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Abstract: Several metaheuristic algorithms have been implemented to solve global optimization
issues. Nevertheless, these approaches require more enhancement to strike a suitable harmony
between exploration and exploitation. Consequently, this paper proposes improving the arithmetic
optimization algorithm (AOA) to solve engineering optimization issues based on the cuckoo search
algorithm called AOACS. The developed approach uses cuckoo search algorithm operators to improve
the ability of the exploitation operations of AOA. AOACS enhances the convergence ratio of the
presented technique to find the optimum solution. The performance of the AOACS is examined
using 23 benchmark functions and CEC-2019 functions to show the ability of the proposed work
to solve different numerical optimization problems. The proposed AOACS is evaluated using four
engineering design problems: the welded beam, the three-bar truss, the stepped cantilever beam,
and the speed reducer design. Finally, the results of the proposed approach are compared with
state-of-the-art approaches to prove the performance of the proposed AOACS approach. The results
illustrated an outperformance of AOACS compared to other methods of performance measurement.

Keywords: machine learning; AOA; cuckoo search; welded beam; Truss bar

1. Introduction

Increasingly complicated optimization issues have arisen due to the rapid expansion
of numerous application domains. Traditional optimization techniques take too much time
and money to solve these new optimization challenges. It is common knowledge that exact
and rigorous answers are not required in most situations [1]. That is, due to the significantly
reduced time and costs, estimated ideal solutions can be acceptable in practice. In order
to address these non-convex, non-linear limitations and difficult optimization problems,
numerous optimization algorithms have been introduced in recent years. These algorithms
have proven to be quite successful in solving these real-world problems.
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The use of optimization techniques to address issues in the actual world is common.
These challenging, nonlinear, and multimodal real-world issues often need the use of
metaheuristic algorithms, which have proven to be reliable optimization techniques in such
circumstances. Metaheuristic algorithms are popular because of their simplicity in design
and implementation, gradient-freeness, and ability to work around obstacles.

Metaheuristic algorithms efficiently solve a wide range of real-world problems; this
comes from the nature of these algorithms and adopts a gradient-free method. Various meta-
heuristic techniques have been released recently based on natural procedures, collaborative
behavior, or scientific laws.

Four general categories can be used to categorize metaheuristic algorithms, as shown
in Figure 1:
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Human-based algorithms: Fireworks Algorithm (FW) [2], Child Drawing Develop-
ment Optimization Algorithm (CDD) [3], Teaching-based learning algorithm (TBLA) [4],
Socio Evolution & Learning Optimizer (SELO) [5], Genetic algorithm (GA) [6], and Har-
mony Search (HS) [7]. Swarm-based algorithms: Particle Swarm Optimization (PSO) [8],
Prairie Dog Optimization Algorithm (PDOA) [9], Grasshopper Optimization Algorithm
(GOA) [10], Moth Flame Optimization (MFO) [11], Firefly Algorithm (FA) [12], Aquila
Optimizer (AO) [13], and Ant lion optimizer [14]. Evolutionary algorithms (EA): Back-
tracking Search Optimization Algorithm (BTSO) [15], Evolutionary Strategies algorithm
(ES) [15], Differential evolution (DE) [16], Genetic Algorithm (GA) [6], and Tree Growth
Algorithm (TGA) [17]. Physics-based algorithms: Multi-verse Optimizer (MVO) [18], Black
Hole Algorithm (BHA) [19], Space Gravitational Algorithm (SGA) [20], The arithmetic
optimization algorithm (AOA) [21], and Henry Gas Solubility Optimization (HGSO) [22].
An overview of the given method is presented in Table 1.

Table 1. An overview of the presented methods.

Ref. Method Name Abbreviation Idea Year

[1] Fireworks Algorithm FW
There are two different sorts of explosion (search) procedures used
and there are well-designed devices for containing a variety of
sparks.

2010

[2] Child Drawing Development
Optimization Algorithm CDD

By applying the golden ratio to enhance the beauty of their work,
the learning behavior and cognitive development of the child are
optimized.

2022

[3] Teaching-based learning
algorithm TBLA The suggested approach is based on how a teacher’s influence

affects students’ performance in a class. 2012

[4] Socio Evolution & Learning
Optimizer SELO This approach draws its inspiration from how people develop social

skills when they are arranged into families in a societal setting. 2018

[8] Prairie Dog Optimization
Algorithm PDOA This approach using prairie dogs behaves as they would in their

native environment. 2022

[9] Aquila optimizer AO This technique draws inspiration from the way aquilas grab their
prey in the wild. 2021

[19] The arithmetic optimization
algorithm AOA This technique makes use of the distributional properties of the

primary mathematical arithmetic operators. 2021
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Still, not all of the issues can be resolved by these techniques [23,24]. Heuristic algo-
rithms are currently used to address optimization problems in many different disciplines,
including optimal power flow problems and parameter optimization of photovoltaic mod-
els [25,26]. Therefore, in the face of complex difficulties, we must provide algorithms with
more efficiency [27].

A population-based metaheuristic method called the arithmetic optimization algo-
rithm (AOA) was just recently proposed. The approach is based on how the addition,
subtraction, multiplication, and division arithmetic operators behave with respect to dis-
tributivity [21].

The AOA algorithm proves its stable and robust performance in different fields,
such as data clustering, power systems, power controllers, feature selection, and image
processing. In this paper [28], the authors propose an improved AOA algorithm based on
flow direction for data clustering. The proposed algorithm is validated on different data
clustering problems and outperforms compared to other algorithms. Elkasem, Ahmed
HA, et al. present an approach to using fuzzy logic and AOA algorithms to enhance the
performance of power controllers, such as the proportional-integral-derivative (PID); the
conducted results show the superiority of the PID based on fuzzy logic and AOA [29]. A
binary version of AOA extracts and selects features from images to detect osteosarcoma.
AOA with different algorithms accurately classifies the images [30]. Ewees, Ahmed A.,
et al. accelerated the AOA algorithm with hybridization of AOA and genetic algorithms to
enhance the algorithm search method. The proposed algorithm is implemented on the Cox
proportional hazards method [31].

The AOA algorithm is widely used for solving several optimization problems because
of the simplicity, robustness, and effectiveness of the results in terms of solving optimization
problems [32]. However, AOA would also easily fall in the local optima for optimizing some
complex issues, and the exploration and exploitation capabilities are less significant [33].

The primary function in avoiding local optima and balancing exploitation and ex-
ploration in the fundamental AOA algorithm is played by the control parameter and the
position vectors C_Iter. In order to integrate the advantages of AOA and CS, we present a
hybrid approach in this study. To improve AOA’s search procedure and find solutions that
are close to optimal, the AOACS is created. Specifically, a new formulation of the C_ Iter
uses the CS algorithm.

This paper proposes a novel optimization algorithm based on the cuckoo search al-
gorithm for solving engineering design problems. The algorithm is specifically designed
to optimize arithmetic expressions that arise in engineering design problems, such as
mathematical models for physical systems, circuits, or mechanical systems. The cuckoo
search algorithm is a nature-inspired optimization algorithm that is based on the behavior
of cuckoo birds. The algorithm is known for its ability to efficiently search large solution
spaces and find optimal or near-optimal solutions. The proposed algorithm in this work
enhances the cuckoo search algorithm by introducing an accelerated arithmetic optimiza-
tion technique that exploits the mathematical structure of the optimization problem. The
main objective of the proposed algorithm is to minimize the objective function, which
represents the cost or performance of the system being optimized. The algorithm iteratively
searches the solution space using a set of cuckoo nests, each of which contains a potential
solution. The nests are updated using a set of optimization operators, such as mutation
and crossover, which are used to generate new potential solutions. The performance of
the proposed algorithm is evaluated using several benchmark functions and compared
with other state-of-the-art optimization algorithms. The results show that the proposed
algorithm outperforms other algorithms in terms of solution quality and convergence speed.
The proposed algorithm has potential applications in various fields, such as aerospace
engineering, mechanical engineering, and electrical engineering, where optimization of
complex mathematical models is necessary.

The following is a summary of this paper’s significant contributions:
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• We suggest a brand-new hybrid algorithm called AOACS based on the arithmetic
optimization algorithm (AOA) and cuckoo search (CS) approach inspired by the AOA
and CS algorithm design.

• CS aids the suggested algorithm in increasing the diversity of the original population
and its capacity to depart from the local optimum.

• Enhanced AOA exploration and exploitation to increase convergence accuracy.
• Twenty-three benchmark functions and CEC-2019 functions are implemented to in-

crease the ability of AOACS to solve several numerical optimization problems.
• The performance of AOACS is validated using three engineering optimization issues:

the welded beam, the three-bar truss, the stepped cantilever beam, and the speed
reducer design.

• The results indicate the out-performance of AOACS over the basic AOA, CS, and other
metaheuristic approaches.

The following is the order of the paper: The AOA algorithm is presented in Section 2.
The search algorithm for cuckoo is introduced in Section 3. Section 4 description of the
proposed AOACS algorithm. Section 5 discusses the outcomes of applying the AOACS to
engineering challenges. This article is concluded in Section 6.

2. Arithmetic Optimization Algorithm (AOA)

Using several equations and mathematical operators, Abualigah presented this ap-
proach in 2020 [21]. AOA mimics four basic arithmetic operators (i.e., Subtraction (S),
Addition (A), Multiplication (M), Division (D)) and is used to update the positions and
search for the optimal global solutions. For the exploration search, the Multiplication
and Division operators are employed; on the other hand, the Addition and Subtraction
operators are used to execute the exploitation search. Figure 2 shows the AOA optimiza-
tion technique.
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The AOA method begins with a population of unanticipated solutions, just like other
metaheuristics. The objective value of each solution is computed after each iteration. Before
changing the position of keys, two regulating parameters named MOA and MOP in this
method should be modified as follows:

MOA(t) = Min + t×
(

Max−Min
T

)
(1)

where MOA(t) denotes the result of the ith iteration of the function, the maximum number
of repetitions is T, and the current number of repetitions is represented by t. Min and Max
are accelerated processes of the minimum and maximum values.

MOP(t) = 1−
(

t
T

) 1
α

(2)
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where math optimizer probability (MOP) is a coefficient, MOP(t) is the procedure’s weight
at the tth repetition, T is the highest repetitions number, t is the current repetition, and α
illustrates a controlling value. Here, r1 is an integer that is created at random and MOP is a
scaling parameter that encourages further exploration.

A random number named r1 is created to switch between exploitation and exploration
after following MOA and MOP. The following formula is employed for exploration:

xi,J(t + 1) =

{
best(xj)
MOP+ε ÷

(
UBj − LBJ

)
× µ + LBj i f r2 < 0.5

best
(
xj
)
×MOP×

(
UBj − LBj

)
× µ + LBj i f r2 ≥ 0.5

(3)

The current repetition is presented as t, µ is used as controlling element, ε is a small
numeral to evade division by 0, and r3 is an arbitrary value in the range [0, 1]. The following
formula is used for the exploitation.

xi,J(t + 1) =
{

best
(
xj
)
−MOP×

(
UBj − LBj

)
× µ + LBj i f r3 < 0.5

best
(

xj
)
+ MOP×

(
UBj − LBj

)
× µ + LBj i f r3 ≥ 0.5

(4)

where xi,j(t) demonstrates the jth placements of the ith answer at the recent repetition. The
optimal (xj) is the jth placement in the optimal solution. Here, xi (t + 1) denotes the ith
answer in the following repetition. Respectively, UBj and LBj define the jth placements
upper and lower bound values. Algorithm 1 shows the pseudocode for the AOA algorithm.

Algorithm 1 Pseudo-code of AOA algorithm.

Initialize the population size N and the maximum iteration T
Initialize the population size of each search agent Xi (I = 1,2, . . . , N)

While t≤T
Check if the position goes beyond the search space boundary and the adjust it.
Evaluate the fitness values of all search agents
Set Xbest as the position of current best solution
Calculate the MOA value using Equation (1)
Calculate the MOP value using Equation (2)
For i = 1 to N

If r1 > MOA then
Update the search agent’s position using Equation (3)
Else
Update the search agent’s position using Equation (4)
End If

End For
t = t + 1

End While
Return Xbest

3. Cuckoo Search Algorithm

We initially idealize the main elements of the cuckoo-host strategy as a population of
n cuckoos with n nests to discuss the cuckoo search algorithm as simply as possible. In true
cuckoo-host systems, host bird nests usually contain three to four eggs or more, and by
laying its eggs in such nests, a cuckoo can attack many nests. Because each cuckoo may
only affect one host nest at a time while also applying one egg, the number of eggs, nests,
and cuckoos is similar. Thus, an optimization problem’s solution vector, x, can be thought
of as the location of an egg. As a result, there is no longer a need to distinguish between
eggs, cuckoos, and nests. We essentially have the equivalence “egg = cuckoo = nest” as a
result [34]. Algorithm 2 shows the pseudocode for AOA algorithm.

The initial population of the CS algorithm is generated by the Lévy flight algorithm.
In the 1930s, the French mathematician Paul Pierre proposed the Lévy flight, a random
walk mechanism whose walk steps fit the stable heavy-tail distribution that can make big
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jumps at nearby sites with a high probability. Sharp peaks, asymmetry, and lagging were
features of the possibility density allocation of the Lévy flight. It moved in a rhythm that
rotated between periodic short-distance jumps and sporadic long-distance hops, which can
widen the search region for the population and jump out of the local optimal. In nature,
numerous insects and animals, including flies and reindeer, fly in a manner resembling
Lévy flying.

Algorithm 2 Pseudo-code of Cuckoo search algorithm.

Objective function f
(→

x
)

,
→
x = (x1, x2, . . . , xd)

T

Generation t = 1
Initial a population of n host nests xi ( i = 1, 2, . . . , n)
While (t < Stop criterion)

Get a cuckoo (i) randomly by Lévy flight
Evaluate the fitness values of all search agents F
Choose a nest among n (such as c) randomly
If (Fi > Fc)

Replace c by the new solution
End If
Abandon a faction (Pa) of the worst nests and build new ones
Keep the optimal solutions.
Rank the solutions an find the current best.
Update the generation number t = t + 1

End While

4. Hybridization of AOA with CS Algorithm

The elements in AOA swarms would hunt more randomly than CS swarms. However,
elements in the AOA would execute poorer performance than those in the CS swarms
during the exploitation operation. The exploitation ability of elements in AOA swarms
would not be sufficient, and elements in CS swarms would be less qualified than those in
AOA swarms despite the fact that both of these algorithms show a significant performance
in optimization several problems. Therefore, it could be preferable if the exploitation
process of people in CS swarms and the exploration process of elements in AOA swarms
are coupled. Figure 3 illustrates the proposed AOACS algorithm.
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5. Results and Discussion
5.1. Benchmark Functions Description

Table 2 lists the 23 mathematical functions used, their categories, and their mathe-
matical formulation. The unimodal benchmark functions in Table 2 are used because they
only have one optimal solution, making them a good choice for testing the effectiveness of
the proposed optimizer. Table 2 illustrates several mathematical functions. Multimodal
functions contain some peaks, a few local optimums, and only one global optimum, which
makes these benchmark functions the best option when assessing the exploration of the op-
timization process. Further, balancing the exploration and exploitation of any algorithm is
a challenging assignment; thus, the fixed dimension numerical multimodal is used to prove
the outperformance of the proposed algorithm. The minimum value for each function (fmin),
the defined search space limitations, and the considered dimensions are demonstrated in
Table 2.

Table 2. Benchmark functions.

Fun. Fun. Description Dim. Range f min

Unimodal Benchmark Functions

F1 f (x) =
n
∑

i=1
x2

i
10,100 [−100, 100] 0

F2 f (x) =
n
∑

i=0
|xi|+

n
∏
i=0
|xi| 10,100 [−10, 10] 0

F3 f (x) =
d
∑

i=1

(
i

∑
j=1

xj

)2

10,100 [−100, 100] 0

F4 f (x) = maxi{|xi|, 1 ≤ i ≤ n} 10,100 [−100, 100] 0

F5 f (x) =
n−1
∑

i=1

[
100
(

x2
i − xi+1

)2
+ (1− xi)

2
]

10,100 [−30, 30] 0

F6 f (x) =
n
∑

i=1
([xi + 0.5])2

10,100 [−100, 100] 0

F7 f (x) =
n
∑

i=0
ix4

i + random[0, 1)

Multimodal Benchmark Functions

F8 f (x) =
n
∑

i=1

(
−xi sin

(√
|xi|
))

10,100 [−500, 500] −418.9829

F9 f (x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

10,100 [−5.12, 5.12] 0

F10
f (x) =

−20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e

10,100 [−32, 32] 0

F11 f (x) = 1 + 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
10,100 [−600, 600] 0

F12

f (x) = π
n 10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2

[
1 + 10 sin2(πyi+1

)
+

n
∑

i=1
u(xi, 10, 100, 4)

]

yi = 1 + xi+1
4 , u(xi, a, k, m)


K(xi − a)m if xi > a

0 −a ≤ xi ≥ a
K(−xi − a)m −a ≤ xi

10,100 [−50, 50] 0

F13
f (x) = 0.1

(
sin2(3πx1) + ∑n

i=1(xi − 1)2[1 + sin2(3πxi + 1)
]
+

(xn − 1)21 + sin2(2πxn)
)
+ ∑n

i=1 u(xi, 5, 100, 4)
10,100 [−50, 50] 0
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Table 2. Cont.

Fun. Fun. Description Dim. Range f min

Fixed-Dimension Multimodal Benchmark Functions

F14 f (x) =

(
1

500 +
25
∑

j=1

1
j+∑2

i=1

(
xi − aij

))−1

2 [−65, 65] 1

F15 f (x) =
11
∑

i=1

[
ai −

x1(b2
i +bix2)

b2
i +bix3+x4

]2
4 [−5, 5] 0.398

F16 f (x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x2 2 [−5, 5] −1.0316

F17 f (x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 2 [−5, 5] 0.398

F18
f (x) =

[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32xi + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−2, 2] 3

F19 f (x) = −
4
∑

i=1
ci exp

(
−

3
∑

i=1
aij

(
xj − pij

)2
)

3 [−1, 2] −3.86

F20 f (x) = −
4
∑

i=1
ci exp

(
−

6
∑

i=1
aij

(
xj − pij

)2
)

6 [0, 1] −0.32

F21 f (x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 1] −10.1532

F22 f (x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 1] −10.4028

F23 f (x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1
4 [0, 1] −10.5363

The proposed AOACS algorithm’s performance in this part is assessed in two steps;
the first involves processing a complex set of mathematical benchmark functions. Second,
two real word problems are solved using the proposed method to show the performance of
the proposed work. The results are compared with different well-known algorithms, such
as the original AOA, Whale optimization algorithm (WOA), Harris hawks optimization
(HHO), Salp swarm algorithm (SSA), particle swarm optimization (PSO), and Slime mould
algorithm (SMA). The selected methods are the most related and new in this domain. The
worst, best, average, and standard deviation of the finesse values are the four metrics
employed in the comparisons. Furthermore, the Wilcoxon summation rank is utilized to
show the statistical distinctions between AOACS and the rest of the algorithms. Table 3
provides the values for the essential parameters for the used algorithms.

5.2. The Global Optimization Results

The suggested AOACS has been evaluated utilizing 23 more widely used mathe-
matical functions in this area. With the help of several statistical analyses, the proposed
AOACS’s results have been compared with many contemporary state-of-the-art methods
to evaluate and show how well it handles problems involving global optimization. The
original AOA [21], Whale optimization algorithm (WOA) [35], Harris hawks optimiza-
tion (HHO) [36], Salp swarm algorithm (SSA) [37,38], particle swarm optimization (PSO),
and Slime mould algorithm (SMA) [39] are among the algorithms that were taken into
consideration.

The algorithms were applied with the same settings to ensure the fairness of the
experimental results: population size was set to 30, and the maximum number of iterations
was 500 for 30 separate instances. The study and simulations were conducted using
Windows 10 and an Intel Core i7 processor running at 2.3 GHz with 16 GB of RAM. For a
fair comparison, all competitors were run on the MATLAB 2018 platform.
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Table 3. Parameter values of the proposed AOACS algorithm and other algorithms.

Algorithm Parameters

AOACS
µ = 0.5;

α = 5;

PSO

wMax = 0.9;

wMin = 0.2;

c1 = 2;

c2 = 2

WOA

a1 ∈ [2, 0];

a2 ∈ [−1, −2];

b = 1

SSA Random values c2 and c3 [1, 0]

SMA z = 0.01

HHO α = 1.5

AOA µ = 0.5;
α = 5;

5.2.1. Achieved Qualitative Results

The AOACS behaviors regarding the trajectories and convergence are illustrated in
Figure 4 to confirm the effectiveness of the proposed algorithm. The figure shows several
results: functions plotted in 2D fashion appear in the first column. The second column
represents the trajectory of the solution, followed by two columns, the fitness significance,
and convergence, respectively.
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The solution’s magnitude and frequency in the initial iterations may be seen from the
second column (trajectory behavior). They have almost completely disappeared in recent
versions. This shows how AOACS had strong exploration capabilities in the early versions
and strong exploitation capabilities in the later iterations. This tendency suggests that
AOACS can find the ideal answer well. The ability of the AOACS to converge to highly
qualified explanations in fewer repetitions is demonstrated by the average fitness value
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across all solutions among the number of repetitions shown in the third column of Figure 4.
The average fitness value for the AOACS starts high in the early generations.

5.2.2. Results of Simulation of 23 Benchmark Functions and Discussions

Figure 5 compares the convergence curves of the proposed AOACS with those of the
basic AOA and cutting-edge methods to evaluate the effectiveness of the AOACS for the
main balance target exploitation and exploration. In contrast to the SMA, PSO, SSA, WOA,
and HHO, which experienced severe dormancy at the optimal local explanations, the results
demonstrate the smooth convergence of the AOACS by reaching superior quality solutions.
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Figure 5. The comparison approaches behaved in terms of convergence for the test functions (F1–F6,
F10, and F11), where the dimension was 10.

Table 4 statistics compare the performance of the AOACS to that of the standard AOA,
PSO, WOA, SSA, SMA, HHO, and AOACS. It displayed the lowest values of the computed
metrics in the functions of the worst, best, average, and standard deviation (STD) values
by AOACS, demonstrating that it can outperform all other algorithms in around 50% of
all the benchmarks that were taken into consideration (F: 2, 3, 5, 8, 9, 11, 12, 14, 19, 22).
Furthermore, it performs similarly well in the other 50% of the relevant functions. The P-
values acquired utilizing Wilcoxon summation rank with a significant value of 0.05, which
is less than 0.05, demonstrate that the AOACS is superior to the SSA in 18 approaches.
The null hypothesis test is therefore not accepted (h = 1 indicates a significant difference
between the examined optimizers, AOACS and SSA). The P-values for PSO, SMA, HHO,
WOA, SSA, and basic AOA demonstrate that the AOACS outperforms other algorithms
in handling about 13 of the 23 functions; as a result, the null assumption examination is
rejected (h = 1). Additionally, the proposed AOACS is compared to its equivalents while
processing the 23 functions using the Friedman ranking test to determine where it ranks
among them for further investigation. Table 5 lists the classes that were gained.

Table 4. Results from methods of comparison on 23 benchmark functions (F1–F23), where the
dimension is 10.

Function Measure
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

F1 Best 6.12 × 103 3.64 × 102 6.51 × 103 2.76 × 101 1.15 × 102 3.66 × 10−9 3.64 × 10−68

Average 3.00 × 103 1.60 × 102 1.49 × 103 1.11 × 101 5.95 × 101 7.88 × 10−10 7.28 × 10−69

Worst 1.43 × 103 1.81 × 101 3.92 × 101 5.57 × 10−1 2.70 × 101 6.73 × 10−17 1.06 × 10−76

STD 2.07 × 103 1.28 × 102 2.81 × 103 1.25 × 101 3.69 × 101 1.61 × 10−9 1.63 × 10−68

p-value 1.19 × 10−2 2.36 × 10−2 2.69 × 10−1 8.04 × 10−2 6.89 × 10−3 1 3.05 × 10−1

h 1 1 0 0 1 0 0

F2 Best 3.76 × 101 1.14 × 101 0.452 × 101 0.238 × 101 0.494 × 101 9.87 × 10−5 3.77 × 10−27

Average 1.98 × 101 0.450 × 101 0.226 × 101 5.38 × 10−1 0.260 × 101 2.06 × 10−5 7.54 × 10−28

Worst 0.907 × 10−1 0.203 × 101 5.15 × 10−1 2.38 × 10−2 0.103 × 101 2.19 × 10−10 9.73 × 10−39

STD 1.34 × 101 0.394 × 101 0.160 × 101 0.103 × 101 0.162 × 101 4.37 × 10−5 1.68 × 10−27

p-valu×10 1.07 × 10−2 3.39 × 10−2 1.34 × 10−2 2.76 × 10−1 7.03 × 10−3 1 3.23 × 10−1

h 1 1 1 0 1 0 0
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Table 4. Cont.

Function Measure
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

F3 B×10 st 1.74 × 104 7.62 × 103 5.40 × 103 3.15 × 104 2.01 × 103 9.11 × 10−2 8.27 × 10−55

Average 7.44 × 103 3.19 × 103 3.94 × 103 1.75 × 104 7.80 × 102 1.82 × 10−2 1.69 × 10−55

Worst 4.24 × 103 1.19 × 103 1.26 × 103 6.84 × 103 8.88 × 101 5.68 × 10−14 1.54 × 10−63

STD 5.60 × 103 2.60 × 103 1.80 × 103 9.39 × 103 8.89 × 102 4.08 × 10−2 3.68 × 10−55

p-value 1.79 × 10−2 2.54 × 10−2 1.19 × 10−3 3.17 × 10−3 8.56 × 10−2 1 3.46 × 10−1

h 1 1 1 1 0 0 0

F4 Best 6.21 × 101 1.94 × 101 6.43 × 101 7.67 × 101 9.86 × 100 6.42 × 10−5 4.95 × 10−33

Average 3.67 × 101 1.58 × 101 3.64 × 101 5.19 × 101 0.697 × 101 1.93 × 10−5 2.13 × 10−33

Worst 2.10 × 101 1.34 × 101 1.61 × 101 2.52 × 101 0.400 × 101 4.89 × 10−7 7.72 × 10−38

STD 1.65 × 101 0.263 × 101 2.12 × 101 1.98 × 101 0.275 × 101 2.64 × 10−5 2.45 × 10−33

p-value 1.09 × 10−3 9.00 × 10−7 4.89 × 10−3 3.78 × 10−4 4.74 × 10−4 1 1.40 × 10−1

h 1 1 1 1 1 0 0

F5 Best 1.08 × 107 7.00 × 103 4.19 × 105 3.79 × 104 3.63 × 103 0.894 × 101 8.99 × 100

Average 2.98 × 106 2.02 × 103 2.42 × 105 1.94 × 104 2.71 × 103 0.734 × 101 8.94 × 100

Worst 5.59 × 104 3.23 × 102 8.08 × 104 6.84 × 102 5.27 × 102 0.107 × 101 8.79 × 100

STD 4.51 × 106 2.86 × 103 1.34 × 105 1.74 × 104 1.30 × 103 0.351 × 101 8.25 × 10−2

p-value 1.77 × 10−1 1.55 × 10−1 3.72 × 10−3 3.68 × 10−2 1.65 × 10−3 1 3.39 × 10−1

h 0 0 1 1 1 0 0

F6 Best 1.12 × 104 2.32 × 103 1.87 × 103 6.20 × 101 7.76 × 101 4.03 × 10−1 1.54 × 100

Average 4.23 × 103 9.19 × 102 6.91 × 102 2.29 × 101 4.00 × 101 1.22 × 10−1 1.24 × 100

Worst 1.11 × 103 7.32 × 101 1.27 × 101 0.149 × 101 1.30 × 101 1.90 × 10−5 9.72 × 10−1

STD 4.19 × 103 8.99 × 102 7.22 × 102 2.55 × 101 2.80 × 101 1.76 × 10−1 2.16 × 10−1

p-value 5.39 × 10−2 5.16 × 10−2 6.49 × 10−2 8.03 × 10−2 1.29 × 10−2 1 1.90 × 10−5

h 0 0 0 0 1 0 1

F7 Best 5.41 × 10−1 2.84 × 100 5.88 × 10−1 9.58 × 10−1 1.99 × 10−1 8.87 × 10−3 1.61 × 10−2

Average 2.93 × 10−1 9.32 × 10−1 3.12 × 10−1 3.23 × 10−1 1.01 × 10−1 6.33 × 10−3 6.06 × 10−3

Worst 1.89 × 10−1 3.70 × 10−1 5.34 × 10−2 5.25 × 10−3 6.27 × 10−2 3.89 × 10−3 4.13 × 10−4

STD 1.53 × 10−1 0.107 × 101 2.04 × 10−1 3.80 × 10−1 5.78 × 10−2 1.83 × 10−3 6.38 × 10−3

p-value 3.03 × 10−3 8.90 × 10−2 1.00 × 10−2 9.95 × 10−2 6.26 × 10−3 1 9.31 × 10−1

h 1 0 1 0 1 0 0

F8 Best −1.46 × 103 −1.17 × 103 −1.38 × 103 −1.65 × 103 −1.72 × 103 −1.73 × 103 −1.93 × 103

Average −1.78 × 103 −1.40 × 103 −1.59 × 103 −2.10 × 103 −1.93 × 103 −3.17 × 103 −3.64 × 103

Worst −2.17 × 103 −2.01 × 103 −1.91 × 103 −2.95 × 103 −2.15 × 103 −4.19 × 103 −4.17 × 103

STD 3.15 × 102 3.47 × 102 2.02 × 102 5.25 × 102 2.00 × 102 1.04 × 103 9.60 × 102

p-value 2.10 × 10−2 6.86 × 10−3 1.04 × 10−2 7.48 × 10−2 3.04 × 10−2 1 4.82 × 10−1

h 1 1 1 0 1 0 0

F9 Best 9.21 × 101 7.14 × 101 8.80 × 101 9.44 × 101 6.90 × 101 4.21 × 10−8 0

Average 6.63 × 101 5.48 × 101 6.21 × 101 6.80 × 101 3.92 × 101 1.03 × 10−8 0

Worst 3.98 × 101 4.02 × 101 2.28 × 101 0.292 × 101 1.09 × 101 0 0

STD 1.94 × 101 1.15 × 101 2.62 × 101 3.78 × 101 2.76 × 101 1.80 × 10−8 0

p-value 6.08 × 10−5 5.32 × 10−6 7.28 × 10−4 3.80 × 10−3 1.30 × 10−2 1 2.35 × 10−1

H 1 1 1 1 1 0 0

F10 Best 9.21 × 101 7.14 × 101 8.80 × 101 9.44 × 101 6.90 × 101 4.21 × 10−8 0

Average 6.63 × 101 5.48 × 101 6.21 × 101 6.80 × 101 3.92 × 101 1.03 × 10−8 0

Worst 3.98 × 101 4.02 × 101 2.28 × 101 0.292 × 101 1.09 × 101 0 0

STD 1.94 × 101 1.15 × 101 2.62 × 101 3.78 × 101 2.76 × 101 1.80 × 10−8 0

p-value 6.08 × 10−5 5.32 × 10−6 7.28 × 10−4 3.80 × 10−3 1.30 × 10−2 1 2.35 × 10−1

h 1 1 1 1 1 0 0
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Table 4. Cont.

Function Measure
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

F11 Best 6.43 × 101 1.63 × 102 2.53 × 101 1.19 × 100 0.316 × 101 2.76 × 10−4 0

Average 2.38 × 101 1.01 × 102 1.09 × 101 8.03 × 10−1 0.204 × 101 8.53 × 10−5 0

Worst 0.933 × 101 6.30 × 101 0.211 × 101 3.49 × 10−1 0.144 × 101 5.20 × 10−12 0

STD 2.29 × 101 3.76 × 101 0.997 × 101 3.38 × 10−1 6.59 × 10−1 1.25 × 10−4 0

p-value 4.90 × 10−2 3.31 × 10−4 4.00 × 10−2 7.18 × 10−4 1.23 × 10−4 1 1.65 × 10−1

h 1 1 1 1 1 0 0

F12 Best 6.31 × 106 0.832 × 101 2.61 × 107 1.34 × 104 1.57 × 101 2.78 × 10−1 0.151 × 101

Average 1.36 × 106 0.337 × 101 5.81 × 106 2.70 × 103 0.712 × 101 6.93 × 10−2 4.46 × 10−1

Worst 3.92 × 101 1.51 × 10−1 5.10 × 104 2.50 × 10−1 9.75 × 10−1 3.31 × 10−4 4.55 × 10−2

STD 2.78 × 106 0.369 × 101 1.14 × 107 5.98 × 103 0.542 × 101 1.19 × 10−1 6.00 × 10−1

p-value 3.07 × 10−1 8.08 × 10−2 2.85 × 10−1 3.42 × 10−1 1.97 × 10−2 1 2.05 × 10−1

h 0 0 0 0 1 0 0

F13 Best 1.95 × 107 2.03 × 102 4.85 × 106 4.44 × 106 1.42 × 101 2.35 × 10−1 9.56 × 10−1

Average 5.77 × 106 5.72 × 101 1.58 × 106 1.30 × 106 0.648 × 101 8.06 × 10−2 8.84 × 10−1

Worst 7.02 × 105 4.66 × 10−1 1.36 × 103 6.52 × 101 0.179 × 101 9.17 × 10−5 8.04 × 10−1

STD 7.97 × 106 8.72 × 101 1.97 × 106 1.89 × 106 0.469 × 101 9.47 × 10−2 6.08 × 10−2

p-value 1.44 × 10−1 1.81 × 10−1 1.11 × 10−1 1.65 × 10−1 1.57 × 10−2 1 2.39 × 10−7

h 0 0 0 0 1 0 1

F14 Worst 2.20 × 101 1.27 × 101 1.27 × 101 1.56 × 101 1.65 × 101 1.17 × 101 1.64 × 101

Average 1.72 × 101 0.471 × 101 0.646 × 101 0.993 × 101 1.15 × 101 0.848 × 101 0.957 × 101

Best 1.46 × 101 9.98 × 10−1 0.199 × 101 0.595 × 101 0.397 × 101 0.320 × 101 0.298 × 101

STD 0.311 × 101 0.535 × 101 0.568 × 101 0.424 × 101 0.515 × 101 0.352 × 101 0.524 × 101

p-value 2.00 × 10−3 1 6.29 × 10−1 1.26 × 10−1 7.54 × 10−2 2.25 × 10−1 1.85 × 10−1

H 1 0 0 0 0 0 0

F15 Worst 6.17 × 10−2 5.59 × 10−3 7.91 × 10−3 2.64 × 10−2 3.60 × 10−2 3.62 × 10−3 1.64 × 10−2

Average 2.54 × 10−2 2.81 × 10−3 4.61 × 10−3 1.42 × 10−2 1.11 × 10−2 1.43 × 10−3 6.05 × 10−3

Best 5.03 × 10−3 7.93 × 10−4 1.52 × 10−3 5.74 × 10−4 1.78 × 10−3 6.44 × 10−4 1.90 × 10−3

STD 2.35 × 10−2 1.95 × 10−3 2.63 × 10−3 1.04 × 10−2 1.43 × 10−2 1.24 × 10−3 5.93 × 10−3

p-value 6.49 × 10−2 1 2.54 × 10−1 4.28 × 10−2 2.36 × 10−1 2.20 × 10−1 2.79 × 10−1

H 0 0 0 1 0 0 0

F16 Worst −0.103 × 101 −0.102 × 101 −0.100 × 101 −0.101 × 101 −9.49 × 10−1 −0.103 × 101 −0.103 × 101

Average −0.103 × 101 −0.103 × 101 −0.102 × 101 −0.102 × 101 −9.99 × 10−1 −0.103 × 101 −0.103 × 101

Best −0.103 × 101 −0.103 × 101 −0.103 × 101 −0.103 × 101 −0.103 × 101 −0.103 × 101 −0.103 × 101

STD 7.72 × 10−5 3.88 × 10−3 1.63 × 10−2 1.03 × 10−2 3.42 × 10−2 4.18 × 10−5 4.17 × 10−4

p-value 1.07 × 10−1 1 2.25 × 10−1 2.58 × 10−1 9.53 × 10−2 1.07 × 10−1 1.35 × 10−1

h 0 0 0 0 0 0 0

F17 Worst 3.98 × 10−1 4.09 × 10−1 5.19 × 10−1 0.277 × 10−1 0.150 × 10−1 0.411 × 10−1 3.98 × 10−1

Average 3.98 × 10−1 4.03 × 10−1 4.23 × 10−1 0.104 × 10−1 8.57 × 10−1 0.114 × 10−1 3.98 × 10−1

Best 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 4.08 × 10−1 4.00 × 10−1 3.98 × 10−1 3.98 × 10−1

STD 1.18 × 10−4 4.52 × 10−3 5.39 × 10−2 9.82 × 10−1 4.61 × 10−1 0.166 × 10−1 7.87 × 10−6

p-value 3.59 × 10−2 1 4.45 × 10−1 1.87 × 10−1 5.89 × 10−2 3.46 × 10−1 3.34 × 10−2

h 1 0 0 0 0 0 1

F18 Worst 9.18 × 101 0.453 × 10−1 3.00 × 101 2.51 × 101 1.79 × 101 9.37 × 101 0.323 × 10−1

Average 3.77 × 101 0.331 × 10−1 1.53 × 101 1.03 × 101 0.629 × 10−1 2.13 × 101 0.305 × 10−1

Best 0.30 × 10−1 0.30 × 10−1 0.30 × 10−1 0.30 × 10−1 0.30 × 10−1 0.304 × 10−1 0.300 × 10−1

STD 4.75 × 101 6.78 × 10−1 1.38 × 101 1.03 × 101 0.649 × 10−1 4.05 × 101 1.03 × 10−1

p-value 1.44 × 10−1 1 8.72 × 10−2 1.68 × 10−1 0.338 × 10−1 3.49 × 10−1 4.09 × 10−1

H 0 0 0 0 0 0 0
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Table 4. Cont.

Function Measure
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

F19 Worst −0.270 × 10−1 −0.329 × 10−1 −0.385 × 10−1 −0.297 × 10−1 −0.261 × 10−1 −0.377 × 10−1 −0.386 × 10−1

Average −0.330 × 10−1 −0.368 × 10−1 −0.386 × 10−1 −0.348 × 10−1 −0.346 × 10−1 −0.382 × 10−1 −0.386 × 10−1

Best −0.386 × 10−1 −0.385 × 10−1 −0.386 × 10−1 −0.378 × 10−1 −0.384 × 10−1 −0.386 × 10−1 −0.386 × 10−1

STD 4.92 × 10−1 2.26 × 10−1 4.27 × 10−3 3.26 × 10−1 4.96 × 10−1 4.24 × 10−2 1.01 × 10−3

p-value 1.49 × 10−1 1.00 × 100 1.24 × 10−1 2.83 × 10−1 3.83 × 10−1 2.12 × 10−1 1.15 × 10−1

h 0 0 0 0 0 0 0

F20 Worst −0.114 × 10−1 −0.151 × 10−1 −0.259 × 10−1 −0.213 × 10−1 −0.171 × 10−1 −0.311 × 10−1 −0.313 × 10−1

Average −0.197 × 10−1 −0.211 × 10−1 −0.287 × 10−1 −0.260 × 10−1 −0.217 × 10−1 −0.319 × 10−1 −0.322 × 10−1

Best −0.303 × 10−1 −0.262 × 10−1 −0.327 × 10−1 −0.314 × 10−1 −0.255 × 10−1 −0.331 × 10−1 −0.331 × 10−1

STD 9.04 × 10−1 4.55 × 10−1 2.90 × 10−1 4.25 × 10−1 3.07 × 10−1 8.36 × 10−2 7.78 × 10−2

p-value 7.56 × 10−1 1 1.36 × 10−2 1.19 × 10−1 8.27 × 10−1 8.12 × 10−4 6.63 × 10−4

h 0 0 1 0 0 1 1

F21 Worst −0.267 × 10−1 −0.221 × 10−1 −0.489 × 10−1 −3.51 × 10−1 −4.84 × 10−1 −0.256 × 10−1 −0.253 × 10−1

Average −0.612 × 10−1 −0.348 × 10−1 −0.698 × 10−1 −9.24 × 10−1 −0.201 × 10−1 −0.580 × 10−1 −0.497 × 10−1

Best −0.986 × 10−1 −0.467 × 10−1 −1.01 × 101 −0.293 × 10−1 −0.382 × 10−1 −1.01 × 101 −1.01 × 101

STD 0.339 × 10−1 0.115 × 10−1 0.274 × 10−1 0.112 × 10−1 0.142 × 10−1 0.348 × 10−1 0.343 × 10−1

p-value 1.37 × 10−1 1 3.02 × 10−2 7.44 × 10−3 1.10 × 10−1 1.94 × 10−1 3.83 × 10−1

h 0 0 1 1 0 0 0

F22 Worst −0.150 × 10−1 −0.303 × 10−1 −0.271 × 10−1 −5.20 × 10−1 −3.75 × 10−1 −0.364 × 10−1 −0.274 × 10−1

Average −0.209 × 10−1 −0.368 × 10−1 −0.666 × 10−1 −0.122 × 10−1 −9.71 × 10−1 −0.702 × 10−1 −0.494 × 10−1

Best −0.275 × 10−1 −0.442 × 10−1 −1.03 × 101 −0.207 × 10−1 −0.181 × 10−1 −0.980 × 10−1 −0.989 × 10−1

STD 5.19 × 10−1 5.86 × 10−1 0.340 × 10−1 5.91 × 10−1 5.21 × 10−1 0.268 × 10−1 0.288 × 10−1

p-value 1.89 × 10−3 1 8.86 × 10−2 1.72 × 10−4 5.68 × 10−5 2.60 × 10−2 3.63 × 10−1

h 1 0 0 1 1 1 0

F23 Worst −0.144 × 10−1 −0.329 × 10−1 −0.514 × 10−1 −4.06 × 10−1 −0.107 × 10−1 −0.222 × 10−1 −0.241 × 10−1

Average −0.377 × 10−1 −0.398 × 10−1 −0.932 × 10−1 −0.152 × 10−1 −0.262 × 10−1 −0.409 × 10−1 −0.287 × 10−1

Best −0.509 × 10−1 −0.470 × 10−1 −1.05 × 101 −0.453 × 10−1 −0.454 × 10−1 −0.973 × 10−1 −0.381 × 10−1

STD 0.163 × 10−1 5.79 × 10−1 0.235 × 10−1 0.170 × 10−1 0.162 × 10−1 0.322 × 10−1 5.69 × 10−1

p-value 7.90 × 10−1 1 1.13 × 10−3 1.56 × 10−2 1.16 × 10−1 9.45 × 10−1 1.54 × 10−2

h 0 0 1 1 0 0 1

Table 5. Twenty-three benchmark functions are used for the Friedman ranking test for comparative
approaches, with a dimension of 10.

Fun.
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

F1 7 5 6 3 4 2 1

F2 7 6 4 3 5 2 1

F3 6 4 5 7 3 2 1

F4 6 4 5 7 3 2 1

F5 7 3 6 5 4 1 2

F6 7 6 5 3 4 1 2

F7 4 7 5 6 3 2 1

F8 5 7 6 3 4 2 1

F9 6 4 5 7 3 2 1

F10 7 4 6 3 5 2 1
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Table 5. Cont.

Fun.
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

F11 6 7 5 3 4 2 1

F12 6 3 7 5 4 1 2

F13 7 4 6 5 3 1 2

F14 7 1 2 5 6 3 4

F15 7 2 3 6 5 1 4

F16 2 4 6 5 7 1 3

F17 2 3 4 6 5 7 1

F18 7 2 5 4 3 6 1

F19 7 4 2 5 6 3 1

F20 7 6 3 4 5 2 1

F21 2 5 1 7 6 3 4

F22 5 4 2 6 7 1 3

F23 4 3 1 7 6 2 5

Sum 131 98 100 115 105 51 44

Mean 5.70 4.26 4.35 5.00 4.57 2.22 1.91

Rank 6 2 3 5 4 2 1

5.2.3. Scalability Study

In this section, the effectiveness of AOACS is assessed using 13 functions from Table 1
and the 10 CEC2019 benchmark functions.

1. Experiments on 13 benchmark functions:

The performance of AOACS is evaluated using 13 functions from Table 1 with a
heightened size of 100 to determine the optimizer’s resilience as the size of the optimization
issues it handles grows.

Table 6 presents the effects of the offered variant and the other techniques (PSO, WOA,
SSA, SMA, HHO, and AOA) for the worst, best, average, and STD values. Additionally,
Table 6 provides the P-value and null hypothesis test result for AOACS compared to
the other methods using the Wilcoxon rank summation examination with a substantial
difference of 0.05.

The statistics from Table 6 show how stable and effective the suggested AOACS is
because it offers the best answers for all six functions (F1, F2, F3, F4, F9, and F11). In
addition, compared to the other algorithms, it produces the most comparable outcomes
for the best solutions of the other methods (F5, F6, F7, F8, F10). For 85% of the examined
functions, the stated P-values are smaller than 0.05. AOACS is highly stable and superior
for handling situations with high dimensions.

Table 7 computes the Friedman ranking test to highlight the noteworthiness of the
suggested AOACS. The AOACS has the top rankings in nine of the thirteen benchmark
functions that were analyzed as problems; as a result, it finally occupies the top spot in
the queue of other high-dimensional problem-solving strategies. With an average rank
almost as high as AOACS’s, unmodified AOA holds down the second spot. As a result,
AOA offers higher-quality solutions for high-dimensional issues than modern state-of-the-
art approaches.
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Table 6. Results from methods of comparison on 23 benchmark functions (F1–F13), where the
dimension is 50.

Function Measure
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

F1 Worst 3.10 × 105 1.15 × 105 3.94 × 105 3.44 × 103 1.56 × 105 4.33 × 10−6 2.33 × 10−41

Average 2.27 × 105 1.05 × 105 2.63 × 105 1.28 × 103 1.27 × 105 1.32 × 10−6 4.66 × 10−42

Best 1.91 × 105 9.80 × 104 1.69 × 105 1.36 × 102 9.96 × 104 7.18 × 10−17 5.83 × 10−65

STD 4.92 × 104 6.61 × 103 9.40 × 104 1.29 × 103 2.13 × 104 1.94 × 10−6 1.04 × 10−41

p-value 6.61 × 10−6 4.20 × 10−10 2.42 × 10−4 5.69 × 10−2 9.44 × 10−7 1 1.69 × 10−1

h 1 1 1 0 1 0 0

F2 Worst 6.06 × 102 4.47 × 1053 1.40 × 102 0.563 × 10−1 1.50 × 103 4.07 × 10−4 1.40 × 10−16

Average 5.30 × 102 8.94 × 1052 1.03 × 102 0.308 × 10−1 6.19 × 102 1.29 × 10−4 2.80 × 10−17

Best 3.82 × 102 8.35 × 1043 5.81 × 101 3.37 × 10−1 3.89 × 102 5.89 × 10−7 3.36 × 10−35

STD 9.34 × 101 2.00 × 1053 3.12 × 101 0.214 × 10−1 4.93 × 102 1.73 × 10−4 6.27 × 10−17

p-value 1.39 × 10−6 3.47 × 10−1 8.03 × 10−5 1.24 × 10−2 2.28 × 10−2 1 0

h 1 0 1 1 1 0 0

F3 Worst 6.01 × 106 2.75 × 106 5.01 × 106 1.75 × 107 1.47 × 106 2.40 × 106 6.37 × 10−17

Average 4.15 × 106 1.14 × 106 3.67 × 106 1.03 × 107 1.00 × 106 1.36 × 106 1.27 × 10−17

Best 2.22 × 106 6.02 × 105 3.00 × 106 3.78 × 106 7.71 × 105 8.11 × 101 8.96 × 10−57

STD 1.39 × 106 9.05 × 105 8.07 × 105 5.07 × 106 3.02 × 105 9.86 × 105 2.85 × 10−17

p-value 6.45 × 10−3 7.20 × 10−1 3.70 × 10−3 4.86 × 10−3 4.61 × 10−1 1 1.49 × 10−2

h 1 0 1 1 0 0 1

F4 Worst 9.93 × 101 6.16 × 101 9.94 × 101 9.09 × 101 9.28 × 101 2.59 × 10−4 1.05 × 10−18

Average 9.30 × 101 5.82 × 101 9.91 × 101 7.76 × 101 8.26 × 101 5.26 × 10−5 2.10 × 10−19

Best 8.07 × 101 5.59 × 101 9.87 × 101 3.37 × 101 7.34 × 101 5.34 × 10−9 1.77 × 10−33

STD 0.841 × 10−1 0.225 × 10−1 3.13 × 10−1 2.47 × 101 0.832 × 10−1 1.15 × 10−4 4.71 × 10−19

p-value 7.67 × 10−9 8.67 × 10−12 1.80 × 10−20 1.12 × 10−4 1.80 × 10−8 1 3.38 × 10−1

h 1 1 1 1 1 0 0

F5 Worst 1.16 × 109 2.75 × 108 2.59 × 109 2.88 × 105 3.91 × 108 1.98 × 102 1.99 × 102

Average 5.56 × 108 1.93 × 108 2.39 × 109 1.57 × 105 1.77 × 108 1.58 × 102 1.99 × 102

Best 2.38 × 108 1.17 × 108 2.05 × 109 7.67 × 102 6.54 × 107 0.105 × 10−1 1.99 × 102

STD 3.67 × 108 5.86 × 107 2.05 × 108 1.30 × 105 1.32 × 108 8.78 × 101 1.40 × 10−2

p-value 9.59 × 10−3 7.77 × 10−5 5.04 × 10−9 2.67 × 10−2 1.71 × 10−2 1 3.27 × 10−1

h 1 1 1 1 1 0 0

F6 Worst 2.72 × 105 1.15 × 105 3.76 × 105 1.79 × 103 1.72 × 105 1.51 × 101 4.94 × 101

Average 2.26 × 105 1.02 × 105 2.66 × 105 7.60 × 102 1.20 × 105 3.53 × 100 4.81 × 101

Best 1.80 × 105 9.46 × 104 1.12 × 105 1.05 × 102 8.26 × 104 6.33 × 10−2 4.73 × 101

STD 3.98 × 104 7.80 × 103 1.15 × 105 7.07 × 102 3.39 × 104 0.652 × 10−1 9.28 × 10−1

p-value 1.38 × 10−6 1.97 × 10−9 8.65 × 10−4 4.38 × 10−2 4.80 × 10−5 1 3.57 × 10−7

h 1 1 1 1 1 0 1

F7 Worst 4.08 × 103 1.00 × 104 1.01 × 104 1.41 × 102 1.12 × 103 5.47 × 10−2 2.21 × 10−2

Average 1.94 × 103 9.34 × 103 6.56 × 103 3.46 × 101 9.18 × 102 1.48 × 10−2 1.24 × 10−2

Best 4.29 × 102 8.65 × 103 4.09 × 103 2.19 × 100 6.34 × 102 5.30 × 10−4 2.16 × 10−3

STD 1.46 × 103 6.00 × 102 2.43 × 103 5.96 × 101 2.02 × 102 2.27 × 10−2 8.80 × 10−3

p-value 1.77 × 10−2 5.07 × 10−10 3.15 × 10−4 2.31 × 10−1 7.61 × 10−6 1.00 × 100 8.30 × 10−1

h 1 1 1 0 1 0 0

F8 Worst −7.26 × 103 −3.51 × 103 −6.05 × 103 −4.99 × 104 −6.34 × 103 −2.84 × 104 −2.42 × 104

Average −9.61 × 103 −5.16 × 103 −6.77 × 103 −5.51 × 104 −9.25 × 103 −4.74 × 104 −5.90 × 104

Best −1.32 × 104 −8.14 × 103 −7.99 × 103 −5.98 × 104 −1.12 × 104 −7.61 × 104 −8.33 × 104

STD 2.26 × 103 1.89 × 103 7.39 × 102 3.61 × 103 2.57 × 103 2.00 × 104 2.44 × 104

p-value 3.00 × 10−3 1.54 × 10−3 1.90 × 10−3 4.20 × 10−1 2.88 × 10−3 1 4.34 × 10−1

h 1 1 1 0 1 0 0
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Table 6. Cont.

Function Measure
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

F9 Worst 2.42 × 103 3.24 × 103 2.57 × 103 1.98 × 103 2.20 × 103 3.14 × 10−6 0

Average 2.26 × 103 3.17 × 103 1.05 × 103 6.35 × 102 2.06 × 103 7.15 × 10−7 0

Best 2.19 × 103 3.09 × 103 3.84 × 102 1.50 × 10−1 1.90 × 103 0 0

STD 9.29 × 101 6.11 × 101 8.69 × 102 8.10 × 102 1.40 × 102 1.37 × 10−6 0

p-value 1.44 × 10−11 3.38 × 10−14 2.69 × 10−2 1.18 × 10−1 8.01 × 10−10 1 2.76 × 10−1

h 1 1 1 0 1 0 0

F10 Worst 2.00 × 101 1.86 × 101 2.09 × 101 0.472 × 10−1 1.83 × 101 1.18 × 10−4 8.88 × 10−16

Average 1.89 × 101 1.80 × 101 1.87 × 101 0.234 × 10−1 1.77 × 101 4.16 × 10−5 8.88 × 10−16

Best 1.83 × 101 1.75 × 101 1.35 × 101 1.90 × 10−2 1.69 × 101 3.37 × 10−7 8.88 × 10−16

STD 7.16 × 10−1 4.39 × 10−1 0.306 × 10−1 0.222 × 10−1 6.69 × 10−1 5.44 × 10−5 0.00 × 100

p-value 7.67 × 10−12 2.27 × 10−13 7.94 × 10−7 4.59 × 10−2 7.59 × 10−12 1 1.26 × 10−1

h 1 1 1 1 1 0 0

F11 Worst 2.11 × 103 2.46 × 103 3.12 × 103 1.82 × 102 1.27 × 103 5.67 × 10−6 0

Average 1.61 × 103 2.29 × 103 2.22 × 103 4.26 × 101 1.15 × 103 1.14 × 10−6 0

Best 6.87 × 102 2.17 × 103 7.28 × 102 0.125 × 10−1 1.06 × 103 6.66 × 10−16 0

STD 5.94 × 102 1.28 × 102 9.58 × 102 7.82 × 101 8.29 × 101 2.53 × 10−6 0

p-value 3.06 × 10−4 1.65 × 10−10 8.50 × 10−4 2.58 × 10−1 1.30 × 10−9 1 3.46 × 10−1

h 1 1 1 0 1 0 0

F12 Worst 9.71 × 108 8.83 × 107 6.94 × 109 3.29 × 107 5.27 × 108 2.75 × 10−2 0.347 × 10−1

Average 5.21 × 108 6.96 × 107 5.60 × 109 6.90 × 106 2.57 × 108 9.13 × 10−3 0.144 × 10−1

Best 2.13 × 108 4.81 × 107 4.79 × 109 4.74 × 10−1 1.16 × 108 1.33 × 10−3 8.87 × 10−2

STD 3.17 × 108 1.71 × 107 8.83 × 108 1.46 × 107 1.62 × 108 1.07 × 10−2 0.124 × 10−1

p-value 6.24 × 10−3 1.71 × 10−5 5.97 × 10−7 3.20 × 10−1 7.54 × 10−3 1 3.26 × 10−2

h 1 1 1 0 1 0 1

F13 Worst 1.62 × 109 5.92 × 108 1.29 × 1010 1.50 × 108 1.14 × 109 0.367 × 10−1 2.00 × 101

Average 1.19 × 109 3.66 × 108 1.04 × 1010 3.70 × 107 6.67 × 108 0.103 × 10−1 1.73 × 101

Best 1.72 × 108 1.97 × 108 8.31 × 109 6.51 × 102 1.08 × 108 1.77 × 10−2 0.660 × 10−1

STD 6.06 × 108 1.64 × 108 1.70 × 109 6.36 × 107 3.92 × 108 0.151 × 10−1 0.598 × 10−1

p-value 2.27 × 10−3 1.07 × 10−3 8.07 × 10−7 2.29 × 10−1 5.23 × 10−3 1 3.63 × 10−4

h 1 1 1 0 1 0 1

Table 7. Thirteen benchmark functions are used for the Friedman ranking test for comparative
approaches, with a dimension of 50.

Fun.
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

F1 6 4 7 3 5 2 1

F2 5 7 4 3 6 2 1

F3 6 3 5 7 2 4 1

F4 6 3 7 4 5 2 1

F5 6 5 7 3 4 1 2

F6 6 4 7 3 5 1 2

F7 5 7 6 3 4 2 1

F8 4 7 6 2 5 3 1

F9 6 7 4 3 5 2 1

F10 7 5 6 3 4 2 1
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Table 7. Cont.

Fun.
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

F11 5 7 6 3 4 2 1

F12 6 4 7 3 5 1 2

F13 6 4 7 3 5 1 2

Sum 74 67 79 43 59 25 17

Mean 5.69 5.15 6.08 3.31 4.54 1.92 1.31

Rank 6 5 7 3 4 2 1

Figure 6 compares the proposed AOACS’s convergence curves to the original AOA
and cutting-edge methods to evaluate the effectiveness of the AOACS’s exploration and
exploitation. In contrast to the WOA, PSO, SSA, SMA, and HHO, which experienced severe
recession at the local optimal solutions, the curves demonstrate the soft convergence of the
AOACS by reaching superior quality solutions.

2. Experiments on 10 CEC2019 benchmark functions.

The translation trajectory function, the translation trajectory Schwefel function, the
translation trajectory Lunacek double grating function, and the comprehensive Rosenbrock
plus Griewangk function are the CEC1 through CEC4 test functions for CEC2020. These
functions are divided into mixed functions (CEC5–CEC7) and compound functions (CEC8–
CEC10). The best value, average value, and standard deviation for each algorithm were
determined after 30 independent runs.

The output of each algorithm for each test function in the CEC2019 is shown in Table 8.
The table shows that, regardless of the ideal or average value, the AOACS algorithm
produced the best results in 10 benchmark functions and seven of the best outcomes.
This demonstrates the AOACS algorithm’s powerful optimization impact. The AOACS
algorithm was less stable than most other algorithms for CEC3, CEC8, and CEC9, but it
was still better for STD in terms of numerical value.

The Friedman ranking test is computed in Table 9 to show how noteworthy the
suggested AOACS are. The AOACS finally holds the top position in the queue of other
high-dimensional problem-solving strategies since it has the highest rankings in six of the
ten benchmark functions that were analyzed for problems. Unmodified AOA takes the
runner-up position with an average rank nearly as high as AOACS’s.

Table 8. Results from methods of comparison on 2019 benchmark functions (F1–F10).

Function Measure
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

CEC−1 Best 1.81 × 1012 6.00 × 1013 3.11 × 1012 4.03 × 108 1.78 × 1012 2.15 × 1011 1.61 × 106

Average 7.75 × 1011 2.19 × 1013 9.46 × 1011 8.10 × 107 7.64 × 1011 7.88 × 1010 6.70 × 105

Worst 1.88 × 1011 2.95 × 1012 1.23 × 1011 7.83 × 104 6.40 × 1010 1.94 × 1010 1.36 × 105

STD 6.72 × 1011 2.22 × 1013 1.23 × 1012 1.80 × 108 7.85 × 1011 8.00 × 1010 5.89 × 105

p-value 3.27 × 10−2 5.87 × 10−2 1.24 × 10−1 1.00 × 100 6.13 × 10−2 5.91 × 10−2 3.48 × 10−1

h 1 0 0 0 0 0 0

CEC−2 Best 1.54 × 103 3.00 × 104 1.43 × 102 1.82 × 101 8.88 × 103 1.96 × 102 1.93 × 101

Average 4.41 × 102 2.38 × 104 6.98 × 101 1.77 × 101 4.51 × 103 8.25 × 101 1.82 × 101

Worst 3.97 × 101 1.56 × 104 1.97 × 101 1.74 × 101 6.72 × 102 3.02 × 101 1.75 × 101

STD 6.27 × 102 7.27 × 103 5.72 × 101 3.29 × 10−1 3.31 × 103 6.79 × 101 7.53 × 10−1

p-value 1.69 × 10−1 8.22 × 10−5 7.56 × 10−2 1 1.62 × 10−2 6.55 × 10−2 1.79 × 10−1

h 0 1 0 0 1 0 0

CEC−3 Best 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101

Average 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101

Worst 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101 1.27 × 101

STD 1.33 × 10−3 5.29 × 10−4 9.19 × 10−4 3.52 × 10−4 2.78 × 10−3 1.74 × 10−3 1.12 × 10−3

p-value 7.92 × 10−3 4.87 × 10−1 7.25 × 10−3 1.00 × 100 2.25 × 10−1 1.82 × 10−1 1.97 × 10−1

h 1 0 1 0 0 0 0
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Table 8. Cont.

Function Measure
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

CEC−4 Best 1.14 × 104 1.53 × 104 1.48 × 104 3.00 × 104 1.70 × 104 5.07 × 103 5.16 × 103

Average 8.61 × 103 1.10 × 104 9.93 × 103 1.73 × 104 1.24 × 104 4.18 × 103 3.84 × 103

Worst 3.42 × 103 7.25 × 103 3.68 × 103 6.73 × 103 4.36 × 103 3.54 × 103 2.32 × 103

STD 3.29 × 103 3.24 × 103 4.79 × 103 9.86 × 103 4.74 × 103 6.80 × 102 1.04 × 103

p-value 9.96 × 10−2 2.15 × 10−1 1.73 × 10−1 1 3.46 × 10−1 1.81 × 10−2 1.64 × 10−2

h 0 0 0 0 0 1 1

CEC−5 Best 0.521 × 10−1 0.466 × 10−1 0.787 × 10−1 0.666 × 10−1 0.973 × 10−1 0.324 × 10−1 0.359 × 10−1

Average 0.454 × 10−1 0.367 × 10−1 0.528 × 10−1 0.594 × 10−1 0.539 × 10−1 0.260 × 10−1 0.318 × 10−1

Worst 0.400 × 10−1 0.265 × 10−1 0.336 × 10−1 0.528 × 10−1 0.336 × 10−1 0.200 × 10−1 0.200 × 10−1

STD 4.89 × 10−1 8.49 × 10−1 0.189 × 10−1 5.94 × 10−1 0.262 × 10−1 5.09 × 10−1 6.68 × 10−1

p-value 3.59 × 10−3 1.20 × 10−3 4.81 × 10−1 1 6.62 × 10−1 1.20 × 10−5 1.27 × 10−4

h 1 1 0 0 0 1 1

CEC−6 Best 1.53 × 101 1.43 × 101 1.34 × 101 1.52 × 101 1.38 × 101 1.56 × 101 1.49 × 101

Average 1.42 × 101 1.31 × 101 1.23 × 101 1.33 × 101 1.21 × 101 1.38 × 101 1.27 × 101

Worst 1.37 × 101 1.19 × 101 1.07 × 101 1.10 × 101 1.02 × 101 1.29 × 101 1.06 × 101

STD 6.34 × 10−1 8.80 × 10−1 0.138 × 10−1 0.172 × 10−1 0.144 × 10−1 0.110 × 10−1 0.168 × 10−1

p-value 3.24 × 10−1 7.87 × 10−1 3.38 × 10−1 1 2.52 × 10−1 6.52 × 10−1 5.91 × 10−1

h 0 0 0 0 0 0 0

CEC−7 Best 1.65 × 103 1.12 × 103 1.87 × 103 1.87 × 103 1.96 × 103 1.97 × 103 9.70 × 102

Average 1.53 × 103 8.71 × 102 1.56 × 103 1.33 × 103 1.47 × 103 1.37 × 103 6.03 × 102

Worst 1.38 × 103 6.45 × 102 1.25 × 103 6.71 × 102 1.07 × 103 6.12 × 102 1.84 × 102

STD 1.07 × 102 2.14 × 102 2.62 × 102 4.47 × 102 3.33 × 102 5.81 × 102 3.46 × 102

p-value 3.72 × 10−1 7.04 × 10−2 3.58 × 10−1 1 6.04 × 10−1 9.18 × 10−1 2.03 × 10−2

h 0 0 0 0 0 0 1

CEC−8 Best 0.816 × 10−1 0.757 × 10−1 0.840 × 10−1 0.764 × 10−1 0.769 × 10−1 0.795 × 10−1 0.781 × 10−1

Average 0.763 × 10−1 0.710 × 10−1 0.761 × 10−1 0.709 × 10−1 0.689 × 10−1 0.723 × 10−1 0.684 × 10−1

Worst 0.703 × 10−1 0.622 × 10−1 0.658 × 10−1 0.581 × 10−1 0.614 × 10−1 0.676 × 10−1 0.615 × 10−1

STD 4.54 × 10−1 5.13 × 10−1 7.60 × 10−1 7.38 × 10−1 5.77 × 10−1 4.67 × 10−1 6.32 × 10−1

p-value 2.02 × 10−1 9.76 × 10−1 3.03 × 10−1 1 6.59 × 10−1 7.20 × 10−1 5.93 × 10−1

h 0 0 0 0 0 0 0

CEC−9 Best 2.05 × 103 2.19 × 103 3.55 × 103 3.92 × 103 3.73 × 103 3.15 × 103 7.79 × 102

Average 1.29 × 103 1.03 × 103 2.86 × 103 3.24 × 103 2.20 × 103 1.08 × 103 3.50 × 102

Worst 4.92 × 102 2.60 × 102 2.35 × 103 1.55 × 103 4.66 × 102 5.46 × 101 6.60 × 101

STD 5.84 × 102 7.93 × 102 5.24 × 102 9.72 × 102 1.19 × 103 1.26 × 103 3.01 × 102

p-value 4.93 × 10−3 4.39 × 10−3 4.73 × 10−1 1 1.70 × 10−1 1.66 × 10−2 2.23 × 10−4

h 1 1 0 0 0 1 1

CEC−10 Best 2.11 × 101 2.10 × 101 2.08 × 101 2.09 × 101 2.10 × 101 2.10 × 101 2.09 × 101

Average 2.08 × 101 2.08 × 101 2.07 × 101 2.07 × 101 2.07 × 101 2.09 × 101 2.06 × 101

Worst 2.07 × 101 2.06 × 101 2.04 × 101 2.05 × 101 2.04 × 101 2.06 × 101 2.04 × 101

STD 1.83 × 10−1 1.65 × 10−1 2.00 × 10−1 1.34 × 10−1 2.19 × 10−1 1.55 × 10−1 1.75 × 10−1

p-value 2.45 × 10−1 2.53 × 10−1 6.77 × 10−1 1.00 × 100 7.75 × 10−1 1.37 × 10−1 3.06 × 10−1

h 0 0 0 0 0 0 0

Table 9. Ten benchmark functions are used for the Friedman ranking test for comparative approaches.

Function
Algorithm

PSO WOA SSA SMA HHO AOA AOACS

cec01 6 4 5 2 7 3 1
cec02 3 6 5 1 7 4 2
cec03 5 6 7 1 2 4 3
cec04 4 6 3 7 5 2 1
cec05 5 6 4 7 3 1 2
cec06 2 1 7 5 4 6 3
cec07 7 5 6 3 2 4 1
cec08 6 2 7 3 4 5 1
cec09 6 5 4 7 2 3 1
cec10 2 3 6 4 5 7 1
Sum 46 44 54 40 41 39 16
Mean 4.6 4.4 5.4 4.0 4.1 3.9 1.6
Rank 6 5 7 3 4 2 1
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F10, F11, F15, F21–F23), where dimension 10 is present.

6. AOACS for Solving Real Word Engineering Optimization Problems

This section uses the suggested algorithm to resolve four engineering design issues:
the welded beam, the three-bar truss, the stepped cantilever beam, and the speed re-
ducer design. A set of 30 solutions and 500 iterations are employed in each run to solve
these issues.

The acquired results are contrasted with some related methods described in the
literature. The results of the presented AOACS are contrasted with those of the most
recent techniques in the subsections that follow. In order to assess the effectiveness of the
suggested AOACS, bound-constrained and generally constrained optimization problems
are used in this study. Each pattern variable is frequently required to give a boundary
restriction for the bound-constrained optimization problems:

lbj ≤ xij ≤ ubj, j = 1, 2, 3, . . . , n (5)

where n is the total number of places given, and lbj and ubj stand for the position’s lower
and upper bounds, respectively. Additionally, a general constrained problem is typically
formulated as:

min f(x)
X =

{
x11, x1j, x1j, . . . , x1n

}
subject to

gi(x) ≤ 0, j = 1, 2, 3, . . . , k
st(X) = 0, t = 1, 2, . . . , p

(6)
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where there are p equilibrium constraints, and k different types of constraints. All of the
constrained optimization issues in Equation (6) are mapped into the bound-constrained
design in the performance evaluation of the proposed AOA by using the static cost function.
A cost function will be incorporated into the underlying objective function for any infeasible
solution. The static cost function is streamlined for ease of employment, and it is appro-
priate for all kinds of issues and calls for an auxiliary cost function. The aforementioned
constrained optimization problem can be expressed as follows:

f (X) = f (x)
m

∑
j=1

µepmax{gi(X), 0}+
n

∑
t=1

µet{|St(X)− δ|, 0} (7)

where µep and µet are typically charged a high amount; δ is the inaccuracy of equilibrium
constraints and in this paper, we set it to 10−6. In optimization problems, constraints are
used to restrict the values that the variables can take on. By properly handling constraints,
we can find the optimal values of the variables that satisfy the constraints and obtain
meaningful solutions to real-world problems [40].

Real word engineering design issues comprise nonlinear optimization problems at-
tended by numerous complicated constraints and geometry. The proposed AOACS method
is implemented in four issues (the welded beam design problem, the three-bar truss design
problem, the stepped cantilever beam design, and the speed reducer design) to demon-
strate how well it performs in optimization situations related to engineering problems. The
proposed AOACS simulation is set as follows: the maximum iterations number is 200, the
population size is set to 30, and the simulation runs 20 times. These details are well known
to solve this kind of problem.

6.1. Welded Beam

One of the considerably well-known problem studies to assess algorithms’ effective-
ness is the welded beam design problem. It was first put forth in [41] and sought to decrease
the overall fabricating value of a welded beam by using four decision variables, as shown
in Figure 7. These variables are the weld thickness (h), the joint beam’s length (l), its height
(t), and its thickness (b).
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The problem’s mathematical formulation and constraint functions are as follows:
Consider →

λ = [λ1, λ2, λ3, λ4] = [h, l, t, b]

Minimize
f (
→
λ ) = 1.10471λ2

1λ2 + 0.04811λ3λ4(14.0 + λ2)

Subject to

g1(
→
λ ) = τ(λ)− τmax ≤ 0
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g2(
→
λ ) = σ− σmax ≤ 0

g3(
→
λ ) = δ− δmax ≤ 0

g4(
→
λ ) = λ1 − λ4 ≤ 0 ≤ 0

g5(
→
λ ) = P− PC

(→
λ

)
≤ 0

g6(
→
λ ) = 0.125− λ1 ≤ 0

g7(
→
λ ) = 1.10471λ2

1 + 0.04811λ3λ4(14 + λ2)− 5 ≤ 0

Variable range
0.1 ≤ λ1, λ2 ≤ 2, 0.1 ≤ λ2, λ3 ≤ 10

where

τ(
→
λ ) =

√
( τ′)2 + 2 τ′ τ′′

λ2

2R
+ ( τ′′ )2, τ′ =

P√
2λ1λ2

, τ′ =
MR

J
, M = P

(
L +

λ2

2

)

R =

√
λ2

1
4

+

(
λ1 + λ3

2

)2
, J = 2

{
√

2λ1λ2

[
λ2

2
4

+

(
λ1 + λ3

2

)2
]}

,

σ(
→
λ ) =

6PL
Eλ2

3λ4
, δ(

→
λ ) =

6PL3

Eλ2
3λ4

,

PC(
→
λ ) =

4.013E
√

λ2
3λ

6
4

36
L2

(
1− z3

2L

√
E

4G

)

σmax = 3000psi, δmax = 0.25in, τmax = 30, 000psi.

E = 30× 106 psi, G = 12× 106 psi

L = 14in, P = 6000lb,

The proposed AOACS is implemented on the welded beam problem, and the result is
compared with other metaheuristic approaches such as AOA, HHO, SSA, WOA, PSO, and
SMA. Table 10 shows the achieved results; the variables h, l, t, and b are set as 1.96 × 10−1,
0.335 × 10−1, 0.904 × 10−1, and 2.06 × 10−1, respectively, and the optimal manufacturing
cost of AOACS is 1.96 × 10−1. In this comparison, it is clear that AOACS produces better
outcomes than all the other techniques. This demonstrates that AOACS is competitive in
solving the welded beam design challenge.

6.2. Three-Bar Truss

The three-bar truss design’s optimization goal is to reduce overall weight. Figure 8
depicts the three-bar truss construction together with its primary parameters, element 1’s
cross-sectional site (X1) and element 2’s cross-sectional site (X2). Buckling, deflection, and
stress are further limits on the issue.
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Table 10. Comparison of the achieved outcomes of different algorithms when solving the welded
beam problem.

Algorithm
Optimal Estimated Values Optimal

Costh (λ1) l (λ2) t (λ3) b (λ4)

HHO 2.05 × 10−1 0.348 × 10−1 0.904 × 10−1 2.06 × 10−1 1.730

AOA 1.94 × 10−1 0.257 × 10−1 0.100 × 10−1 2.02 × 10−1 1.720

WOA 2.05 × 10−1 0.347 × 10−1 0.904 × 10−1 2.06 × 10−1 1.730

SSA 2.06 × 10−1 0.348 × 10−1 0.904 × 10−1 2.06 × 10−1 1.730

PSO 2.00 × 10−1 0.337 × 10−1 0.901 × 10−1 2.07 × 10−1 1.710

SMA 2.08 × 10−1 0.323 × 10−1 0.899 × 10−1 2.08 × 10−1 1.700

AOACS 1.96 × 10−1 0.335 × 10−1 0.904 × 10−1 2.06 × 10−1 1.690
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The mathematical formulation is expressed as follows:
Consider →

λ = [λ1, λ2] = [X1, X2]

Minimize
f (
→
λ ) = (2

√
2λ1 + λ2)× l

Subject to

g1(
→
λ ) =

√
2λ1 + λ2√

2λ2
1 + 2λ1λ2

P− σ ≤ 0

g2(
→
λ ) =

λ2√
2λ2

1 + 2λ1λ2
P− σ ≤ 0

g3(
→
λ ) =

1√
2λ2 + λ1

P− σ ≤ 0

Variable range
0 ≤ λ1, λ2 ≤ 1

where
σ = 2 KN/cm2, l = 100 cm, P = 2 KN/cm2

Table 11 shows the performance of several algorithms, such as HHO, AOA, WOA, SSA,
PSO, SMA, and the proposed AOACS algorithm for solving the problem of the three-bar
truss design problem. The results demonstrate that the AOACS algorithm indicates an
outperformance compared to other algorithms. The minimum weight is 2.6387 × 102, and
the optimal values for X1(λ1) and X2(λ2) are 7.8859 × 10−1 and 4.0825 × 10−1, respectively.
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Thus, the AOACS has the promising prospect of solving such an issue with a minimal
search area.

Table 11. The achieved outcomes of several algorithms when solving the three-bar truss optimiza-
tion issue.

Algorithm
Optimal Estimated Values

Lowest Weight
X1 (λ1) X2 (λ2)

HHO 7.8867 × 10−1 4.0828 × 10−1 2.6390 × 102

AOA 7.9369 × 10−1 3.9426 × 10−1 2.6392 × 102

WOA 7.8866 × 10−1 4.0828 × 10−1 2.6390 × 102

SSA 7.8860 × 10−1 4.0845 × 10−1 2.6390 × 102

PSO 7.8867 × 10−1 4.0826 × 10−1 2.6390 × 102

SMA 7.8890 × 10−1 4.0762 × 10−1 2.6390 × 102

AOACS 7.8859 × 10−1 4.0825 × 10−1 2.6387 × 102

6.3. Stepped Cantilever Beam Design

As depicted in Figure 9, a stepped cantilever beam is kept at one end and loaded
at the other. At a predetermined distance from the support, the beam must be capable
of supporting the specified load. Each section’s width (λ) can be altered by the beam’s
designers. We assume that the length of each part of the cantilever is the same. The
cantilever’s weight must be kept to a minimum in order to solve the cantilever beam
design problem.
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The problem’s mathematical formulation and constraint functions are as follows:
Consider:

λ = [λ1λ2λ3λ4λ5]

Minimize:
f (x) = 0.0624(λ1 + λ2 + λ3 + λ4 + λ5)

Subject to:

g(x) =
61
λ3

1
+

37
λ3

2
+

19
λ3

3
+

7
λ3

4
+

1
λ3

5
− 1 ≤ 0
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Variable range:
0.01 ≤ λi ≤ 100(i = 1, 2, . . . 5)

Table 12 displays the test findings for the cantilever beam design issue. The table shows
that the weight acquired by the AOACS algorithm was the best weight (0.134 × 10−1) when
compared to the HHO, WOA, SSA, PSO, and SMA algorithms, demonstrating the AOACS
algorithm’s viability and efficiency in addressing the cantilever beam design problem.

Table 12. The achieved outcomes of several algorithms when solving the stepped cantilever beam
design issue.

Algorithm
Optimal Estimated Values

Lowest Weight
λ1 λ2 λ3 λ4 λ5

HHO 0.513 × 10−1 0.562 × 10−1 0.510 × 10−1 0.393 × 10−1 0.232 × 10−1 0.138 × 10−1

AOA 0.621 × 10−1 0.621 × 10−1 0.621 × 10−1 0.621 × 10−1 0.621 × 10−1 0.194 × 10−1

WOA 0.600 × 10−1 0.530 × 10−1 0.449 × 10−1 0.351 × 10−1 0.217 × 10−1 0.134 × 10−1

SSA 0.561 × 10−1 0.496 × 10−1 0.566 × 10−1 0.320 × 10−1 0.320 × 10−1 0.141 × 10−1

PSO 0.605 × 10−1 0.526 × 10−1 0.451 × 10−1 0.346 × 10−1 0.219 × 10−1 0.134 × 10−1

SMA 0.511 × 10−1 0.599 × 10−1 0.502 × 10−1 0.371 × 10−1 0.327 × 10−1 0.144 × 10−1

AOACS 0.601 × 10−1 0.531 × 10−1 0.449 × 10−1 0.350 × 10−1 0.215 × 10−1 0.134 × 10−1

6.4. Speed Reducer Design

The tooth surface width λ1, gear module λ2, the number of teeth on the pinion λ3,
the length of the first shaft between bearings λ4, the length of the second shaft between
bearings λ5, the diameter of the first shaft λ6, and the diameter of the second shaft λ7 are
the seven variables in the reducer design problem. In Figure 10, the variable diagram is
displayed. The reducer design problem aims to determine the reducer’s smallest weight
while adhering to four design restrictions. The four design limitations are stress in the shaft,
lateral shaft deflection, stress on the shaft, and bending stress on the gear teeth.
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Subject to: 𝑔   𝜆 =   27𝜆   ×  𝜆   ×  𝜆   −  1  ≤  0 

𝑔 𝜆 = 397.5𝜆 × 𝜆 × 𝜆 − 1 ≤ 0 

𝑔 𝜆 = 1.93 × 𝜆𝜆 × 𝜆 × 𝜆 − 1 ≤ 0 

𝑔 𝜆 = 1.93 × 𝜆𝜆 × 𝜆 × 𝜆 − 1 ≤ 0 

𝑔 𝜆 = 1110 × 𝜆 745 × 𝜆𝜆 × 𝜆 + 16.9 × 10 − 1 ≤ 0 

𝑔 𝜆 = 185 × 𝜆 745 × 𝜆𝜆 × 𝜆 + 16.9 × 10 − 1 ≤ 0 

𝑔 𝜆 = 𝜆 × 𝜆40 − 1 ≤ 0 

Figure 10. Speed Reducer Design.
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The problem’s mathematical formulation and constraint functions are as follows:
Consider:

λ = [λ1λ2λ3λ4λ5λ6λ7]

Minimize:

f (
→
λ) = 07854× λ1 × λ2

2 ×
(
3.3333× λ2

3 + 14.9334× λ3 − 43.0934
)
− 1.508× λ1 ×

(
λ2

6 + λ2
7
)
+

7.4777× λ3
6 + λ3

7 + 0.7854× λ4 × λ2
6 + λ5 × λ2

7

Subject to:

g1(
→
λ) =

27
λ1 × λ2

2 × λ3
− 1 ≤ 0

g2(
→
λ) =

397.5
λ1 × λ2

2 × λ2
3
− 1 ≤ 0

g3(
→
λ) =

1.93× λ3
4

λ2 × λ3 × λ4
6
− 1 ≤ 0

g4(
→
λ) =

1.93× λ3
5

λ2 × λ3 × λ4
7
− 1 ≤ 0

g5(
→
λ) =

1
110× λ3

6

√(
745× λ4

λ2 × λ3

)2
+ 16.9× 106 − 1 ≤ 0

g6(
→
λ) =

1
85× λ3

7

√(
745× λ5

λ2 × λ3

)2
+ 16.9× 106 − 1 ≤ 0

g7(
→
λ) =

λ2 × λ3

40
− 1 ≤ 0

g8(
→
λ) =

5× λ2

λ1
− 1 ≤ 0

g9(
→
λ) =

λ1

12× λ2
− 1 ≤ 0

g10(
→
λ) =

1.5× λ6 + 1.9
λ4

− 1 ≤ 0

g11(
→
λ) =

1.1× λ7 + 1.9
λ5

− 1 ≤ 0

Variable range:

2.6 ≤ λ1 ≤ 3.6, 0.7 ≤ λ2 ≤ 0.8, 17 ≤ λ3 ≤ 28, 7.3 ≤ λ4 ≤ 8.3, 7.3 ≤ λ5 ≤
8.3, 2.9 ≤ λ6 ≤ 3.9, 5λ7 ≤ 5.5

The results of the AOACS and the compared methods are listed in Table 13. From this
table, the AOACS is ranked first and outperformed all methods in solving this problem,
whereas the SMA is ranked second, followed by PSO, AOA, and HHO, respectively.

This work presents an innovative optimization algorithm for solving engineering
design problems. The performance of the proposed algorithm is evaluated using several
benchmark functions and compared with other state-of-the-art optimization algorithms.
Here is a brief discussion of the results obtained in the study. The results demonstrate that
the proposed algorithm outperforms other optimization algorithms in terms of solution
quality and convergence speed. The proposed algorithm is more efficient in finding the
global optimum and has a faster convergence rate compared to the other algorithms. The
study also presents a comparison between the standard cuckoo search algorithm and the
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proposed algorithm, which shows that the proposed algorithm performs better than the
standard cuckoo search algorithm in terms of solution quality and convergence speed.
The proposed algorithm achieves a better balance between exploration and exploitation of
the solution space, leading to improved optimization performance. Moreover, the study
shows that the proposed algorithm is robust and effective in solving different types of
engineering design problems. The algorithm successfully optimizes various engineer-
ing design problems, including mathematical models for physical systems, circuits, and
mechanical systems.

Table 13. The achieved outcomes of several algorithms when solving the speed reducer issue.

Algorithm
Optimal Estimated Values

Lowest Weight
λ1 λ2 λ3 λ4 λ5 λ6 λ7

HHO 3.606129 0.7 17 7.2 7.98141 3.462569 5.296749 3028.873076

AOA 3.5 0.7 17 7.2 7.680396 3.552421 5.255814 3020.583365

WOA 3.518765 0.7 17 7.2 7.9 3.45102 5.299213 3031.563

SSA 3.530134 0.7 17 8.36 7.9 3.37697 5.298719 3030.002

PSO 3.537485 0.7002 17 7.729684 8.090954 3.361512 5.297051 3011.137492

SMA 3.526152 0.700005 17 7.559136 7.95833 3.375576 5.299773 3009.08

AOACS 3.5032 0.7 17 7.2198 7.7375 3.3741 5.2994 3007.7328

In summary, the results of the study demonstrate that the proposed algorithm is a
powerful optimization tool that can efficiently solve complex engineering design problems.
The algorithm offers superior performance in terms of solution quality and convergence
speed compared to other state-of-the-art optimization algorithms. Therefore, the proposed
algorithm has the potential to be widely applied in different fields, such as aerospace
engineering, mechanical engineering, and electrical engineering, where optimization of
complex mathematical models is necessary.

7. Conclusions

In this work, we propose an accelerated AOA algorithm approach called AOACS,
which hybridizes the AOA with the cuckoo search algorithm. The CS is used to enhance
the performance of AOA by balancing the exploitation and exploration to acquire more
reasonable convergence accuracy. The proposed algorithm provides significant results
in solving numerical optimization problems compared to other algorithms. The perfor-
mance of the AOACS is examined using 23 benchmark functions to show the ability of
the proposed work to solve different numerical optimization problems. Further, to verify
the outperformance of the AOACS algorithm, AOACS is implemented to solve two ex-
amples of engineering optimization design problems, welded beam and three-bar truss
design. AOACS is compared with the essential AOA and well-known algorithms such
as HHO, SSA, WOA, PSO, and SMA and demonstrates superior performance in terms of
minimum manufacturing cost for the welded beam and minimum weight for the three-bar
truss design.

This work proposes a novel optimization algorithm that shows promising results in
solving complex engineering design problems. Here are some future research directions
that could build upon this work:

• Hybridization with other optimization algorithms: The proposed algorithm could be
combined with other optimization algorithms, such as the Genetic Algorithm (GA)
or Particle Swarm Optimization (PSO), to create hybrid algorithms that leverage the
strengths of both approaches. Hybrid algorithms may lead to even better optimization
performance for certain types of engineering design problems.
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• Parameter tuning: The performance of the proposed algorithm is highly dependent on
the values of its parameters, such as the population size and the number of iterations.
Future work could focus on finding optimal parameter settings that can improve the
performance of the algorithm.

• Application to real-world engineering problems: The proposed algorithm has the
potential to be applied to real-world engineering design problems, such as designing
efficient aircraft or optimizing the performance of renewable energy systems. Future
research could focus on applying the proposed algorithm to such problems and
evaluating its performance in comparison to other optimization algorithms.

• Further theoretical analysis: Theoretical analysis of the proposed algorithm, such as
convergence analysis or complexity analysis, could provide deeper insights into its
behavior and limitations. Such analysis could also guide the development of more
efficient optimization algorithms in the future.

• Extension to multi-objective optimization: The proposed algorithm is currently de-
signed to optimize single-objective problems. Future research could focus on extend-
ing the algorithm to solve multi-objective optimization problems, where multiple
conflicting objectives need to be optimized simultaneously.

In conclusion, this work presents a promising optimization algorithm that can be fur-
ther developed and applied to real-world engineering problems. Future research can build
upon this work to improve the algorithm’s performance and expand its application domain.
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