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Abstract: The accurate estimation of reservoir porosity plays a vital role in estimating the amount
of hydrocarbon reserves and evaluating the economic potential of a reservoir. It also aids decision
making during the exploration and development phases of oil and gas fields. This study evaluates
the integration of artificial intelligence techniques, conventional well logs, and core analysis for
the accurate prediction of porosity in carbonate reservoirs. In general, carbonate reservoirs are
characterized by their complex pore systems, with the wide spatial variation and highly nonlinear
nature of their petrophysical properties. Therefore, they require detailed well-log interpretations to
accurately estimate their properties, making them good candidates for the application of machine
learning techniques. Accordingly, a large database of (2100) well-log records and core-porosity
measurements were integrated with four state-of-the-art machine learning techniques (multilayer
perceptron artificial neural network, MLP-ANN; Gaussian process regression, GPR; least squares
gradient boosting ensemble, LS-Boost; and radial basis function neural network, RBF-NN) for the
prediction of reservoir porosity. The well-log data used in this study include sonic acoustic travel
time, Gamma-ray, and bulk density log records, which were carefully collected from five wells in
a carbonate reservoir. This study revealed that all the artificial intelligence models achieved high
accuracy, with R-squared values exceeding 90% during both the training and blind-testing phases.
Among the AI models examined, the GPR model outperformed the others in terms of the R-squared
values, root-mean-square error (RMSE), and coefficient of variation of the root-mean-square error
(CVRMSE). Furthermore, this study introduces an artificially intelligent AI-based correlation for the
estimation of reservoir porosity from well-log data; this correlation was developed using an in-house,
Fortran-coded MLP-ANN model presented herein. This AI-based correlation gave a promising
level of accuracy, with R-squared values of 92% and 90% for the training and blind-testing datasets,
respectively. This correlation can serve as an accurate and easy-to-use tool for porosity prediction
without any prior experience in utilizing or implementing machine learning models.

Keywords: porosity AI-based correlation; carbonate reservoirs; machine learning techniques; Gaussian
process regression; least squares gradient boosting ensemble

1. Introduction

Porosity, which is a measure of hydrocarbon reservoir storage capacity, is a key petro-
physical property that usually aids in the decision-making process during the exploration,
development, and production phases of oil and gas fields. Therefore, accurate estimation
of this property is of paramount importance to the petroleum industry.

The ideal method for measuring porosity is through the laboratory testing of core sam-
ples taken from subsurface hydrocarbon zones. This option may not always be feasible due
to its high cost, which makes it challenging to obtain measurements for every well or every
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section of a well within a given field. Therefore, there is a need for methods to estimate the
porosity from readily available conventional well logs, which is a more economical option
since these logs are routinely collected during drilling and well-completion operations.
Thus, various correlation and nonparametric regression techniques have been developed
to estimate reservoir porosity from well logs [1–9]; however, these correlations may have
limitations (e.g., they require prior knowledge of the lithology and pore fluid types) and
uncertainties in accuracy, especially in complex reservoirs with significant heterogeneity.

Accordingly, it is crucial to continually improve and develop new porosity estimation
techniques to ensure accurate reservoir characterization and improve the reservoir man-
agement process. Therefore, in recent years, researchers have shifted their focus towards
utilizing machine learning techniques to enhance porosity estimation accuracy because
these techniques are well-equipped to handle the high nonlinearity in input data—these
are data-driven techniques and therefore do not require prior knowledge of lithology or
pore fluid types [10–12]. By utilizing large volumes of well-log data and core samples,
these techniques can provide more accurate porosity estimates, even in complex reservoirs
with significant heterogeneity [13–15]. Furthermore, machine learning models can also
incorporate data from multiple sources, such as seismic features and well-log data, to
provide a more comprehensive understanding of the reservoir properties and improve the
porosity estimation accuracy [16,17]. In the literature, artificial neural networks [18–24],
support vector machines [25–27], fuzzy logic [28–30], and neuro-fuzzy [31–33] are all ex-
amples of machine learning techniques that are often used for reservoir characterization,
including porosity estimation. However, the majority of the previous studies are limited
in the number and range of data used, making them prone to deficiencies, such as an
inadequate prediction of porosity in heterogeneous reservoirs similar to the carbonate
reservoir discussed in this study.

Consequently, this study presents the use of a large database of carbonate-reservoir
core-porosity measurements and well-log records, including sonic acoustic-travel-time,
Gamma-ray, and bulk-density logs, in the utilization of four state-of-the-art machine
learning techniques (multilayer perceptron artificial neural network, MLP-ANN; Gaussian
process regression, GPR; least squares gradient-boosting ensemble, LS-Boost; and radial
basis function neural network, RBF-NN) for the prediction of reservoir porosity. The
database used in this study comprises (2100) conventional well-log records and core-
porosity measurements that were carefully gathered from five wells in a carbonate reservoir
located in the Middle East region. Carbonate reservoirs, in particular, are characterized
by their complex pore systems and heterogeneity (i.e., the wide spatial variation in their
petrophysical properties). Therefore, they require detailed well-log interpretations to
accurately estimate their properties, making them good candidates for the application of
machine learning techniques. Furthermore, since the empirical correlation used for well-
log interpretation may have poor accuracy in such heterogeneous reservoirs, we propose
herein a smart AI-based correlation for the well-log interpretation of a carbonate reservoir.
The proposed correlation is built using an in-house, Fortran-coded multilayer perceptron
artificial neural network model developed by Azim [34]. This smart correlation could serve
as an accurate and easy-to-use tool for porosity prediction without any prior experience
in utilizing or implementing machine learning models. Furthermore, it can be used for
estimating porosity profiles for uncored wells in the same reservoir, saving time and the
cost of extensive coring measurements in newly drilled wells.

2. Data Acquisition and Analysis
2.1. Porosity Database

The main objective of this study was to establish a reliable porosity model for a car-
bonate reservoir in the Middle East region, using a large database of core-porosity mea-
surements and conventional wireline log records. The reservoir under study is an Upper
Jurassic carbonate reservoir located in the Arab-D formation of the Ghawar field. The
studied reservoir is mainly limestone with interbeds of dolostone. In general, the Arab-D
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formation of the Ghawar field is grouped into several litho-facies types, including seven
limestone and four dolomite rock types. These rocks have been exposed to different
diagenetic processes, including dolomitization, compaction, leaching, recrystallization,
and fracturing, resulting in high spatial variation (both horizontally and vertically) in the
reservoir’s petrophysical properties.

A total of 2100 well-log records were collected from five wells (Wells A, B, C, D, and X)
and each dataset contained the following independent parameters:

1. Sonic acoustic travel time log (DT), µs/ft;
2. Bulk density log (RHOB), g/cm3;
3. Gamma-ray log (GR), API unit.

The presented well-log records were calibrated to core data through depth-shifting in
order to make sure that the porosity estimated from the well-log data was cross-checked
with experimentally measured porosity.

The range of statistical parameters for the well-log and core-porosity data under study
is presented in Table 1, which demonstrates the range of variations for dependent and
independent parameters for all (2100) datasets used in this study.

Table 1. Statistical parameters of the porosity database used.

Statistical Parameter Sonic Log Bulk Density Log Gamma Ray Log Porosity

µs/ft g/cm3 API Fraction

Maximum 70.81 3.07 82 0.2154
Minimum 42.4 2.6 7.8 0.0003

Mean 49 2.8 29.8 0.0377
Standard Deviation 4.61 0.096 11.4 0.039

Coefficient of Variation 0.092 0.034 0.38 1.04

The porosity database presented in Table 1 was utilized to train and cross-validate the
developed machine learning models (GPR, LS-Boost, RBF-NN, and MLP-ANN), using a 5-fold
cross-validation technique (unless otherwise stated) to minimize any overfitting issues.

For each well, 80% of the data were randomly used for training/cross-validation (65%
for training and 15% for validation), while the remaining 20% of the data were kept as blind-
testing (unseen) data in order to examine the model’s generalization ability. Accordingly,
a total of 1542 well-log records were used for training/cross-validation and a total of
386 well-log records were used for blind testing. Figure 1A presents the well-log records
used for training, while the testing data are shown in part (Figure 1B) of the same figure.
The data were normalized in order to avoid any scale issues. Thus, the data were mapped
to the maximum and minimum values of the input variables using the following equation:

xn =
x− xmin

xmax − xmin
(1)

where x is the input variable, xmin is the minimum of the input variable, and xmax is the
maximum of the input variable.
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 Figure 1. Well-log records of (DT, RHOB, and GR) used in this study: (A) used as training data;
(B) used as (unseen) blind-testing data.



Processes 2023, 11, 1339 5 of 21

2.2. Performance Indicators

The prediction accuracy of the studied models was assessed using various statistical
indicators, such as the root-mean-square error (RMSE), the coefficient of variation of
the root-mean-square error (CVRMSE), and the coefficient of determination R2. These
indicators are presented by Equations (2)–(4) as follows:

RMSE =

√
∑n

i=1(yi − y̌i)
2

n
(2)

CVRMSE =
1
y

√
∑n

i=1(yi − y̌i)
2

n
(3)

R2 = 1− ∑n
i=1(yi − y̌i)

2

∑n
i=1(yi − y)2 (4)

where y̌i is the estimated response and y is the average true response.

3. Methodology

Using four artificially intelligent models, including the multilayer perceptron artificial
neural network (MLP ANN), Gaussian process regression (GPR), least squares gradient
boosting ensemble (LS-Boost), and radial basis function neural network (RBF-NN), this
study aimed to create a general intelligent model that can accurately predict the reser-
voir porosity profile in carbonate reservoirs. The MATLAB software (R2021a version,
MathWorks Inc., Natick, MA, USA) was used for the coding and implementation of all
the models except MLP-ANN, which is an in-house, Fortran-coded model developed by
Azim [34]. Herein, we provide a brief overview of each intelligent model developed in
this research, as well as the Bayesian optimization algorithm that was used to fine-tune the
model’s hyperparameters.

3.1. Gaussian Process Regression

Gaussian process regression is a powerful machine learning technique based on the
Bayesian theory [35]. This approach is particularly suitable for addressing small sample
sizes, complex nonlinear problems, and high-dimensional data [36,37]. Unlike linear re-
gression methods that rely on deterministic variables alone, GPR leverages a set of random
variables with joint Gaussian distributions characterized by mean and covariance functions.

Assume an input and target vector {x i, yi} with m training data points where
i = 1, 2, . . . , m. Then, the model can be defined as follows:

yi = f (xi) + εi (5)

where εi is a Gaussian noise with zero mean and variance σ2
n and f (xi) is the learning

function. The output vector yi can be presented with a Gaussian distribution as follows [37]:

y ∼ N
(

0, K(X, X) + σ2
n I
)

(6)

where K(X, X) is the kernel function (or covariance function). Various types of kernel
functions can be utilized in the Gaussian process, such as squared exponential, exponen-
tial, Matern 3/2, and Matern 5/2 [35]. For instance, the squared exponential function is
as follows:

k
(
xp, xq

)
= σ2

f exp

(
−0.5

m

∑
i=1

(
xpi − xqi

)2/σ2
l

)
(7)
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where σ2
f and σ2

l are the signal variance and the length scale of the kernel function. For any
testing data point x∗, the joint Gaussian distribution of the true response values and the
estimated ones is given as [37]:[

y
f (x∗)

]
∼ N

(
0,
[

k(X, X) + σ2
n I k(X, x∗)

k(x∗, X) k(x∗x∗)

])
(8)

This will give a predicted mean f (x∗) and a variance V(x∗) of the learning function [37]:

f (x∗) = k∗T
(

K + σ2
n I
)−1

y = k∗Tα (9)

V(x∗) = k(x∗, x∗)− k∗T
(

K + σ2
n I
)−1

k∗ (10)

The parameters =
[
σ2

n , σ2
f , σ2

l

]
are the Gaussian process hyperparameters optimized

using the Bayesian optimization algorithm in this study.

3.2. Least Square Gradient Boosting Ensemble

Ensemble learning combines multiple models to enhance prediction accuracy and
robustness in supervised machine learning. This approach is particularly useful when
dealing with complex datasets or when individual models have limitations [38]. In this
technique, a meta-learner integrates several regression machine learning methods and
weighs each based on their performance to create a more reliable ensemble model that
enhances prediction accuracy and reduces overfitting. Popular ensemble techniques include
bagging, boosting, and random forests [39]. In addition, different types of individual
learners can be ensembled, including decision trees, neural networks, support vector
machines, and logistic regression models [40,41]. The variety of methods will lead to
varying regression performances, enhancing the overall performance of the ensemble
technique. However, it is important to note that ensemble learning may require more
computational resources and time for training compared to individual models [38,42].

The LS-Boost ensemble used in this study employs decision trees as individual learners
to reduce global error. Individual learners are trained sequentially on the testing dataset and
fitted with residuals of errors. With each iteration, a new learner is fit to improve prediction
accuracy by minimizing the differences between response values and aggregated predicted
values. The least square boosting ensemble method is presented in Algorithm 1 as reported
by Friedman in [43].

Algorithm 1: LS-Boost Algorithm

Define xi and yi as explainable variables and M as the number of iterations.

Define the training set
{(

xi , yj
)}n

i=1, a loss function as L(y, F) = (y−F)2

2 and Fm(x) as the regression function.
Initialization: F0(x) = y
For m = 1 to M do:

∼
yi = yi − Fm−1(xi) for i = 1, 2, . . . , N

(ρm, αm) = argminρ,α

N
∑

i=1

[∼
yi − ρh(xi ; α)

]2

Fm(x) = Fm−1(x) + ρmh(x; αm)
End

3.3. Multi-Layer Perceptron Artificial Neural Network

An artificial neural network (ANN) is a powerful computational technique that emu-
lates the complex structure of the human brain system. The ANN design aims to replicate
how our brains acquire knowledge, comprehend information, and provide solutions to
challenging problems through learnability techniques. ANNs are composed of multiple
interconnected processing nodes (neurons) that work together to process and analyze
complex datasets. That is, an ANN is composed of an input layer, a single layer (or multi-
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ple hidden layers), and an output layer, and these layers are connected through synaptic
weights. Thus, ANNs are based on the concept of a weighted sum of inputs, where each
input is multiplied by a weight and then summed together. This weighted sum is then
passed through an activation function, which determines the output of that particular
node. The process is repeated for each node in the network, with the output of one node
becoming the input for another node until the final output is produced. Some popular
activation functions include sigmoid, ReLU (rectified linear unit), and tanh (hyperbolic
tangent) [44]. Once the network outputs are calculated, they are compared to the true target
values to calculate the error, and this error is used to adjust the weights of the network
through a process called backpropagation. Through this process, ANNs can identify hidden
trends within the data that may be difficult for conventional regression techniques to detect.
Backpropagation is a common process used to train ANNs by adjusting the weights and
biases of the network to minimize the divergence between the predicted and the actual
outputs using gradient-based algorithms. This process is repeated over multiple iterations
until the error is minimized to an acceptable level, at which point the model is considered
trained and ready for testing and evaluation.

The success of an ANN model largely depends on the quality and quantity of data
used for training [45,46], as well as the appropriate selection of network architecture (i.e.,
the number of hidden neurons and hidden layers) and the tuning of hyperparameters (i.e.,
determination of the optimum sets of network weights and biases). A typical MLP network
is shown in Figure 2.
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In this study, we utilized an in-house, Fortran-coded artificial neural network model
developed by Azim [34]. The in-house code uses the backpropagation algorithm for
supervised learning. The in-house code structure can be summarized as follows:

1. Set the initial weights and biases of the network in a random manner.
2. Start the forward pass and calculate the network output utilizing the input vector,

weights, biases, and transfer functions.
3. Compare the network output to the true response and calculate the global error using

the following formula:

Error =

n1
∑
1

n2
∑
1

(
yt − yp

)
n1·n2

(11)

where n1 is the total number of training instances and n2 is the number of neurons
in the output layer. The yt and yp are the true and predicted output values, respec-
tively [34].

4. Propagate back to adjust the weights and biases using one of the following gradient-
based algorithms, scaled conjugate gradient, one-step secant, or Levenberg–Marquardt
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algorithm, in order to decide the amount and direction of the weight change. In addi-
tion, the following convergence technique is used to speed up the network through
adding an acceleration factor as follows [47]:

w(t + 1) = w(t) + β[∆w(t)] + α[w(t− 1)] (12)

where α is the momentum constant, w is the weight value, ∆w is the weight change,
t is the training epoch, and β is the learning constant. The constants α and β are
employed to increase the step size and decrease abrupt gradient changes, and these
learning and momentum constants are confined between 0 and 1 [34].

5. Use the new set of weights and biases to recalculate the network output by repeating
steps 2 to 4.

6. Report the final optimized set of weights and biases once the model reaches a pre-
defined accuracy level or a maximum number of iterations.

In recent studies, Reda Abdel Azim [34,48,49] concluded that a well-trained MLP
neural network can be conveniently converted into an AI-based mathematical model using
the optimized weights and biases of the network, and thus he developed a set of robust
AI-based correlations for different petroleum applications including the fields of fluid
properties, drilling operations, and production optimization. In this study, we followed
the same approach to propose an AI-based explicit mathematical formula for the accurate
prediction of reservoir porosity (as shown in Section 4.2).

3.4. Radial Basis Function Neural Network

The radial basis function neural network (RBF-NN) is another kind of artificial neural
network that was utilized in this study, which uses radial basis functions as activation
functions. These functions measure the distance between a given input and a center point,
with the output being the highest when the input is closest to the center point. This type
of ANN is commonly used in function approximation and interpolation, clustering, and
classification tasks [46]. The RBF neural network is based on the concept of a hidden layer
of nodes, each representing a radial basis function. The output of each node in the hidden
layer is then combined and passed through a linear combination to produce the final output.
The main difference between RBF and multi-layer perceptron ANN is that RBF consists of
only one hidden layer; additionally, in RBF, the weights are calculated using methods other
than backpropagation, such as orthogonal least-squares approximation [46,50].

The output of any RBF function in the hidden layer can be estimated based on the
Euclidean distance between the center of the Gaussian function and the input vector x, as
shown in Equation (13):

∅i
(∥∥x− cj

∥∥) = exp

[∥∥x− cj
∥∥2

2σ2
j

]
(13)

where σj and cj are the spread and center of the Gaussian RBF function, respectively.
The final output of the RBF network is a weighted sum of all hidden-layer RBF nodes,

as shown below:

Y =
n

∑
j=1

wij ×∅i(‖x− ci‖) (14)

where wij is the weight connecting the jth neuron in the hidden layer to the ith neuron in
the output layer.

Standard RBFN training involves two stages: (1) determining the centers and spreads
using clustering techniques, and (2) finding the connection weights between the hidden
layer and output layer by minimizing the mean squared error over the entire dataset.

3.5. Bayesian Optimization Algorithm

This study utilized the Bayesian optimization method to tune the hyperparameters of
machine learning models (i.e., Gaussian process regression, least square boosting ensemble,
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and RBF-Neural Network) for improved cross-validation scores. Bayesian optimization is
particularly useful for computationally expensive function evaluations by reducing the time
taken to achieve global minima within solution spaces [38]. The exploration and sampling
of search space rely on prior beliefs about the problem according to Bayes’ theorem, which
states that “posterior probability of a model M given evidence E is proportional to likelihood
of E given M multiplied by prior probability of M”, as shown in the following formula:

P(M|E) α P(E|M)P(M) (15)

A surrogate model, e.g., the Gaussian process, approximates the objective function
and selects samples from the solution space using acquisition functions, such as expected
improvement and maximum probability of improvement [51]. Algorithm 2 outlines the
Bayesian optimization approach [38].

Algorithm 2: Bayesian optimization

For t = 1, 2, . . . do
Find xt by optimizing the acquisition function over the Gaussian Process (GP)

xt = argmaxxu(x|D1:t−1)
Sample the objective function: yt = f (xt) + εt
Augment the data D1:t = {D1:t−1, (xt, yt)} and update the GP
End

4. Results and Discussion
4.1. Evaluation of Machine Learning Models

In this study, a total of four machine learning models (Gaussian process regression,
GPR; least squares boosting, LS-Boost; multi-layer perceptron artificial neural network,
MLP-ANN; and radial basis function neural network, RBF-NN) were utilized to predict
the reservoir porosity given the inputs of the acoustic travel time log (DT), bulk density
log (RHOB), and Gamma-ray log (GR), using a large database of well-log records and
core-porosity measurements. The Bayesian optimization algorithm was employed to find
the optimum hyperparameters of (the GPR, LS-Boost, and RBF-NN) models that yield
the highest prediction accuracy. Table 2 presents the hyperparameters that have been
optimized along with the optimization ranges of those parameters. It should be noted that
for the case of MLP-ANN, the hyperparameters were optimized within the structure of the
developed in-house code, and these hyperparameters include the network weights and
biases, number of hidden neurons, number of hidden layers, type of transfer function, and
type of learning optimizer.

Table 3 provides the performance indicators of the developed models (GPR, LS-Boost,
MLP-ANN, and RBF-NN) in terms of the root-mean-square error (RMSE), the coefficient of
variation of the root-mean-square error (CVRMSE), and the coefficient of determination R2,
for the training data. It can be noted that, in general, all tested models achieved a good level
of accuracy in predicting reservoir porosity, reaching coefficient-of-determination values
greater than 0.9 (R2 > 0.90) for the training database used. Furthermore, the GPR model
gave the lowest error among all with an RMSE of 0.0093, CVRMSE of 24%, and R2 value of
0.945. The high R-squared value and low RMSE clearly highlight the superior performance
of GPR in matching the true values of reservoir porosity. The LS-Boost model was second
best with an RMSE of 0.01 and R2 of 0.935, followed by MLP-ANN and RBF-NN with
RMSE of (0.0111 and 0.01165) and R2 of 0.92 and 0.91, respectively. It should be noted that,
in general, MLP-ANN and RBF-NN have similar performance for the database used.

Figure 3A–D present a cross-plot of the true reservoir porosity against the predicted
reservoir porosity generated by the four machine learning models developed for this
study, Gaussian process regression (GPR), least squares boosting (LS-Boost), multi-layer
perceptron artificial neural network (MLP-ANN), and radial basis function neural network
(RBF-NN), using training data. It can be seen from Figure 3A–D that the predicted values
of reservoir porosity from these machine learning models are closely clustered around the
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line of unity, which visually indicates the strong predictive capabilities of these models.
Furthermore, it is evident that the outcomes of the GPR model conform closely to the unity
line compared to the rest of the models, which indicates the superior performance of the
GPR model used.

Table 2. Optimized values of hyperparameters for all AI models used in this study.

Model Type Optimizable Parameters Optimized Value Optimization Range

Gaussian process regression

Length scale 0.544 0.01–100
Signal standard deviation 0.038 0.001–100
Noise standard deviation 0.018 0.0001–1

Kernel function type SE SE, Exp, M 3/2, M 5/2, RSE

Least square
boosting ensemble

Minimum leaf size 1 1–300
Learning rate 0.304 0.01–1

Number of learning cycles 100 1–500

RBF neural network
Maximum number of neurons 80 1–100

Spread factor 0.95 0.01–10

MLP neural network

Number of hidden layers 1 1–3
Number of hidden neurons 15 1–30

Type of transfer function Log sigmoid Tan sigmoid, Log sigmoid
Type of learning optimizer Levenberg–Marquardt LM, SC, OSS

SE, square exponential; Exp, exponential; M 3/2, Matern 3/2; M 5/2, Matern 5/2; RSE, rational square exponential;
RBF, LM, Levenberg–Marquardt; SC, scaled conjugate gradient; OSS, one-step secant.

Table 3. Performance indicators of the developed machine learning models for training dataset.

AI Model
R2 RMSE CVRMSE

%

Gaussian process regression (GPR) 0.945 0.00932 24.61
Least square boosting ensemble (LS-Boost) 0.935 0.01014 26.78
MLP artificial neural network (MLP-ANN) 0.921 0.01113 29.39

RBF neural network (RBF-NN) 0.913 0.01165 30.75

The assessment of the model’s ability to generalize was carried out by testing them on
an unseen blind-testing database comprising (386) well-log records that were not included
in the training/cross-validation stage. This testing process is aimed at ensuring that our
developed models can perform accurately when faced with new data to which they have
not been previously exposed. Table 4 provides the statistical performance indicators of
each model (GPR, LS-Boost, MLP-ANN, and RBF-NN) in terms of RMSE, CVRMSE, and
R2 values using the (unseen) testing dataset. The outcomes shown in Table 4 present
a performance pattern that is consistent with the previously observed training data trend.
Specifically, it is apparent that the GPR model continued to demonstrate a superior per-
formance by exhibiting a low root-mean-square error (RMSE) of 0.0105 and an impressive
coefficient-of-determination value (R2) of 0.92 as compared to the other models evaluated
herein. The LS-Boost model stands second in rank with its RMSE value slightly higher
than GPR at 0.01154 and an R2 value equaling 0.91. The MLP model had a low RMSE
of 0.01194, indicating reasonable predictive-accuracy capabilities overall, but lower than
those exhibited by the top performer mentioned above. The RBF model was last in the line,
with an R2 of 0.9 and RMSE of 0.01213; however, these are considered acceptable, given
the heterogeneous and complex nature of the carbonate reservoir under consideration.
Figure 4A–D present a cross-plot of the true reservoir porosity against the predicted reser-
voir porosity generated by the four machine learning models developed in this study using
the unseen testing dataset. The cross-plots presented in this figure confirm the findings
presented earlier in Table 4, that is the GPR model exhibited the greatest accuracy, since its
generated data tightly clusters around the line of unity in comparison to the other studied
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models. However, Figure 4 also shows that the data produced by the other analyzed models
perform well, with the bulk of the projected values clustering fairly close around the unity
line, indicating little divergence from the observed values. These findings demonstrated the
ability of the developed machine learning models to predict reservoir porosity accurately,
as well as their ability to generalize well with new data.
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Table 4. Performance indicators of the developed machine learning models for (unseen) testing data.

AI Model
R2 RMSE CVRMSE

%

Gaussian process regression (GPR) 0.9230 0.01050 28.41
Least square boosting ensemble (LS-Boost) 0.9070 0.01154 31.24
MLP artificial neural network (MLP-ANN) 0.9004 0.01194 32.30

RBF neural network (RBF-NN) 0. 9011 0.01213 32.83
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4.2. Development of an Explicit ANN-Based Porosity Formula

Following the encouraging results of the machine learning models presented in the previ-
ous section, we aimed at developing an AI-based explicit formula for the prediction of reservoir
porosity. This was done with the help of the results of the in-house MLP-ANN model.

A trained neural network model can be converted into a mathematical equation using
its weights, biases, and transfer function [52]. This formula is typically expressed as in
Equation (16), which is a general formula that relates the input and output parameters for
a single-hidden-layer neural network.

Y = fO

{
bo +

h

∑
k=1

[
wk × fH

{
bhk +

m

∑
i=1

wikXi

}]}
(16)

Here, m is the number of input variables, h is the number of hidden neurons, (bo) is
the bias of the output layer; (wk) is the weights connecting the hidden layer to the output
layer, (bhk) is the biases of the hidden layer, (wik) is the weights connecting the input layer
to the hidden layer, (Xi) is the normalized input variable i, and (Y) is the normalized output
variable; (fH) is the transfer function of the hidden layer (i.e., sigmoid, hyperbolic tangent,
or ReLU), while (fO) is the output layer transfer function.

In this study, we have three normalized input variables (i.e., m = 3; DTn, GRn, and
RHOBn), one normalized output (Y = φn), the number of hidden neurons is fifteen (i.e.,
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h = 15), and the utilized transfer function is log-sigmoid for both the hidden layer and
output layer (i.e., fO and fH = log-sigmoid). Accordingly, the general formula presented in
Equation (16) can be rewritten as follows:

φn = fO{A} = 1
1 + exp(−A)

(17)

A = bo +
15

∑
i=1

Bi (18)

where B values are presented in Table 5.

Table 5. Values of parameter B in Equation (18).

B1 to B15 Values for Equation (18)

B1 = −0.643755/{1 + exp [−(17.0299DTn − 15.688GRn − 1.0192RHOBn − 4.6410)]}
B2 = 4.319593/{1 + exp [−(−2.1639DTn − 2.4844GRn + 12.585RHOBn − 2.171)]}
B3 = −6.346382/{1 + exp [−(−7.6639DTn + 3.8462GRn + 5.089RHOBn − 6.49685)]}
B4 = −11.19457/{1 + exp [−(−0.7176DTn + 3.0776GRn + 11.8052RHOBn − 2.4289)]}
B5 = −1.947745/{1 + exp [−(−8.2322DTn + 5.77043GRn − 10.755RHOBn + 9.18118)]}
B6 = 10.670187/{1 + exp [−(3.09392DTn − 13.828GRn + 10.118RHOBn − 8.42077)]}
B7 = 4.423562/{1 + exp [−(10.4638DTn + 10.0488GRn − 8.2806RHOBn + 2.03904)]}
B8 = −9.137737/{1 + exp [−(−8.2019DTn − 5.0329GRn − 8.3817RHOBn + 2.24147)]}
B9 = −6.222161/{1 + exp [−(−3.6924DTn − 4.6341GRn − 17.526RHOBn + 6.48157)]}
B10 = 0.094367/{1 + exp [−(−2.0643DTn − 1.4978GRn − 0.2585RHOBn − 1.93168)]}
B11 = 2.538843/{1 + exp [−(−3.7017DTn − 4.9897GRn + 0.40905RHOBn + 1.0266)]}
B12 = 4.865178/{1 + exp [−(4.0603DTn + 3.142GRn − 10.46215RHOBn + 1.86999)]}
B13 = −1.599128/{1 + exp [−(−4.7663DTn + 11.7106GRn − 25.15RHOBn + 11.05048)]}
B14 = −0.245659/{1 + exp [−(−2.101DTn − 1.96202GRn + 0.46881RHOBn − 1.5497)]}
B15 = −13.071971/{1 + exp [−(3.05871DTn − 16.31GRn + 5.42428RHOBn − 5.16961)]}
bo = 2.594365

DTn, normalized acoustic travel time log; GRn, normalized Gamma ray log; RHOBn, normalized bulk density log.

A brief demonstration of the use of the proposed ANN-based porosity correlation is
presented in Appendix A.

It should be noted that Equation (18) simply presents the MLP-network as a linear
sum of sigmoidal functions (B1 to B15 in Table 5), which can be conveniently calculated
using a simple spreadsheet or any other suitable mathematical platform. Moreover, it is
worth noting that the coefficients of functions (B1 to B15) are nothing but the optimized
weights and biases of the in-house MLP-ANN model presented in Table 6.

Table 6. Optimized values of weights and biases for the developed MLP-ANN model.

Hidden
Neuron

Weights
(W1) Hidden Layer

Bias (bh)
Weights

(W2)
Output Layer

Bias (bo)
DTn GRn ROHBn

1 17.029976 −15.687875 −1.019189 −4.640982 −0.643755 2.594365
2 −2.163948 −2.484408 12.584483 −2.171149 4.319593
3 −7.663929 3.846159 5.089029 −6.496849 −6.346382
4 −0.717566 3.0776 11.805209 −2.428945 −11.194565
5 −8.232247 5.770426 −10.77542 9.181175 −1.947745
6 3.093922 −13.828028 10.111827 −8.420765 10.670187
7 10.463783 10.048819 −8.280626 2.039037 4.423562
8 −8.201936 −5.032945 −8.381655 2.241477 −9.137737
9 −3.692441 −4.634098 −17.525692 6.481565 −6.222161
10 −2.064329 −1.497829 −0.258506 −1.93168 0.094367
11 −3.70173 −4.989678 0.409045 1.026638 2.538843
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Table 6. Cont.

Hidden
Neuron

Weights
(W1) Hidden Layer

Bias (bh)
Weights

(W2)
Output Layer

Bias (bo)
DTn GRn ROHBn

12 4.060295 3.141995 −10.462156 1.869994 4.865178
13 −4.766314 11.710604 −25.149687 11.050483 −1.599128
14 −2.100971 −1.962021 0.468808 −1.549698 −0.245659
15 3.058714 −16.310364 5.42428 −5.169609 −13.071971

W1, weights connecting input layer to hidden layer; W2, weights connecting hidden layer to output layer.

Furthermore, it should be noted that Equation (17) provides the normalized porosity
value (φn); therefore, in order to obtain the true porosity value (φ), Equation (19) must be
used to de-normalize the result as follows:

φ = φn × (φmax −φmin) +φmin (19)

where φmax and φmin are the maximum and minimum porosity values used in this study,
referring to Table 1.

The testing dataset (the 386 well-log records used in Section 4.1 to evaluate the model’s
generalization ability) were utilized for comparing Equation (17) and the MPL-ANN model
outputs. Figure 5 displays a cross-plot of the normalized porosity values from Equation
(17) against the normalized porosity from the in-house MPL-ANN code using the testing
dataset. It is clear from Figure 5 that all of the points perfectly fit the line of unity, indicating
that the developed equation (Equation (17)) provides values that are nearly identical to
those from the in-house MLP-ANN code.
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porosity from the MLP-ANN code.

Furthermore, an independent dataset of 205 well-log records from well X, which was
not used in any phase of this study (i.e., training, cross-validation, or testing), was utilized
to further assess the accuracy of the developed equation (Equation (17)). Figure 6A presents
the reservoir’s actual porosity profile of well X against the porosity profile predicted by
Equation (17) for the independent dataset. It can be seen from Figure 6A that the developed
equation (Equation (17)) produces a porosity profile that closely matches the true porosity
profile. In addition, Figure 6B shows a cross-plot of estimated porosity (from Equation (17))
versus actual values, and it can be seen that most of the data cluster tightly around the
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unity line, indicating minimal divergence between predicted and true values with a low
RMSE of (0.01) and a high coefficient-of-determination R2 of 0.9. Such encouraging results
demonstrate the potential of using the ANN-based mathematical model (Equation (17))
as an accurate and easy-to-use tool for predicting reservoir porosity without any prior
experience with utilizing or implementing machine learning models, such as MLP-ANN.
However, it is important to note that the developed model (Equation (17)) should be used
within the studied range of pertinent parameters and that caution should be exercised
when extrapolating beyond this range. Having said that, it is always possible to improve
and calibrate the developed model by incorporating more new data with various geological
settings. The new data can be used to retrain the in-house code and recalculate the optimum
network weights and biases, which then can be used to update the developed equation
(Equation (17)).
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Figure 6. (A) The true porosity profile of well X presented against the porosity profile predicted by
Equation (17) for the independent dataset; (B) cross-plot of estimated porosity (Equation (17)) versus
actual porosity values for the independent dataset.

4.3. Comparison of the Developed Mathematical Model with Existing Correlations

The developed ANN-based mathematical model was compared with two empirical
correlations used in the oil industry for estimating porosity from acoustic-travel-time sonic
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logs. These correlations are the Wyllie correlation [1] and the Raymer correlation [2]. Unlike
the developed ANN-based mathematical model, both correlations require prior knowledge
of the lithology type (e.g., sandstone, carbonate, or any other reservoir rock type) and
the pore fluid type (e.g., fresh water or salted water). The mathematical form of both
correlations is as follows:

Wyllie correlation,

φ =
∆t− ∆tmatrix

∆tfluid − ∆tmatrix
(20)

Raymer correlation,

φ = 0.625×
[

1− ∆tmatrix

∆t

]
(21)

where ∆tmatrix is the transient time for the matrix (µs/ft) and ∆tfluid is the transient time for
the pore fluid (µs/ft).

Drawing a cross-plot of reservoir porosity vs. transit time (∆t) at the same depth
is a typical practice in the industry. This should result in a straight line that can be
extrapolated to the x-axis to provide a value for the local matrix transit time (∆tmatrix). As
a result, we applied this to our data, and the extrapolation produced the matrix transient
time (∆tmatrix = 45 µs/ft), as shown in Figure 7. This (∆tmatrix) value is in the range of the
normal values for limestone (47.6 s/ft) and dolomite (43.5 s/ft), which is consistent with
the geological description of the carbonate reservoir under consideration.

1 
 

 
  

Figure 7. Cross-plot of reservoir porosity vs. transit sonic time (∆t) at the same depth, the dotted
black line is the best-fit line of the porosity data.

Figure 8A–D present cross-plots of the porosity predicted by the Wyllie correlation
and the Raymer correlation against the reservoir’s actual porosity for both the training and
testing datasets. It can be noted that, in comparison to what we have previously shown
with the machine learning models, neither correlation generally obtained high accuracy
for the dataset employed. However, the Wyllie correlation performed better than the
Raymer correlation, with an R2 value of 0.81 for the training data compared to an R2 of
0.78 for the Raymer correlation, and an R2 value of 0.84 for the testing data compared
to 0.82 for the Raymer correlation. The statistical performance indicators of the Wyllie
correlation, the Raymer correlation, the ANN-based correlation, and the GPR model are
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shown in Table 7 for the training and testing datasets. It can be noted that the GPR model
demonstrated a superior performance by exhibiting low RMSE values (0.009 for training
data and 0.0105 for testing data) and remarkable R-squared values (0.94 for training data
and 0.92 for testing data), as compared to the ANN-based, Wyllie, and Raymer correlations.
Furthermore, it can be seen from the results in Table 7 that the ANN-based correlation
outperformed both the Wyllie and Raymer correlations with an RMSE of 0.011 and an R2

of 0.92 for the training data, compared to an RMSE of 0.018 and an R2 of 0.82 for the Wyllie
correlation, and an RMSE of 0.029 and an R2 of 0.78 for the Raymer correlation. A high
R2 value of 0.9 was also achieved for the testing data by the ANN-based correlation, as
opposed to R2 values of 0.84 and 0.82 for the Wyllie correlation and the Raymer correlation,
respectively. Such findings show the superiority of the ANN-based mathematical model
compared to commonly used porosity correlations.
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(C) Wyllie correlation—testing data; (D) Raymer correlation—testing data.
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Table 7. Performance indicators of Wyllie and Raymer correlations and Equation (17) for training
and testing data.

AI Model
Training Data Testing Data

R2 RMSE CVRSME % R2 RMSE CVRSME %

Gaussian process regression (GPR) 0.94 0.009 24 0.92 0.0105 28
MLP-ANN-based model (Equation (17)) 0.92 0.011 29 0.90 0.0119 32

Wyllie correlation 0.82 0.018 47 0.84 0.0155 41
Raymer correlation 0.78 0.029 77 0.82 0.028 75

Overall, the results of this study demonstrated the potential of machine learning
models in accurately predicting reservoir porosity, which can greatly benefit the oil and gas
industry in terms of more efficient exploration and production of hydrocarbon reserves.
These findings suggest that machine learning techniques can be highly effective in opti-
mizing production and reducing the exploration costs in the oil and gas industry. Further
research in this area could focus on incorporating additional data sources or refining the in-
put parameters to improve the predictive accuracy of these models even further, potentially
leading to a more efficient and cost-effective exploration and field-development processes.

5. Conclusions

Four cutting-edge artificial intelligence (AI) models, including the multilayer percep-
tron artificial neural network (MLP ANN), Gaussian process regression (GPR), least squares
gradient boosting ensemble (LS-Boost), and radial basis function neural network (RBF-NN),
were combined with more than 2000 conventional well-log records to accurately predict
reservoir porosity. All the artificial intelligence models showed an impressive degree of ac-
curacy, reaching R-squared values greater than 90% for both the training and blind-testing
stages. When compared to the other studied AI models, the GPR model performed better
in terms of R-squared values, root-mean-square error (RMSE), and coefficient of variation
of the root-mean-squared error (CVRMSE).

Furthermore, an easy-to-use approach for forecasting porosity based on conventional
well-log data was developed using an AI-based explicit correlation derived from an in-
house MLP artificial neural network (ANN) model. R-squared scores of 92% and 90%
for the corresponding training and blind-testing datasets used in this study showed that
the ANN-based correlation exhibits a surprisingly promising level of accuracy. Moreover,
for the input data used in this investigation, the Wyllie and Raymer correlations, which
are often used in the industry, showed insufficient porosity predictions compared to the
developed ANN-based correlation.

In summary, the findings of this study demonstrated the high potential of machine
learning methods for accurately predicting the porosity of carbonate reservoirs. However,
it is important to note that the accuracy of the porosity estimation using these machine
learning techniques heavily relies on the quality and quantity of the well-log data used
as inputs. Therefore, it is crucial to ensure that data-collection processes be carefully
designed and executed and that the data used for training the machine learning models
are representative of the subsurface conditions. Furthermore, ongoing monitoring and
calibration of the developed machine learning models with new data are necessary to
ensure that they continue to provide reliable and accurate predictions over time.
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Appendix A

In this section, we present a brief demonstration of the use of the proposed ANN-based
porosity correlation (Equation (17) in the main text).

φn =
1

1 + exp(−A)
(A1)

A = bo +
15

∑
i=1

Bi (A2)

where the B values are presented in Table 5 in Section 4.2.
Table A1 presents some input data from the porosity database used in this study. To

perform the calculation, take the first data point set in Table A1. The calculation steps can
be summarized as follows:

1. Use the normalized input data in the first row in Table A1: DTn = 0.771185479,
GRn = 0.121122333, and RHOBn = 0.395517115.

2. Direct application of these input data in Table 5 (in Section 4.2 of the main text) will
give the following values for the sigmoidal functions B1 to B15: B1 = −0.642436837,
B2 = 3.013905339, B3 = −0.000309464, B4 = −9.928624721, B5 =−0.633246848,
B6 = 0.254874861, B7 = 4.422151675, B8 = −0.003038635, B9 = −0.128510023,
B10 = 0.002050128, B11 = 0.23759064, B12 = 3.776504233, B13 = −0.383421685,
B14 = −0.009418638, and B15 = −0.869945291. It should be noted that (bo) in
Equation (A2) is the bias of the output layer, which is always constant regardless
of input data (bo = 2.594365).

3. Calculate (A) from Equation (A2) using the results of B1 to B15 and bo in Step 2;
application of Equation (A2) will give a value of (A = 1.702489735).

4. Calculate the normalized porosity (φn) from Equation (A1) using the (A) value from
Step 3; application of Equation (A1) will give a value of φn = 0.845859629.

5. Finally, the actual porosity can be obtained by denormalizing (φn) using Equation (19)
in the main text.

Table A1. A random sample from the database used in this study.

Sample ID
Normalized Input Data

Normalized Output (φn) (φn) from Equation (17)
DTn GRn RHOBn

1 0.771185479 0.121122333 0.395517115 0.86162748 0.845859629
2 0.257402155 0.274615363 0.751833354 0.20437786 0.201431142
3 0.235696729 0.413042873 0.817785358 0.153756067 0.150223503
4 0.249877103 0.260050636 0.911901571 0.185887829 0.180857764
5 0.529060314 0.094524664 0.492898039 0.482527269 0.466471079
6 0.362261297 0.229766575 0.364526739 0.289830979 0.298473779
7 0.858725657 0.26012019 0.454184432 0.894637593 0.883088142
8 0.259255058 0.269718721 0.761554392 0.20733547 0.202935626
9 0.337530724 0.372478647 0.804507248 0.31965521 0.329507671
10 0.74316506 0.172258854 0.014715556 0.726599641 0.72330119

These input data are being made available in Table A1 for readers to be able to perform
a hands-on application by following the same procedure shown in the previous steps.
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