3) is ternary eutonics.
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diagram; open cycles respond metastable one.

Again, the system of two Equations (40) is suitable for calculating each of the
two branches of solubility of solid solutions (each branch has its own system), and the



Processes 2023, 11, 1405 19 of 41

nonvariant point can be calculated by solving the system of four such equations. It is easier,
however, to first determine the composition of the solid phases using the following system: ln SP(ss1)

CA·νH2O + ln a(ss1)
CA·νH2O = ln SP(ss2)

CA·νH2O + ln a(ss2)
CA·νH2O

ln SP(ss1)

C′A·νH2O + ln a(ss1)

C′A·νH2O = ln SP(ss2)

C′A·νH2O + ln a(ss2)

C′A·νH2O

(42)

where ssi denotes solid solution i. This system reflects the obvious fact that solid solutions
are in equilibrium not only with the liquid solution but also with each other. System (42)
can also be used to check the experimental data on solubility.

It should be noted that model parameters of the solvent-free solid phase can be deter-
mined from indirect data such as solubility in another solvent, fusibility diagrams, or diagrams
of the resolution of the solid solution. Sometimes, this requires temperature extrapolation.

Among the ternary systems under consideration, there are two diagrams (stable) of
this type; see Figures 11 and 12.
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Figure 11. Solubility diagram of water activity vs. Janecke index of the KCl−NH4Cl−H2O system
at 25 ◦C.

Type IV: Discontinuous (different) series of solid solutions with miscibility gaps due to
differences in hydrate composition.

In this case, the solubility diagram also consists of two branches corresponding to
the crystallization of two solid solutions with different hydrate compositions, whilst their
syngony may be the same or may be different. Here, we also should speak of two different
solid solutions rather than a miscibility gap, as for type III.

What has been said about the calculation of the solubility diagrams of type III remains
valid, except for two peculiarities. First, the missing SP values can often be obtained from
the binary solubility diagram of the component with moderate temperature extrapolation.
Second, the equations of system (8) turn out not to be decoupled from the liquid phase,
since they contain an additional term related to the difference in hydrate composition:
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 ln SP(ss1)
CA·ν1H2O + ln a(ss1)

CA·ν1H2O = ln SP(ss2)
CA·ν1H2O + ln a(ss2)

CA·ν1H2O − (ν2 − ν1) ln a(l)H2O

ln SP(ss1)
C ′ A·ν2H2O + ln a(ss1)

C′A·ν2H2O = ln SP(ss2)

C′A·ν2H2O + ln a(ss2)

C′A·ν2H2O − (ν2 − ν1) ln a(l)H2O

(43)
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As an example, let us present a solubility diagram in the NdCl3–PrCl3–H2O ternary
system at 25 ◦C; see Figure 13 [66].
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Figure 13. Solubility diagram of water activity vs. Janecke index of the NdCl3–PrCl3–H2O system at
25 ◦C [66]. Solid solutions are PrxNd1−xCl3·7H2O and PrxNd1−xCl3·6H2O.

Type V: Internal series of solid solutions.

Two main subtypes can be distinguished here.

Subtype Va.
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This subtype is caused by the dehydration of solvated solid solutions due to decreasing
water activity as the concentration of components in the liquid phase increases. A new
solid solution curve with lower water content can “wedge” into the crystallization curve of
solid solutions with higher water content. Basic solubility diagrams of this type are shown
in Figure 14.
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Figure 14. Basic schemes of diagram of solubility of the CA− C′A−H2O ternary system with the
dehydration of solid solution. CX C′1−XA·Q1H2O→ CX C′1−XA·Q2H2O+ (Q1−Q2)H2O (Q1 > Q2).

Waters activities of dehydration of binary crystal hydrates are ads(CA·Q1H2O)
W and ads(C′A·Q1H2O)

W .

As example of this type of diagram, we can point to the following: the
MgSO4 −NiSO4 −H2O system at 35 ◦C, in which a series of MgxNi1−x·6H2O solid solu-
tions of type Ia appear “inside” a series of the MgxNi1−x·7H2O solid solutions belonging
to type Ia [67,68]; and the CoSO4 −NiSO4 −H2O system above 26 ◦C, in which a series of
the CoxNi1−x·6H2O solid solutions of type Ia “lies on” the miscibility gap in a series of the
CoxNi1−x·7H2O solid solutions belonging to type III [69,70].
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Subtype Vb. Solid solutions on the base of a ternary compound (double salt).

As an example, we can consider the solubility diagram of the system MgCl2−FeCl2−H2O
within 40–60 ◦C, where three series of solid solutions are crystallized: MgxFe′1−xCl2·6H2O
based on MgCl2·6H2O, Mg′yFe1−yCl2·4H2O based on FeCl2·4H2O, and (MgCl2)z·(FeCl2)1−z·
8H2O [71–73]. The scheme of the solubility diagram in this case is shown in Figure 15. The
calculation algorithm in this case is also preserved, but it should be taken into account that
all parameters of the middle solid solution are not available and must be determined by
fitting procedure.
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Type VI: Solid solutions with the variable water content, or so-called “abnormal
solid solutions”.

As for solid solutions with variable water content in water–salt systems, there is no
consensus in the literature either on the mechanism of their formation or on the components
that form them. Some authors even question the very fact of their existence. Accordingly,
consideration of such solutions is out of the scope of this paper.

3. Diagrams of Quaternary Reciprocal Systems under Formation of Ternary Reciprocal
Solid Solutions
3.1. Backgrounds of Modeling Ternary Reciprocal Solid Solutions

A multicomponent system C, C′, C′′ . . .
∣∣∣∣A, A′, A′′ . . . (−H2O) is called reciprocal if

at least one reversible chemical reaction can occur:

CA′ + C′A � CA + C′A′ (44)

Here, in general, C, C′ and A, A′ are qualitatively different constituents of substances,
such as cations and anions, elements of A3-groups and B5-groups, alcoholic and acidic
functional groups, etc.

According to the conditions of chemical equilibrium in a phase of variable composition,
the consequence of Equation (44) is the following:

µCA + µ C′A′ = µ C′A + µCA′ (45)

where µi is chemical potential of the i-th component in the phase.
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In the modeling of the liquid phase on the basis of well-known Friedman axiomatics
(most often used in modeling of electrolyte solutions, for example, in the Pitzer model),
when the asymmetric normalization of excess thermodynamic functions (in infinitely dilute
solution water activity equal to 1 and logarithm of activity coefficient of any salt equal to 0)
is used, no additional concordance with Equation (45) is required, since

∆ ln a∞(l) = ln a∞(l)
CA + ln a∞(l)

C′A′ − ln a∞(l)
C′A − ln a∞(l)

CA′ ≡ 0

∆G0(l) = µ
0(l)
CA + µ

0(l)
C′A′ − µ

0(l)
C′A − µ

0(l)
CA′ ≡ 0

(46)

where a∞(l)
i and µ

0(l)
i are the activity and standard chemical potential of the i-th salt in an

infinitely dilute solution, and ∆G0(l) is the standard change in the Gibbs energy of reaction
(44) in an infinitely diluted solution. Incidentally, to agree with equations such as (46) in
calculations in reciprocal systems, we need to unify ternary parameters (such as θC,C′ and
θA, A′ in Pitzer equations) in conjugated systems C, C′

∣∣∣∣A−H2O and C, C′
∣∣∣∣A′ −H2O,

C
∣∣∣∣A, A′ −H2O and C′

∣∣∣∣A, A′ −H2O.
If symmetric normalization (the logarithm of the activity coefficient equals to 0 for

any pure component) is used in the modeling in the reciprocal system—as is the case, for
example, in the solid solution model—then

∆ ln a(s) = ln a(s)CA·νH2O + ln a(s)C′A′ ·νH2O − ln a(s)C′A·νH2O − ln a(s)CA′ ·νH2O 6= 0

∆G0(s) = µ
0(s)
CA·νH2O + µ

0(s)
C′A′ ·νH2O − µ

0(s)
C′A·νH2O − µ

0(s)
CA′ ·νH2O 6= 0

(47)

because of the different standard state for pure salts.
The problem of harmonization of the model of reciprocal solid solutions with Equa-

tion (45) was solved by one of the authors in papers [74,75] for the case of calculating
the fusibility diagrams of reciprocal A3B5 systems. For the ternary reciprocal regular
solution of isovalent substitution CxC′1−x

∣∣∣∣AyC′1−y·νH2O (ν can be equal to zero as for
Kx(NH4)1−xClyBr1−y, in our case), we have

µ
(s)
CA·νH2O = µ

0(s)
CA·νH2O + RT ln(xy) + (1− x)2

[
yα

(s)
CA−C′A + (1− y)α(s)CA′−C′A′

]
+

(1− y)2
[

xα
(s)
CA−CA′ + (1− x)α(s)C′A−C′A′

]
+ (1− x)(1− y)∆G0(s)

µ
(s)
C′A·νH2O = µ

0(s)
C′A·νH2O + RT ln((1− x)y) + x2

[
yα

(s)
CA−C′A + (1− y)α(s)CA′−C′A′

]
+

(1− y)2
[

xα
(s)
CA−CA′ + (1− x)α(s)C′A−C′A′

]
+ x(1− y)∆G0(s)

µ
(s)
CA′ ·νH2O = µ

0(s)
CA′ ·νH2O + RT ln(x(1− y)) + (1− x)2

[
yα

(s)
CA−C′A + (1− y)α(s)CA′−C′A′

]
+

y2
[

xα
(s)
CA−CA′ + (1− x)α(s)C′A−C′A′

]
+ (1− x)y∆G0(s)

µ
(s)
C′A′ ·νH2O = µ

0(s)
C′A′ ·νH2O + RT ln((1− x)(1− y)) + x2

[
yα

(s)
CA−C′A + (1− y)α(s)CA′−C′A′

]
+

y2
[

xα
(s)
CA−CA′ + (1− x)α(s)C′A−C′A′

]
+ xy∆G0(s)

(48)

where α
(s)
i−j are the regular model parameters of the binary solid solution of the correspond-

ing syngony (see Table 3). The value of ∆G0(s) arising due to different normalization is
easily obtained from the solubility products of the constituents of the solid solution. In fact,

ln SPi =
µ

0(s)
i − µ

0(l)
i

RT
(49)

and so,
∆G0(s) ≡ ∆ ln SP = ln SPCA′ + ln SPC′A − ln SPCA − ln SPC′A′ (50)
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3.2. Calculation Algorithm of Solubility Diagram of Quaternary Reciprocal Systems under Solid
Solution Formation

According to the Gibbs phase rule, in a quaternary reciprocal water–salt system at T,
P = const, up to three solid solutions can coexist with the liquid phase. Such solid solutions
may differ in hydrate composition or in crystalline lattices, or, if the above coincide, have a
miscibility gap due to diffusion instability. In general, we can distinguish approximately
the same cases as for the ternary systems above.

Case I: Continuous series (field) of solid solutions without miscibility gaps.

We were unable to find examples of such diagrams among reciprocal water–salt sys-
tems, but they are known for quaternary systems with a common ion ([17], the
Mg2+, Ni2+, Zn2+

∣∣∣∣∣∣SO2−
4 −H2O system at 25 ◦C, with the only field of crystallization

of the MgxNiyZn1−x−y·7H2O solid solutions) and for quaternary high-temperature solubil-
ity (fusibility) diagrams ([76], the Ga, In, P, As− Pb system at 600 ◦C, where a continuous
field of crystallization of the GaxIn1−xPyAs1−y solid solutions exists). However, any solu-
bility diagram of a reciprocal system always includes exactly such elements, namely the
crystallization fields of solid solutions of a certain type.

Let us consider, for example, the two-phase equilibrium in the quaternary reciprocal
system K+, NH+

4

∣∣∣∣Cl−, Br− −H2O at 25 ◦C between a liquid phase and the ternary recip-
rocal solid solutions based on the cubic face-centered lattice, K+

x (NH+
4 )1−xCl−y Br−1−y

(c f c).
According to the phase equilibrium conditions, one can write

ln a(l)KBr = ln SP(c f c)
KBr + ln(xy) +

α
(c f c)
K−NH4

RT (1− x)2 +
α
(c f c)
Cl−Br
RT (1− y)2+

(1− x)(1− y) ∆ ln SP(c f c)

ln a(l)KCl = ln SP(c f c)
KCl + ln(x(1− y)) +

α
(c f c)
K−NH4

RT (1− x)2 +
α
(c f c)
Cl−Br
RT y2−

(1− x)y ∆ ln SP(c f c)

ln a(l)NH4Cl = ln SP(c f c)
NH4Cl + ln((1− x)y) +

α
(c f c)
K−NH4

RT x2 +
α
(c f c)
Cl−Br
RT (1− y)2−

x(1− y) ∆ ln SP(c f c)

(51)

where α
(c f c)
K−NH4

= yα
(c f c)
KCl−NH4Cl + (1− y)α(c f c)

KBr−NH4Br

α
(c f c)
Cl−Br = xα

(c f c)
KCl−KBr + (1− x)α(c f c)

NH4Cl−NH4Br

(52)

and
∆ ln SP(c f c) = ln SP(c f c)

KBr + ln SP(c f c)
NH4Cl − ln SP(c f c)

NH4Br − ln SP(c f c)
KCl (53)

The fourth equation (ln a(l)NH4Br = · · · ) in the system (51) is omitted because it is a
linear combination of the first three due to condition (45).

The system of Equation (51) contains five independent variables. Three of them
correspond to the composition of the liquid phase (for example, molalities of any three
salts, with the fourth molality linked to them by Equation (44) or via the electroneutrality
equation), and the other two correspond to solid solution composition. Thus, we describe a
bivariate surface of two-phase equilibrium.

We can introduce up to two additional conditions in the numerical solution of the
system (51). For example, we can calculate a water isoactivity line in the field of solid
solution crystallization by specifying the value aw, or calculate the diagonal cross section of
the diagram by setting y(l)

K+ = y(l)
Cl−

, etc.
When using a solid solution model other than the regular one, the problem to be

solved is not essentially different.

Case II: Series of solid solutions with miscibility gaps due to diffusion instability.
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The solubility diagram in this case consists of two fields, corresponding to the crystal-
lization of two solid solutions with the same qualitative composition, and one monovariant
curve corresponding to the three-phase equilibrium of the saturated liquid solution with
both solid solutions. System (51) is still valid for each of the fields. The monovariant curve
can be calculated either by solving the system of six nonlinear equations (three for each
solid solution), or as follows.

The loss of diffusion stability in the ternary reciprocal solution corresponds to the condition∣∣∣∣∣∣
∂2G(s)

∂x2
1

∂2G(s)

∂x1∂x2

∂2G(s)

∂x2∂x1
∂2G(s)

∂x2
2

∣∣∣∣∣∣ = 0 (54)

where G(s) is that part of the average molar Gibbs potential of solid solutions whose second
derivatives of the composition are nonzero. In our case,

G(s)

RT = xy ln(xy) + x(1− y) ln(x(1− y)) + (1− x)y ln((1− x)y)+

(1− x)(1− y) ln((1− x)(1− y)) +
α
(s)
C−C′
RT x(1− x) +

α
(s)
A−A′
RT y(1− y)

(55)

This equation yields two monovariant curves corresponding to the marginal composi-
tions of solid solutions.

As an example, we can point to the quaternary high-temperature solubility dia-
gram of the Ga, In, As, Sb − Pb system at 500 ◦C, where the field of crystallization of
the GaxIn1−xAsySb1−y solid solutions with the lattice of sphalerite has a miscibility gap.

Case III: Two series of solid solutions of the same qualitative composition with different
crystal lattice structures.

A perfect example is the solubility diagram of the considered quaternary system
K+, NH+

4

∣∣∣∣Cl−, Br− −H2O at 25 ◦C. It consists of two bivariant fields of solid solutions that
crystallize in cubic face-centered (cfc) and cubic (cub) lattices, and one monovariant curve
corresponding to the crystallization of both solid solutions, Kx(NH4)1−xCly Br1−y

(c f c) and
Kx(NH4)1−xCly Br1−y

(cub).
Again, system (51) is valid for each of the fields, while the monovariant curve can

be obtained by solving the system of six nonlinear equations (three for each solid solu-
tion). Alternatively, one can solve a system of three nonlinear equations with respect
to the four variables corresponding to the compositions of equilibrium solid solutions,(

x(c f c) ≡ x1, y(c f c) ≡ y1

)
and

(
x(cub) ≡ x2, y(cub) ≡ y2

)
:



ln SP(c f c)
KCl + ln(x1y1) +

α
(c f c)
K−NH4

RT (1− x1)
2 +

α
(c f c)
Cl−Br
RT (1− y1)

2+

(1− x1)(1− y1) ∆ ln SP(c f c) =

ln SP(cub)
KCl + ln(x2y2) +

α
(cub)
K−NH4

RT (1− x2)
2 +

α
(cub)
Cl−Br
RT (1− y2)

2+

(1− x2)(1− y2) ∆ ln SP(cub)

ln SP(c f c)
KBr + ln(x1(1− y1)) +

α
(c f c)
K−NH4

RT (1− x1)
2 +

α
(c f c)
Cl−Br
RT y2

1−
(1− x1)y1 ∆ ln SP(c f c) =

ln SP(cub)
KBr + ln(x2(1− y2)) +

α
(cub)
K−NH4

RT (1− x2)
2 +

α
(cub)
Cl−Br
RT y2

2−
(1− x2)y2 ∆ ln SP(cub)

ln SP(c f c)
NH4Cl + ln((1− x1)y1) +

α
(c f c)
K−NH4

RT x2
1 +

α
(c f c)
Cl−Br
RT (1− y1)

2+

x1(1− y1) ∆ ln SP(c f c) =

ln SP(cub)
NH4Cl + ln((1− x2)y2) +

α
(cub)
K−NH4

RT x2
2 +

α
(cub)
Cl−Br
RT (1− y2)

2+

x2(1− y2) ∆ ln SP(cub)

(56)
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This system reflects the trivial fact that cub and cfc solid solutions are in equilibrium
with each other regardless of their equilibrium with the saturated liquid solution.

The results of the calculation of the solubility diagram are presented in the next section.

Case IV: Two series of solid solutions of different hydrate compositions.

This case resembles the previous one. Again, system (51) is valid for each of the fields
of each solid solution, and the monovariant curve can be obtained by solving the system
of six nonlinear equations. However, a system of equations similar to (56) cannot be used
due to the appearance of additional terms related to the solvent activity in the liquid phase
(compare with Equation (43)).

Case V: Series of solid solutions on the base of a ternary compound.

An example of a system with the formation of reciprocal solid solutions based on
a compound is the K+, NH+

4 , Mg2+
∣∣∣∣∣∣Cl−, Br− −H2O system at 25 ◦C, where potassium-

ammonium-chloride-bromide carnallite (Kx(NH4)1−x·MgCl2yBr2−2y·6H2O) crystallizes.
The field of its crystallization is also described by a system of equations similar to (51).

4. Results for the Diagram of Solubility of Quaternary Reciprocal System
K+, NH+

4

∣∣∣∣Cl−, Br− −H2O at 25 ◦C

The results of the calculation of the solubility diagram of this system in comparison
with the available experimental data [77] are shown in Figure 16. There is excellent agree-
ment between the calculation and experiment. Figures 16–20 show the results of solving
the system of Equation (56) with the imposition of additional conditions: isoconcentrates of
cations and anions as well as water isoactivity lines.
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∣∣∣∣Cl−, Br− −H2O at 25 ◦C in solvent-free
concentration space (Janecke indexes). Gray circles denote experimental data [77], and straight
segments are tie lines. The minimum of water activity is designated by black points.
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Figure 17. Isoconcentrates of potassium (YK, “vertical” thin curves) and chlorine (YCl, “horizontal”
dotted curves) in the liquid phase of the K+, NH+

4

∣∣∣∣Cl−, Br− −H2O system at 25 ◦C.
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in the variables of liquid phase. The dotted curves (𝐴( ) − 𝐴( ) and 𝐴( ) − 𝐴( )) indicate the lines of 
incomplete alyotropes. 
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Figure 19. Fragment of solubility diagram of the K+, NH+

4

∣∣∣∣Cl−, Br− −H2O system at 25 ◦C: water
isoactivity lines in the field of crystallization of the Kx(NH4)1−xCly Br1−y

(c f c) solid solutions in the
concentration variables of the latter. The designations are the same as in Figure 18.
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All diagrams are shown in the Janecke coordinate system, i.e., as projections of volu-
metric figures on the plane of the salt components, or in other words, in the solvent-reduced
(solvent-free) concentration space: YK =

mK+

mK++mNH+
4

YCl =
mCl−

mCl−+mBr−

(57)

where mi denotes molalility of ion i, and mK+ + mNH+
4
= mCl− + mBr− , according to the

electroneutrality equation.
As noted above, the system contains two crystallization fields of ternary reciprocal

solid solutions with cubic face-centered and cubic lattices and the monovariant curve of
their cocrystallization. The monovariant curves of liquidus and solidus have extremums
(minima) of water activity, i.e., there is an incomplete (or conditional) alyotrope. In the
solvent-free concentration space, the figurative points of the liquid solution and both solid
phases belong to the same straight line at the alyotrope point.

5. Applicability of Analogues of Gibbs–Roozeboom Rules and Gibbs–Konovalov
Laws to Multicomponent Systems

Second Rule (Law). As noted already, the analogue of the second law, like its prototype,
is universal, and valid for systems with an arbitrary number of components in any way of
changing the composition. We will not discuss it further.

5.1. Motion along the Open Evaporation–Crystallization Curves at T = const and P = const

First Rule (Law). The equation of the open evaporation–crystallization process (in
other words, the mass balance equation) in the condition of two-phase equilibrium (s–l) in
the solvent-reduced concentration space has the form:

d
→
Y
(l)

= −(
→
Y
(s)
−
→
Y
(l)
)dM(s) (58)

where dM(s) is the mass of the solid solution in moles (without taking into account the
solvent content), which is formed from 1 mole of liquid phase during evaporation. This
means in scalar form: dy(l)i

dy(l)j


T,P,evar−cryst

=
y(s)i − y(l)i

y(s)j − y(l)j

(59)

or (numbers k and q are arbitrary)

dy(l)k =
y(s)k − y(l)k

y(s)q − y(l)q

dy(l)q (60)

As stated earlier, the van der Waals differential equation in the metric of incomplete
Gibbs potential (8) and in the liquid phase variables has the form

(
→
Y
(l)
−
→
Y
(s)
)Ĝ[w](l)d

→
Y
(l)

= n[w](l→s)
w dµw (61)

Let us convert this equation to the scalar form and substitute (60):

−∑i ∑k

(
y(s)i − y(l)i

)
Ĝ[w](l)

(
y(s)k − y(l)k

)
= n[w](l→s)

w

(
y(s)q − y(l)q

) dµw

dy(l)q

(62)
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Since the double sum in the left part is greater than zero according to the stability
criteria, and n[w](l→s)

w is less than zero according to the physical sense,(
dµw/dy(l)q

)
T,P,evar−cryst

> 0 if y(s)q > y(l)q (63)

We proved the analogue of the first rule (law) for diagrams of solubility under the
formation of solid solutions in a multicomponent (reciprocal) system:

When moving along a curve of open evaporation–crystallization in a multicomponent
(reciprocal) system at constant pressure and temperature, the chemical potential of the
solvent increases as the reduced (calculated without taking into account the solvent) content
in the solid solution of the component—whose solventless content in the solid solution is
higher than in the liquid solution—increases.

In exactly the same way, we can obtain the corresponding rules for motion along a
curve of open crystallization on multicomponent (reciprocal) diagrams of fusibility and
along curves of open evaporation on multicomponent diagrams of vapor–liquid.

Third Rule (Law). Let us write Equation (62) in the solid phase composition variables

−∑i ∑k

(
y(l)i − y(s)i

)
Ĝ[w](s)

(
y(l)k − y(s)k

)
= n[w](s→l)

w

(
y(l)q − y(s)q

) dµw

dy(s)q

(64)

and divide one by the other. We immediately obtain dy(l)q

dy(s)q


T,P,evar−cryst

= −n[w](s→l)
w

n[w](l→s)
w

(65)

Since n[w](l→s)
w and n[w](s→l)

w always have opposite signs according to physical sense,(
dy(l)q /dy(s)q

)
T,P,evar−cryst

> 0 (66)

This is an analogue of the third rule (law) for diagrams of solubility under the forma-
tion of solid solutions in a multicomponent (reciprocal) system:

Compositions of liquid and solid solutions calculated without taking into account
the solvent always change in the same direction when moving along a curve of open
evaporation–crystallization in multicomponent (reciprocal) system at constant pressure
and temperature.

Of course, corresponding rules for motion along a curve of open crystallization on
multicomponent (reciprocal) diagrams of fusibility and along curves of open evaporation
on multicomponent diagrams of vapor–liquid are also valid, mutatis mutandis.

Let us illustrate the above with the solubility diagram of the K+, NH+
4

∣∣∣∣Cl−, Br− −H2O
system at 25 ◦C. Figure 21 shows the calculation of open evaporation curves, and Figures 22
and 23 present examples of phase diagrams when moving along such curves.

5.2. Motion along the Curves of Incomplete Extrema of Solvent Chemical Potential at T = const and
P = const

Let us denote the belonging to the curve of incomplete extrema of the chemical
potential of the solvent (or the partial pressure of the solvent) as “inex”. It is known that in
the quaternary system, the inex curve is a set of touch points of solvent isotherm–isobar–
isopotentials by concentration sections (see Figure 24). Mathematically,

(
→
Y
(l)
−
→
Y
(s)
)

Ĝ[w](l)d
→
Y
(l)

= 0

dy(l)a = 0

(67)
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where a denotes the salt component of the quaternary system (the ion in the reciprocal
system), which is absent in the ternary alyotrope and appears only in the incomplete
quaternary pseudoalyotropes.
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solid curves. Other designations are as above.
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evaporation–crystallization curve from the point of ternary alyotrope 𝐴( )  to the point of 
incomplete quaternary alyotrope 𝐴( )  in the field of crystallization of the K (NH  ) Cl  Br ( ) solid solutions in the K , NH ||Cl , Br − H O system at 25 °C. 

Figure 22. Liquidus (upper) and solidus (bottom) curves when moving along the open

evaporation–crystallization curve from the point of ternary alyotrope A(3)
2 to the point of incom-

plete quaternary alyotrope A(4) in the field of crystallization of the Kx(NH4 )1−xCly Br1−y
(c f c) solid

solutions in the K+, NH+
4

∣∣∣∣Cl−, Br− −H2O system at 25 ◦C.
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Figure 24. Incomplete extrema curves in the field of crystallization of the Kx(NH4 )1−xCly Br1−y
(c f c)

and Kx(NH4 )1−xCly Br1−y
(cub) solid solutions in the system K+, NH+

4

∣∣∣∣Cl−, Br− −H2O at 25 ◦C
are dashed lines. The dotted straight lines indicate the concentration sections.

First Rule (Law). For the curve of incomplete extrema, we can easily obtain

∆[w](l)
2

G[w](l)
22

(
y(s)a − y(l)a

)
= n[w](s→l)

w

(
dµw

y(l)a

)
T,P,inex

(68)
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Since
(

∆[w](l)
2 /G[w](l)

22

)
> 0, according to the stability criteria, and n[w](s→l)

w > 0,
according to the physical sense,(

dµw/dy(l)a

)
T,P,inex

> 0 if y(s)a > y(l)a (69)

In other words, when moving along the inex curve in a quaternary (reciprocal) system
at constant pressure and temperature, the chemical potential of the solvent increases as the
reduced (calculated without taking into account the solvent) content in the solid solution
of the component—which is absent in the ternary alyotrope, and appears only in the
incomplete quaternary pseudoalyotropes whose solventless content in the solid solution is
higher than in the liquid solution—increases.

Third Rule (Law). Again, we can rewrite Equation (68) in solid solution variables and
divide these two equations by each other:

−
G[w](s)

22

G[w](l)
22

=
n[w](s→l)

w

n[w](l→s)
w

(
y(l)a

y(s)a

)
T,P,inex

(70)

and (
y(l)a

y(s)a

)
T,P,inex

> 0 (71)

In other words, in liquid and solid solutions, the solventless content of the salt (the ion
in the reciprocal system) component of the system, which is absent in the ternary alyotrope
and appears only in the incomplete quaternary pseudoalyotropes, always changes in the
same direction when moving along a incomplete extreme curve in a quaternary (reciprocal)
system at constant pressure and temperature.

Illustrations of the rules considered are shown in Figures 25–27.
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Again, the corresponding rules for motion along a curve of incomplete extrema on
ternary (reciprocal) diagrams of fusibility and of vapor–liquid are also valid.

There are two particular points to be made about the analogues of the first and third
laws in this case. First, it is impossible to formulate such analogues for those components
(ions) of the system that are involved in the ternary alyotrope; Laws I and III are invalid
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for them. Second, it is impossible to generalize Laws I and III to arbitrary n-component
systems (n ≥ 5).

5.3. Motion along the Curves of Thermodynamic Simplification

Thermodynamic simplification curves are lines along which the chemical potentials
of two of the three components (in the case of ternary systems) change by equal amounts.
Mathematically,

Dµ
(k)
i = Dµ

(k)
j (72)

where Dµ
(k)
i is the differential of the chemical potential of the i-th component of phase k,

which takes into account changes in the concentration variables of the phase composition,
but not changes of T or P. We will denote such curves as “tsij”.

Let us introduce a thermodynamic simplification curve (e.g., ts23) in a reduced concen-
tration space, and the incomplete Gibbs potential metric

d(µ2)T,P = d(µ3)T,P or d(µ2 − µ3)T,P = 0 or d

(
∂G[w]

∂y2

)
ts23

= 0 (73)

We have omitted the phase index because this equation can be written in both liquid (l)
and solid (s) phase variables according to the phase equilibrium conditions, i.e., ts(l)23 ≡ ts(s)23 .
Moreover, the last equality in (73) means that

G[w](l)
12 dy(l)1 + G[w](l)

22 dy(l)2 = 0 (74)

and
G[w](s)

12 dy(s)1 + G[w](s)
22 dy(s)2 = 0 (75)

It is worth noting that thermodynamic simplification curves, unlike, for example, incom-
plete extrema curves, fill the entire concentration space of the system (see Figures 28 and 29).
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First Rule (Law). Substituting (73)–(75) into the van der Waals Equation (61) after
simple transformations gives

n[w](l→s)
w

(
dµw

dy(l)1

)
ts23

G[w](l)
22 =

(
y(s)1 − y(l)1

)
∆[w](l)

2 (76)

where ∆[w](l)
2 =

∣∣∣∣∣G[w](l)
11 G[w](l)

12

G[w](l)
21 G[w](l)

22

∣∣∣∣∣ > 0, according to the stability criteria of the liquid phase,

and G[w](l)
22 > 0 and n[w](l→s)

W < 0, according to the physical sense. So,(
dµw/dy(l)1

)
ts23

> 0 if y(s)1 > y(l)1 (77)

In other words, when moving along a curve of thermodynamic simplification in
a quaternary (reciprocal) system, the chemical potential of the solvent increases as the
reduced (calculated without taking into account the solvent) content in the solid solution
of the component—whose solventless content in the solid solution is higher than in the
liquid solution if such a component does not participate in the condition of thermodynamic
simplification—increases.

Third Rule (Law). In exactly the same way as above, we obtain(
dy(s)1

dy(l)1

)
ts23

= −
G[w](s)

22

G[w](l)
22

∆[w](l)
2

∆[w](s)
2

n[w](s→l)
w

n[w](l→s)
w

> 0 (78)
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In other words, when moving along a curve of thermodynamic simplification in a
quaternary (reciprocal) system, the content of component—which does not participate in
the condition of thermodynamic simplification—changes in liquid and solid solutions in
the same direction.

Illustrations of these rules are shown in Figures 30 and 31.
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The following is important:
One cannot formulate analogues of Laws I and III for those components that are

involved in the thermodynamic simplification condition;
One cannot extend these laws to more component solubility diagrams.

6. Conclusions

Isobaric fusibility diagrams of binary systems with solid solutions in variables
“temperature–composition”, liquid–vapor diagrams of binary systems (in variables
“temperature–composition” at constant pressure or in variables “pressure–composition” at
constant temperature), and solubility diagrams of ternary systems with solid solutions in
variables “chemical potential (or activity) of solvent–Janecke indexes of dissolved compo-
nents” at T, P = const are topologically isomorphic.

This isomorphism is a consequence of the complete isostructurality of the systems of
differential van der Waals phase equilibrium shift equations in correspondingly binary and
ternary systems under the specified conditions and concentration variables.

All of the aforementioned phase diagrams are governed by Gibbs–Konovalov laws
and Gibbs–Roozeboom rules or their analogues.

The mentioned topological isomorphism can be extended to the fusibility diagrams
of ternary systems with solid solutions, liquid–vapor diagrams of ternary systems, and
solubility diagrams of the quaternary systems with solid solutions if the composition of
one of the equilibrium phases changes along the following monovariant curves: open
evaporation or crystallization, partial extrema, thermodynamic simplification. In these
cases, analogues of Gibbs–Konovalov laws and Gibbs–Roozeboom rules are also valid.

In the case of composition changes along the monovariant curves of open phase processes
(open evaporation and/or crystallization) in systems with an arbitrary number of components,
there also is the isomorphism of different types of phase diagrams and governance of the
latter by analogues of Gibbs–Konovalov laws and Gibbs–Roozeboom rules.
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