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Abstract: The mobile phone industry, one of the fastest advancing sectors in production over the
last few decades, has been associated with a high e-waste generation rate. Simultaneously, a high
demand for the production of new electronic equipment has led to the scarcity of certain metals. In
this context, many recent studies have focused on recovering certain metals from e-waste through
the use of bioprocesses. Such recovery processes are based on the action of microorganisms that
produce Fe(III) as an oxidant, in order to leach the copper contained in printed circuit boards. During
the oxidation-reduction reaction between Fe(III) and metallic Cu, the color of the solution evolves
from an initial reddish color, due to Fe(III), to a bluish-green color, due to the oxidized Cu. In this
work, a hardware-software prototype is developed, through which the concentrations of the key
analytes—Fe(III) and Cu(II)—can be determined in real time by monitoring the color of the solution.
This is achieved through the use of a non-invasive system, taking into account the aggressiveness of
the solutions used for the bioprocessing of electronic components. In the work presented herein, the
evolution of the solution color during the bioprocessing of two different types of waste (i.e., electric
cable and mobile phones) is analyzed and then compared with the results obtained for pure metallic
copper. The results are validated through comparison of the predicted results with the outcomes
of conventional procedures, including offline sampling and analysis of Cu(II) and Fe(III) through
atomic absorption and UV-VIS spectroscopy, respectively. The developed monitoring system allows
an algorithm to be designed that can fit the evolution of analyte concentrations without the need for
sampling or the use of complex, tedious, and expensive analytic techniques. It is also worth noting
that the monitoring system is not in direct contact with the solution (which is highly aggressive for
the processing of electronic equipment), making the system more durable than classic sensors that
must be submerged in the solution. The real-time nature of the obtained information allows for the
development of control actions and for corrective measures to be taken without affecting the biomass
involved in the process.

Keywords: copper recovery; mobile phone waste; bioprocess optimization; chemical reactions;
real-time monitoring system; color sensing; non-invasive sensors

1. Introduction

The exponential increase in electric and electronic equipment (EEE) over the last
few decades has led to an alarming level of consumption of natural resources and the
continuous generation of electronic waste (e-waste). Global e-waste statistics indicate that
the total amount of e-waste generated globally increased from 44.6 million tons in 2014
to 53.6 million tons in 2019, and it has been estimated that annual e-waste generation
will increase to 74 million tons by 2030 [1]. Unfortunately, only 17.4% of the world’s
e-waste was recorded as being recycled in 2019, leaving 82.6% unaccounted for. This
recovery rate was not a significant improvement over that in 2014 (17%), indicating that
measures to increase global e-waste recycling rates have not been able to compete with
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the increase in e-waste [1,2]. On the other hand, e-waste is considered an ‘urban mine’,
as it contains precious metals (e.g., gold, silver, copper, platinum, palladium, ruthenium,
rhodium, iridium, and osmium), critical raw materials (e.g., cobalt, indium, germanium,
bismuth, and antimony), and non-critical metals, such as aluminum and iron. For this
reason, within the circular economy paradigm, e-waste has been considered as an important
source of secondary valuable raw materials [3].

Of all the EEEs, waste mobile phones (WMPs) are the fastest-growing among all kinds
of waste; however, their collection and recycling rates remain almost insignificant (e.g.,
under 10%) [4,5]. At present, the WMP recycling rate is low [6]; even for countries with
sophisticated WEEE collection and recycling systems such as Switzerland and Germany.
As a result, the global supply of metals may not be sufficient to satisfy the ever-increasing
demands of the electrical and electronic equipment (EEE) industry [7].

Waste mobile phones typically consist of many materials, including plastic, printed
circuit boards (PCBs), screens, magnets, vibrators, LED backlights, steel, and batteries. Four
key components can be distinguished in a mobile phone: the printed circuit board (PCB),
the display unit, the battery, and the case. Gu et al. [7] conducted a bibliographic review of
all articles published after Jan 2005 and before May 2019 focused on “recycling or recycle
or recover or material recover” on “waste mobile phone or spent mobile or phone or cell
phone or mobile phone”. They retrieved a total of 68 publications, over half of which the
reported methods for the recovery of metals from WMP PCBs and 19 from WMP batteries.
This is because the most valuable components in mobile phone e-waste are the printed
circuit boards (PCB) and the lithium-ion batteries (LIBs), due to their high precious and
base metal content.

Without considering batteries, Singh et al. [8] analyzed twenty types of cellular and
smartphones and concluded that, on average, the weight of the PCB (including the metallic
wire) versus the total weight of a WMP ranges between 10–30%. PCBs are the most
complex part in e-waste, including (apart from the support) integrated circuits and other
electronic components containing approximately 60 kinds of elements: 28–30% ceramics,
27–30% organic materials, and 34.9% metals [9]. The metallic composition varies according
to the type of mobile phone. By analyzing the metal content of basic and smartphones
manufactured between 2001 and 2015, Singh et al. [10] identified 19 metals, with cobalt
(Co), tin (Sn), chromium (Cr), copper (Cu), and zirconium (Zr) being the most abundant.

PCBs contain up to 66 different chemical elements, some of which are considered
hazardous. The challenge of protecting the environment has spurred the need to develop
and adapt existing sustainable and cost-effective technologies to extract these metals from
e-waste. Among these elements, copper is one of the most valuable metals to recover, due
to the high demand for it in the fabrication of new electronic devices and components [11].
Copper (Cu) is classified as “cross-cutting”, defined by the World Bank as essential in
energy and clean storage technologies (WBG, 2020). Copper remains one of society’s most
widely used metals, playing a vital role in electronic devices, vehicles, and electrical power
generation, among many other applications. This high demand is due to the numerous
important uses facilitated by its malleability, ductility, conductivity (of both heat and
electricity), and capacity to withstand corrosion.

Methods used to recover metals from e-wastes can be grouped into physical, chem-
ical, thermo-chemical, electrochemical, pyro-metallurgical, hydrometallurgic, and bio-
metallurgical methods, or a combination of them [12]. Many papers have recently reviewed
techniques for recovering and processing copper, as well as proposing improvements with
the objective of reducing the consumption of energy, the time needed, or the consumption
of corrosive and hazardous leaching agents, among other aspects ([13,14]). Biohydrometal-
lurgic processes have been developed as an alternative technology for recovering metals.
These techniques are based on the extraction of metals by means of the metabolic activity
of bacteria or metabolic compounds. Such biologically assisted degradation of waste has a
high potential as a recycling technology, due to the low environmental impact, operational
costs, and energy requirements [15]. Microbially mediated extraction procedures are more
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environmentally friendly than traditional physicochemical approaches [16]; this is because
biological recovery is usually performed under ambient conditions, significantly reducing
the required energy in comparison to pyro-metallurgical extraction, as well as reducing
harmful gas emissions. Moreover, the metabolic products formed during bioleaching are
harmless, hence avoiding the need for expensive palliative measures to prevent environ-
mental pollution and processing risks. Consequently, biological recovery methods result in
both lower operating investment and reduced environmental impact [15].

The typical method for biological Cu recovery consists of four steps (depicted in
Figure 1), as previously described in [17,18]. The first stage consists of creating the leaching
agent through the use of bacteria, which oxidizes Fe(II) to Fe(III) under controlled pH
and dissolved oxygen concentration conditions in a fixed-bed reactor. Acidithiobacillus
ferrooxidans, which operates under extremely acidic conditions (e.g., pH of 1.5), is the most
commonly utilized bacteria for oxidation of Fe(II) to Fe(III). In the second stage, biomass
is recovered from Fe(III) solution produced to avoid the presence of microorganisms in
the following steps. Subsequently, the leachate is brought into contact with the e-waste
under aggressive acid conditions (pH < 1.5), guaranteeing optimal liquid–solid contact (it
is worth noting that, at this point, the e-waste has been previously processed to decrease
the size and favor the contact). The final stage consists of selective recovery of the metal
from the resulting solution. The resulting Fe(II) solution is then regenerated biologically
and returned to the first stage to produce the Fe(III) needed to continue the process.

Figure 1. Schematic of the multi-step process for metal recovery from PCBs: (1) Preparation of the
leaching agent in presence of the biomass; (2) Biomass separation; (3) Cu extraction from e-waste
pre-processed by the leaching process; and, (4) metal recovery from the liquid solution.

One of the most important challenges regarding the correct operation of the process
is to develop control strategies guaranteeing steady and optimal operation conditions.
For this purpose, the monitoring of some key variables, such as the Fe(II), Fe(III), and Cu(II)
concentrations, is indispensable. In most laboratory applications, samples are periodically
collected and these concentrations are determined through offline laboratory analysis,
resulting in a long response time and potentially hindering rapid application of the correct
measure. Although there are specific online sensors that can be used for this purpose,
they are usually expensive and must be submerged into the leaching solution, which
is considered highly aggressive for such sensors as dissolving metals from electronic
components is the final purpose of the process.

As discussed in Section 3 and depicted in Figure 1, during the dissolution of metals
presented in the e-waste, the color of the solution changes from green to red and blue,
according to the concentrations of the reagents and products. Taking advantage of this
property, in this paper, we present a low-cost monitoring technique based on analysis of
the signals captured by a digital RGB (red–green–blue) sensor which can automatically
detect red, green, blue, and infrared signals in its field of view. This technique has been
explored by Madriz et al. [19], who used a smartphone to measure the color of a reac-
tion, allowing for its evolution to be correlated with kinetic parameters. The proposal
presented herein is designed as a more economic approach. An interesting review of
novel approaches for colorimetric measurement in analytical chemistry has been recently
published by Fernandes et al. [20], who highlighted the need for an efficient light emitter
and promoted the use of a light-emitting diode (LED) for this purpose. They also pointed
out that the light spectrum will affect the colorimetric results and, so, a comparison of
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the absorbance spectrum of the colored substance against possible LED emitting spectra
is essential to determine the linear relationship between concentration and the analytical
signal(s). Numerous publications have evaluated the capability of RGB sensors for col-
orimetric determination ([21–24]). All of these studies have used a light-emitting diode
(LED) and an RGB sensor connected to a single-board Arduino for data acquisition and
manipulation, which achieved satisfactory results. In the described experiments, color
detection was performed by assessing samples stored in appropriate containers. Another
interesting review of different methods for color measurement, applied to amber-colored
liquid cases, has been published [25]. This review demonstrated that existing color mea-
surement techniques can determine the color, according to relevant standards and color
scales, and the authors suggested putting increased effort into determining an optimized
method or technique for color measurement of liquids, thus expediting the development of
a portable device that can measure color accurately.

The work presented herein details the design of a low-cost device for real-time mon-
itoring of the progress of the chemical reaction involved in the recovery of copper from
e-waste through the use of microorganisms, both allowing for improvement of the process
and providing a more sustainable approach than conventional ones. The device is both
hardware- and software-based: the hardware consists of a color sensor and an Arduino,
which carries out pre-processing and transmits the data to a computer. The use of such
a system, which allows for data acquisition, signal processing, and color monitoring in
real-time, provides a potential tool for use as a research component to improve knowledge
regarding the use of bioprocesses for the recovery of metals from e-waste; furthermore, this
approach is also applicable to other hydrometallurgic process based on the solubilization
of metals through direct contact between e-waste and leaching agents.

2. Materials and Methods
2.1. Experimental Designs and Analysis Methods

In this study, the experiments are designed for measuring the progress of the oxidation
of metallic copper by Fe(III) which in turn is reduced to Fe(II), according to the reaction (1):

Cu0 + 2Fe3+ −→ Cu2+ + 2Fe2+ (1)

The oxidant solution was prepared by dissolving 34.4 gr of Fe2(SO4)3 with a purity
of 75% in distilled water at pH 1.5. The pH is adjusted by 10% concentrated sulfuric acid.
Copper was obtained from three different sources: Metallic copper, electrical cable (EC)
and phone boards (PB). Figure 2a,b show the original e-waste material and the crushed
material used in the experiments exp-EC and exp-PB, respectively.

(a) (b)

Figure 2. Material used in the experiments. (a) Crushed electrical cables. (b) Phone boards (original
and crushed).

In order to determine the content of copper in the mobile phone PCB samples and in
the electrical cables, wet digestion was performed. For this purpose, approximately 0.1 g
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of the solid sample and 10 mL of HNO3:HCl (3:1) were introduced into an appropriate
container. The samples were subsequently introduced into a microwave apparatus (Mi-
crowave System, Millestone, Italy) at 150 ◦C for 30 min. Then, the solution was filtered at
0.45 µm, in order to separate the liquid from the solid particles that could not be completely
digested. Finally, an appropriate dilution was required to analyze the Cu(II) concentration
by atomic absorption spectroscopy (AAS). The repeatability of the analysis was determined
by taking 5 measurements [26].

Color characterization was carried out by comparing the values obtained by the sensor
with the concentrations of Fe(III) and Cu(II) present in the solution, determined using
an ultraviolet–visible (UV-Vis) spectrometer and atomic absorption spectroscopy (AAS),
respectively. UV-Vis spectroscopy was carried out to analyze the Fe(III) concentration by
measuring the intensity of light that passes through the sample and comparing it to the
light intensity without the sample. In this work, Fe(III) concentrations were measured using
a UV-Vis spectrometer (Lambda 25, PerkinElmer, United States), following the standard
colorimetric method that uses salicylic acid as a chelating agent [27]. Samples analyzed
by UV-Vis were previously filtered at 0.45 µm, in order to avoid solids remaining in the
suspension which could lead to erroneous results in the analysis. Subsequently, as the
linearity of Fe(III) is between 0 and 40 mg/L, the samples were diluted with distilled water
at pH 1.8 and mixed with a solution of salicylic acid 5% (w/v) in ethanol. The pH level of
the distilled water (1.8) was adjusted by adding sulfuric acid at 10% concentration (v/v).
The reaction between Fe(III) and salicylic acid is as follows:

Fe3+ + 2C7H6O3 −→ [Fe(C7H5O3)2]
+ + H+ (2)

In the final step, samples were analyzed with UV-Vis spectroscopy, with the maximum
wavelength of Fe(III)-SA complex being 527 nm, having an absorbance of 0.458 and a molar
extinction coefficient of 1.8 × 10−3 M−1 cm−1. On the other hand, the rest of the metal
elements that can be found in liquid samples were analyzed by atomic absorption (AA).
The AA spectrometer used in this study was a Solar S2 (Thermo Fisher Scientific, United
States). Samples were also filtered at 0.45 µm and diluted according to the linearity of the
metal response.

2.2. Developed Measurement System

Figure 3 shows the components and wiring connections of the developed system
for measuring the color evolution in the copper recovery process. It consists of an Ar-
duino MKR1010 board for control and data processing, a color sensor board [28], an LED
driver [29], and a pH sensor [30]. As can be seen from Figure 3, the color sensor is connected
to the serial Inter-Integrated Circuit (I2C) bus, the LED driver is connected to a digital
output pin (0), and the pH sensor is connected to an analog input pin (A1). The I2C is a
two-wire bus that includes serial data (SDA) and serial clock (SCL) lines [31].

The color sensor board utilizes an RGB-IR color sensor (BH1749NUC) to obtain the
color signal, the characteristics of which have been previously described in [32]. This sensor
senses Red (R), Green (G), Blue (B), and Infrared (IR) signals and converts them to digital
values. It includes four independent photo-diodes for detection of the separate wavelengths
(i.e., red, blue, green, and infrared), as well as three independent A/D converters which
are used to digitize the color intensity in 16-bit resolution. One of the converters—which
is otherwise used for the blue light—is internally multiplexed with the IR photo diode. It
also incorporates an IR-cut filter, which is used to block the portion of the light in the IR
spectrum which can interfere with the readings of the photo-diodes used to sense the red,
green, and blue components of the light.

The color sensor includes two configuration parameters: Transimpedance amplifier
gain (TIA) and measurement time. The first—TIA—is available for both the RGB and IR
channels, and allows for amplification of the signal by 1 or 32. The latter—measurement
time—should be selected from 35 ms, 120 ms, or 240 ms. Note that, when using the highest
gain ratio in combination with the longest measurement time, it is possible to achieve a
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resolution of 0.0125 lux/count. In this application, we configured the sensor with a TIA of
1 and a measurement time of 240 ms. The color and IR conversion results are provided at
the output registers in MSB/LSB format.

Figure 3. Components and wiring connections of the developed measurement system.

For the experiment, the color sensor was installed in front of the reactor vessel. The ves-
sel where the copper is recovered consists of a transparent plastic cylinder with a height of
33 cm, external diameter of 11 cm, internal diameter of 8 cm, and a total volume of 1.6 L. It
was located in the laboratory under variable illumination conditions. To prevent external
light variations, a white LED of 101 lm at 25 ◦C [33] was placed in front of the RGB sensor.
Both the color sensor and LED boards were placed in the plastic piece shown in Figure 4a,
which was obtained using a 3D printer. This piece was designed to enclose both circuit
boards to protect them from the corrosive environment, ambient light isolation, and to keep
them held up to the vessel environment, as shown in Figure 4b.

Data Acquisition and Control System

For the developed measurement system, an Arduino was used for light-emitting
diode switching, as well as reading, pre-processing, and transmitting the color sensor data
to the computer. As described in Algorithm 1, the program works cyclically and begins
illuminating the liquid solution by switching on the white LED. After a pre-determined time,
I2C communication is established between the Arduino and the color sensor board, which
waits for data transmission. In this application, a total of 10 consecutive measurements are
recorded. Then, the LED is switched off and data pre-processing is started.
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(a) (b)

Figure 4. Designed plastic piece for enclosing LED and sensor color boards. (a) 3D design for printing.
(b) Location of the designed piece in the vessel.

Algorithm 1 Data acquisition and data processing

1: Wait for the start command from the control center.
2: Open the LED and wait for one second.
3: Send request to the RGB-IR color sensor and wait for the response (about 240 ms).
4: Read the received data (8 bytes of information).
5: Extract and remove the four least significant bits.
6: Classify the data according to its attributes (in our case, the data are classified into four

categories: red, green, blue and infrared).
7: Store the data in column/row format (where each column represents one attribute and

each row contains a record).
8: Steps (3)–(7) are repeated 10 times.
9: From the 10 data for each class, the maximum and minimum are removed, in order to

avoid spurious values.
10: The remaining eight values are used to calculate the mean arithmetical values, in order

to reduce the random noise of measurements.
11: The processed data are packed and sent to the computer.

Data pre-processing begins with unpacking the collected samples, according to the
communication protocol, and removing the four least significant bits for randomness
extraction, giving color intensity data with 12-bit resolution. Next, the raw data are
classified into four classes, in terms of the RGB-IR color sensor measurement reading.
Finally, in order to transform the raw data into refined information assets, cleaning of the
data first takes place. The data in the four classes (i.e., red, green, blue, and infrared) to
be transferred to the computer are determined by averaging the values of each class after
removing the maximum and minimum values.

A PC application was designed using the LabWindows/CVI platform, which stores,
processes, and monitors the transmitted color data. This monitoring system allows the user
to establish a connection with the Arduino, watch in real-time the RGB-IR data received,
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and process the data for color reproduction and display; see Figure 5. It also controls when
data acquisition is started and stopped, the LED intensity, and the sampling time.

Figure 5. Developed monitoring system.

2.3. Sensor Calibration and Color Reproducing

One of the objectives of the developed sensor is to capture and emulate the color of
the chemical reaction. For this purpose, the color evolution in the vessel was first observed
using a smartphone camera. The five images in Figure 6 show the color evolution in the
vessel over the course of one of the experiments. The initial color of the solution was brown,
due to the presence of Fe(III). The color of the solution gradually changed from brown to
blue, in correspondence with the oxidation of copper by Fe(III) ions which, in turn, were
reduced to Fe(II), according to Equation (1).

Figure 6. Color evolution at different stages of the redox reaction.

The red, green, and blue lines in the upper part of Figure 7 denote the RGB sensor
values in real-time for this experiment. The data were recorded with a sampling time of
1 min. In this experiment, metallic copper was added at time t = 0 h and, practically
simultaneously, the color signals began to change. After 5 h, the signals remained constant.
The experiments were conducted in a laboratory where it is difficult to avoid changes in
the brightness of the ambient illumination, causing disturbances in the color signal, as can
be seen in Figure 7. These disturbances were observed using the IR sensor (see the black
line in the lower part of Figure 7).

In order to recreate the color using the RGB sensor values, we proceeded as follows:
(1) Determine a normalization approach (i.e., into the range [0, 1]) to derive the color from
the RGB color space; and (2) design a filter to correct the measured RGB data, taking into
account the IR values.
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Figure 7. Raw data from RGB-IR sensor in experiment 1.

The normalization of each color component—that is, red (R), green (G), and blue (B)—
into the range [0, 1] provides a simple way to achieve chromaticity invariance with respect
to illumination changes, allowing the color to be derived from the RGB color space [34].
With ci(k) (i ∈ 1,2,3) denoting the measured RGB sampled value in sample k, each value is
normalized using Equation (3):

xi(k) =
ci(k)

3

∑
i=1

ci(k)

, (3)

where yi(k) corresponds to normalized RGB value, such that it satisfies the Equation (4):

3

∑
i=1

xi(k) = 1. (4)

During the experiment, we noted that the color of the liquid could not be accurately
reproduced when using Equation (3) and that the sensing color was correlated with the
light intensity captured by the IR sensor, as shown in Figure 8a. This was due to the light
coming from the LED being reflected not only by the liquid but also the vessel’s surface,
as well as the intensity of the light emitted by the LED. To measure the light reflected by
the vessel and the LED intensity, an experiment was conducted using water, which allowed
for the determination of three weighting factors. These factors allowed us to adjust the
computation of the normalized RGB values. Thus, Equation (3) was modified as follows:

xw
i (k) =

αici(k)
3

∑
i=1

αici(k)

, (5)

where xw
i (k) are the weighted normalized RGB values in sample k; αi are the weighting fac-

tor of values 1, 0.96 and 0.29 respectively, which were computed according to Equation (6):

1
αi

=
w̄i

max(w̄1, w̄2, w̄3)
, (6)
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being w̄i the mean value of the RGB signals measured in the experiment with water.
A low-pass filter, including IR measurement compensation, was designed in order to

attenuate disturbances.
Figure 8a,b show RGB data processed by applying Equations (3) and (5) with a filter,

respectively. It can be seen that, in the second case, the emulated color better matched the
color reaction.

(a) (b)

Figure 8. Processed RGB sensor data and color emulation. (a) Normalized using Equation (3).
(b) Normalized using Equation (5).

2.4. Sensor Response Related Fe(III) and Cu(II) Ions Concentration

The color sensors were used with the aim of predicting the concentration of Fe(III) and
Cu(II) ions present in the reaction. With this objective in mind, several experiments were
carried out under identical working conditions. During these experiments, samples of the
solution were taken for Fe(III) and Cu(II) analyses, following the methodology detailed in
Section 2.1. Table 1 lists the result for one of these experiments. During this experiment,
11 samples were taken at time points of kr min.

Table 1. Measured concentration of Fe(III) and Cu(II) ions using the UV-Vis and AAS absorbance,
respectively, for Experiment 1.

Reaction Time (kr), min [Fe(III)], mg/L [Cu(II)], mg/L

0 6134.6 0.0
5 5632.2 ∼ 0.0
10 5144.2 310.66
15 4915.9 514.71
25 4064.9 1063.42
35 3557.7 1405.33
45 3564.9 1622.24
75 2247.6 2348.35

105 1882.2 2577.21
195 1521.6 3081.80
225 1185.1 3081.8
345 1341.3 3250.00

The ion concentrations are plotted in Figure 9, from which it can be seen that the
Fe(III) ion concentration (marked by black-star dots) followed an exponential decreasing
curve similar to the red color curve, while the concentration of Cu(II) followed a logistic
curve (marked by black-round dots) similar to the blue color curve, suggesting correlations
between these variables. The Pearson correlation coefficient was computed to analyze the
correlations between the normalized RGB sensor data processed by Equation (5) and the
concentrations of Fe(III) and Cu(II) ions.
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Figure 9. Fe(III) ions concentration (marked by black-star dots) and Cu(II) ions concentration (marked
by black-round dots) with red, green, and blue (RGB) sensor color data.

Based on correlation analysis results, a classical linear regression was employed for
model fitting. The model used in this study was defined as follows:

∆ŷFe(k) = a11∆xw
i (k) + a10, (7)

ŷCu(k) = a21∆xw
i (k) + a20 (8)

where
∆ŷFe(k) = ŷFe(k)− yFe(0) and ∆xw

i (k) = xw
i (k)− xw

i (0), for i ∈ 1, 3,

aij, for j ∈ 0, 1, are the regression coefficients, yFe0 is the initial concentration of Fe(III)
ions in the leaching solution, xw

i (k) are the normalized RGB sensor data computed with
Equation (5), and ŷFe(k) and ŷCu(k) are the predicted concentration of Fe(III) ions and
Cu(II) ions at time instant k, respectively.

To estimate the regression coefficients aij, a least squares (LS) estimation technique
was used. The least squares method estimates the coefficients by minimizing the sum of
squared error between the actual values (yFe(k) and yCu(k)) and the predicted (ŷFe(k) and
ŷCu(k)) at each time k. As mentioned above, the actual concentrations of Fe(III) and Cu(II)
were only known for some time points, kr, which means that only a few residuals were
available, leading a large variance of the regression coefficients. The method proposed for
coefficient estimation and variance reduction consists of solving the least squares problem
using the data from multiple experiments.

The evaluation indices selected for Fe(III) and Cu(II) ion concentration prediction
verification were the coefficient of determination, R2, and the sum of the squared error (SSE).

3. Results
3.1. Copper Percentage of PB and EC

In order to calculate the copper percentage, five wet digestions of each type of waste
(i.e., PB and EC) were performed. Table 2 demonstrates that PB contained 37.5% and EC
contained 22.5% of copper on average.
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Table 2. Copper concentrations in PB and EC waste.

Waste Type Sample Copper
Concentration (%)

Average Copper
Concentration (%)

Sample 1 34.1
Sample 2 38.5

PB Sample 3 37.1 37.5 ± 2.04 %
Sample 4 39.9
Sample 5 38.8

Sample 1 20.8
Sample 2 24.8

EC Sample 3 22.0 22.5 ± 1.53 %
Sample 4 23.2
Sample 5 21.8

Stoichiometrically, according to Equation (1), at least 4.43 g of copper are required to
react with 1.3 L of 6000 mg/L Fe (III) solution. To observe the whole change in color of the
solution from 6000 mg/L of Fe(III) to 0 mg/L, excess copper was used in all experiments. It
would not be possible to conduct a complete study of the solution’s color change if copper
were not present in excess. in order to ensure that there was excess copper, the experiments
were carried out with a weight greater than 10% of the minimum (4.43 g); equivalent to
approximately 5 g of copper. Assuming a copper content of 37.5% in PB and 22.5% in EC,
10.92 g and 18.2 g were used, respectively.

3.2. Correlation Analysis and Estimation of the Regressor Coefficients

The Pearson correlation coefficients between the concentrations of Fe(III) and Cu(II)
ions and the normalized RGB sensor data are provided in Table 3. By comparing these
coefficients, it can be seen that xw

3 , corresponding to the blue color, was the most highly
correlated with the Fe(III) and Cu(II) ion concentrations.

Table 3. Regression analysis.

Ions Concentration xw
1 xw

2 xw
3

Fe(III) 0.9468 0.4101 0.9741
Cu(II) 0.9603 0.3898 0.9960

The regression coefficients for Equations (7) and (8) were estimated through two ex-
periments conducted with metallic copper. Table 4 presents the mean coefficients of the
regression model, the upper and lower bounds of 95% confidence interval, and the value of
the two metrics used for validation purposes (i.e., R2 and SSE). Figure 10a,b compare the
concentrations of Fe(III) and Cu(II) ions (blue-cross dots), respectively, with the simulation
results obtained using the estimated coefficients. The red continuous line was computed
using the mean value, while the red colored area delimits the lower and upper confidence
intervals. The simulation results demonstrated that the proposed model could estimate the
concentration of ions from the RGB sensor data, being more accurate in the estimation of
Cu(II) ions than Fe(III) ions. The same conclusion was reached when looking at the metric
performances: the copper model (i = 2) had a higher R2 and lower SSE than the iron model
(i = 1).
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Table 4. Estimated parameters for the regression models adjusted for concentration of Fe(III) (i = 2)
and Cu(II) (i = 1) using the least squares technique.

Model Coefficients Metrics
i ai1 ai0 R2 SSE

1 −13.68 −0.5773 0.9202 4.8645
(−15.61, −11.74) (−1.054, −0.1011)

2 8.684 0.1107 0.9909 0.2199
(8.272, 9.096) (0.0093, 0.2119)

(a) (b)

Figure 10. Ions concentration analyzed (blue−cross dots) and estimated (red continuous line) with
bounded uncertainty (colored red area) according to the experiment using metallic copper. (a) Fe(III)
ion concentration evolution. (b) Cu(II) ion concentration evolution.

3.3. Sensor Behavior in the Presence of e-Waste

Two types of e-waste were used to analyze the response of the RGB-IR sensor. In the
case of electrical cables, the copper is coated with PVC; meanwhile, in the case of the phone
boards, copper is distributed heterogeneously over the surface and integrated into the
electronic components.

Figure 11a–c show the corrected data for electrical cables from the RGB-IR color sensor
with color emulation, the estimated Fe(III) ion concentration, and the estimated Cu(II) ion
concentration, respectively. The PVC material did not appear to interfere with the copper
oxidation reaction. As can be seen from Table 5, the regression analysis, R2, and SSE results
were similar to those in previous scenarios.

The results for phone boards are shown in Figure 12a–d. Figure 12a shows the RGB
raw data, while Figure 12b shows the corrected data with color emulation. Unlike the
other scenarios, the signal provided by the RGB sensor was irregular, indicating that it
is necessary to keep the color sensor in the same conditions throughout the duration of
the experiment. We can see that, despite the irregularity of the raw data, the correction
algorithm allowed for emulation of the color of the reaction. Regarding the estimation of
Fe(III) and Cu(II) ion concentrations, as shown in Figure 12c,d, it was observed that the
estimated model could predict the Fe(III) and Cu(II) ion concentrations with relatively
good accuracy. Furthermore, from Table 5, it can be seen that the quantitative metrics
were less similar, when compared with the others. Despite these observations, the model
satisfactorily captured the evolution of the oxidation process.
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(a) (b) (c)
Figure 11. Data from the RGB sensor in the experiment with exp-EC. (a) Corrected RGB data and
color emulation; (b) Fe(III) ion estimation; (c) Cu(II) ion estimation.

(a) (b)

(c) (d)

Figure 12. Data from the RGB sensor in the experiment with exp-PB. (a) Raw data from RGB-IR sensor.
(b) Corrected RGB data and color emulation. (c) Fe(III) ions estimation evolution. (d) Cu(II) ions
estimation evolution.

Table 5. Regression analysis for the data from experiments exp-EC and exp-PB.

Fe(III) Ions Estimation Cu(II) Ions Estimation
Scenario R2 SSE R2 SSE

Exp-EC 0.7990 8.8096 0.9725 0.4314
Exp-PB 0.6781 9.6226 0.968 0.8329
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4. Discussion and Conclusions

In this study, a model was developed to monitor the reduction–oxidation reaction
between Fe(III) and metallic copper, as the main mechanism responsible for the biorecovery
of this metal from e-waste. A device that integrates a color sensor with an Arduino and a
system that allows users to collect data and track the evolution of color during the reaction
were developed. This device was fixed on top of the receiver using a specially designed 3D-
printed part. To proceed with the validation step, a solution containing 1.3 L of 6000 mg/L
Fe(III) was prepared, to which metallic copper was added. Several samples were obtained
for subsequent Cu(II) and Fe (III) analyses. The designed algorithm could satisfactorily
predict the concentrations of both ions, in comparison with the results obtained experi-
mentally, supporting the approach presented in this study. Thus, the proposed approach
provides a potential tool for use as a research component to improve knowledge relevant
to the use of bioprocesses for the recovery of metals from e-waste, as the amount of data
supplied can be notably increased when compared with traditional analytical methods.

The signal captured by the RGB sensor was normalized using two approaches. The
first—given by Equation (3)—is a conventional normalization approach, while the second
case—Equation (5)—is a weighted normalization. As evidenced by the experimental data,
the first model was unable to properly identify the color due to interference from the
environment, including the ambient illumination, the LED intensity, and the container used
for the experiment. Meanwhile, the weighted normalization approach can correct for this
interference and suitably adjust the color of the solution. The weights were established by
using a distilled water solution to examine the impact of the environment on the sensor data.

The concentration of Cu(II) and Fe(III) ions present in the solution were estimated
using a model based on linear regression, where the variable most correlated with the con-
centrations of Fe(III) and Cu(II) ions was that corresponding with the blue hue, according
to the correlation coefficients between the concentrations of the two ions and the colorized
RGB signals. Thus, the parameters of the regression models for Fe(III) and Cu(II) were
determined according to the blue color.

Two experiments were performed to assess whether the proposed concept is applicable
to electronic waste: one using electric cable (where the only interference is plastic mate-
rials), and the other using PCBs (including other metals such as Ni, Mn, and Al). Similar
conclusions were reached in both cases, validating both the proposed algorithm and the
developed test system. In the case of electric cables, we noticed that the plastics seemed to
have no effect on the color of the solution or on the rate of reaction, as the time required to
oxidize the Cu(II) was comparable to that when working with pure copper. Furthermore,
considering PCBs, the presence of other metals contained in the solution (10 ppm Mn
and 200 ppm Ni) does not affect the color of the solution either the correspondence with
the Cu (II) and Fe(III) concentrations determined by means of the RGB sensor; however,
the reaction time was lengthened. Utilizing EC, Fe(III) was reduced to Fe(II) in 3 h, while
working with PB extended the reaction time to 30 hours.

In summary, the proposed method can well-estimate the concentrations of Cu(II)
and Fe(III) ions from the color of the solution, both when working with EC and PCBs,
with Pearson coefficients equal to 0.9725 and 0.9680 for Cu(II) and equal to 0.7990 and
0.6781 for Fe (III), respectively. Therefore, it was determined that the model predicts the
concentration of Cu(II) more accurately than that of Fe(III). Due to the simplicity of the
matrix containing the metal, it was also noted that the proposed approach is more accurate
when working with EC than with PCBs.

In conclusion, the proposed model is expected to allow scientists to keep track of
the reaction between copper and iron, such that the end of the reaction may be predicted
simply according to the color of the solution, without the need for trained personnel in
order to take samples and perform analyses to determine the concentrations of copper and
iron using AA and/or UV-VIS. This fact may result in time, energy, and cost reductions in
e-waste copper biorecovery processes. The proposed technique can be rapidly and easily
implemented in the context of many relevant processes. The fact that the measuring device
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is not in contact with a solution that is highly acidic and oxidizing, and which contains
several metals is also a key advantage. Finally, it must be remembered that the weighting
factors must be adjusted beforehand, as they will differ based on the environment and
the reactor where the reaction is conducted. This same approach can be also used if the
leaching agent has not been produced through a biological pathway, as the biological and
chemical steps are separated and the described process guarantees that biomass is not
present in the solution when put into contact with e-waste.
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Abbreviations
The following abbreviations are used in this manuscript:

EC Electrical cable
I2C Iter-Integrated Circuit
IR Infrared
LED Light-emitting diode
LIB Lithium batteries
LS Least square
PB Phone boards
PCB Printed circuit boards
RGB Red, Green, Blue
SSE Sum of the square error
TIA Transimpedance gain amplifier
UV–Vis Ultraviolet-visible
WMP Waste mobile phone
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