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Abstract: The moving average filter-based phase-locked loop (MAF-PLL) can obtain grid synchro-
nization signals accurately under adverse grid conditions with a large amount of harmonics due
to the high filtering capability of the MAF. However, MAF-PLL cannot achieve a fast dynamic
response in the case of frequency drift, phase angle steps, and unbalanced voltage sag. MAF is
essentially an FIR filter, and its filtering performance is hard to be adjusted. To address this issue,
this paper proposes an alternative to MAF consisting of a set of cascading second-order IIR filters
(CIIRF). Based on MAF, CIIRF introduces multiple zeros and poles from the zero–pole replacement
perspective, and by changing the position of the poles, the filter performance can be adjusted. To
improve the anti-interference ability of PLL based on CIIRF (CIIRF-PLL) in the presence of grid
frequency drift, a frequency-adaptive scheme is also proposed. Simulation and experimental results
show that CIIRF-PLL can accurately track the grid voltage phase in the case of frequency steps,
phase angle jumps, harmonics injection, and unbalanced voltage sag and has good steady-state and
dynamic performance.
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1. Introduction

The phase-locked loop (PLL) is widely used in a variety of real applications associated
with signal synchronization and control of power electronic-based devices. With the
increasingly growing usage of renewable energy sources such as wind and solar, grid-
connected equipment and PLLs are of high importance [1–4]. Typically, the synchronous
reference frame phase-locked loop (SRF-PLL) has been widely used due to its ease of
operation and robust behavior under stiff grid conditions. However, under adverse grid
conditions, a significant amount of unexpected ripple will appear. To improve the filtering
capability in the weak grid, different in-loop low-pass filters have been incorporated
into the SRF-PLL. For example, the SOGI [5–7], MAF [8–10], notch filter [11–13], linear
Kalman filter [14], and delayed signal cancellation operator [15–17] can all be used to block
the harmonics.

In-loop low-pass filters can be classified into two categories based on the harmonic
elimination approach. The first type of filter is represented by SOGI, which may block
high-frequency signals such as a phase-locked loop based on a double second-order gener-
alized integrator (DSOGI-PLL) [18]. High-order harmonics can be efficiently suppressed by
DSOGI-PLL, while low-order harmonics, such as the fifth and seventh harmonics, cannot
be properly suppressed. A PLL based on multiple second-order generalized integrators
(MSOGI-PLL) uses multiple SOGI modules in parallel to separate the fundamental compo-
nent from each low-order harmonic through the control method that the output signals
of each paralleled SOGI module feed forward to account for the weakening harmonics of
the input voltage to a greater extent [19]. This method can prevent low-order harmonic
interference, but it has a complex structure and significant system computation costs. An-
other type of filter, with MAF being the most common, performs fixed-point cleaning on
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each harmonic. Because of its simple digital realization and cheap computing overhead, a
MAF operates as an excellent low-pass filter and is widely employed in many real-world
implementations. In comparison to the first type of filter’s characteristics, the second type
of filter is more extensively employed in practical applications.

The MAF-based phase-locked loop (MAF-PLL) incorporates a MAF into the SRF-PLL.
It substantially rejects the harmonics and obtains an accurate synchronous grid voltage
signal. The transient response, however, becomes slower due to the presence of the in-
loop MAF. To address this issue, refs. [20,21] adopt a quasi-type-1 (QT1) PLL structure
to compensate the delay, and [4] shorten the window length to 1/6 of the fundamental
period, aiming to reduce the phase delay. However, only non-triple odd harmonics can be
blocked. Authors [22–24] move the MAF out of the PLL as the prefilter, which provides a
favorable dynamic performance but increases complexity and computational load. Another
study [21] introduces a correction link and QT1 simultaneously into the feedback loop to
improve the dynamic response. In [8], a phase-lead compensator (PLC) is used; however,
the working mechanism and parameter selection of the PLC are not analyzed in detail.

Typically, adaptive schemes are used to improve the disturbance rejection capacity
of the PLL when the grid voltage frequency varies [25–27]. To achieve the frequency
adaptation, ref. [12] provides several frequency-adaptive schemes for the MAF-PLL and
presents their simulation analysis, but the hardware implementation is not shown. In this
paper, the round-to-nearest integer method is suggested.

Due to the fact that MAF-PLL is fundamentally a FIR filter and cannot achieve a quick
dynamic response in the situation of frequency drift, phase angle step, and unbalanced
voltage sag, its filtering performance is difficult to improve. This research suggests a set
of cascading second-order IIR filters (CIIRF) as an alternative to MAF. From a zero–pole
replacement standpoint, CIIRF introduces various zeros and poles based on MAF, and the
filter performance may be altered by adjusting the pole positions. Additionally, a frequency-
adaptive scheme is suggested to enhance the CIIRF-PLL’s anti-interference performance in
the presence of grid frequency drift.

This paper is organized as follows: In Section 2, the standard MAF is analyzed, and a
structure diagram of the standard MAF-PLL is given. In Section 3, the proposed method
is presented along with an analysis of its performance. Section 4 presents the design
guidelines for the system parameters. Section 5 suggests the frequency-adaptive method
and shows the hardware implementation. Finally, in Section 6, simulation and experimental
results are shown to validate the feasibility and effectiveness of the proposed method.

2. Analysis of the Standard MAF-PLL

Figure 1 shows the system structure of the grid-connected inverter with an LCL
filter. To obtain a reliable grid connection at the point of common coupling (PCC), the
synchronization signal of the grid voltage must be extracted. Typically, SRF-PLL is widely
used under a stiff grid condition. However, when the grid voltage is distorted due to
significant harmonic pollution, the SRF-PLL is unable to obtain the synchronization signal
correctly. To address the issue, one possible solution is to introduce a MAF into the SRF-PLL
to eliminate the harmonic disturbance.
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Figure 1. The system structure of the inverter with LCL filter. 
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The transfer function of the standard MAF can be expressed in the s-domain [14].

GMAF(s) =
1− e−Tws

TWs
(1)

where Tw is the window length. Assuming that Ts is the control system sampling time,
the window length Tw contains N sample, and N = Tw/Ts. It is worth noting that the
selection of the window length Tw is decided by the grid’s harmonic components, and it
is recommended that Tw = T (nominal grid period) in the case that the grid’s harmonic
components are uncertain, or Tw = T/2 and Tw = T/6, respectively, in the case that the odd
harmonics and the non-triple odd harmonics are present in the applications [16]. According
to the harmonic components, the window length Tw = T/2 is considered in this paper.

The Bode plot of MAF is presented as follows.
From Figure 2, it can be observed that the MAF has a set of notches centered at 1/Tw in

hertz and its integer multiples, which act as a quasi-ideal low-pass filter. The MAF provides
unity gain at zero frequency and negative gain at notch frequencies n/Tw (n = 1, 2, 3, . . . )
in hertz. This means passing the dc component and completely blocking the frequency
components of the integer multiples of 1/Tw in hertz.
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Based on the filtering characteristics analyzed earlier, MAF is introduced into the SRF
as an in-loop filter. The structure diagram and small-signal model of MAF-PLL are given
as follows.

Figure 3 shows the structure of the MAF-PLL, which includes two in-loop MAFs and
an SRF-PLL. To reduce the negative effect of the input voltage amplitude variation on the
PLL, an amplitude normalization scheme (ANS) is also incorporated into the PLL.
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The bode plot of the open-loop transfer function of the standard MAF-PLL is shown in
Figure 4. The parameters of the proportional integrator are kp = 83.33 and ki = 2893.5. The
magnitude margin is 14.1 dB and the phase margin is 43.3◦; this means that the MAF-PLL
is stable. The cut-off frequency ωc, on the other hand, is insufficiently high, resulting in a
slow dynamic response.
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3. The Proposed Method

The standard MAF-PLL suffers from a slow dynamic response due to the presence
of the in-loop MAF. Examining Figure 4, in order to increase the cut-off frequency of
the standard MAF-PLL, and, thus, improve the dynamic performance, the proportion
coefficient kp of the PI regulator could be increased. However, looking at the phase–
frequency characteristics in Figure 4, it can be seen that too much phase lag will lead to
insufficient phase margin and system instability. Therefore, phase compensation becomes a
key issue.

Analyzing the frequency characteristic in Figure 2, it can be seen that the magnitude
attenuation occurs at the frequencies except for the notch frequencies n/Tw (n = 1, 2, 3 . . . )
in hertz and many high-frequency signals are filtered; this is the essence of the phase delay.
Consequently, the phase delay can be reduced by increasing the amplitude–frequency gain
in the passband.

3.1. Zero–Pole Replacement

If the nonlinear delay term e−Tws in Equation (1) is linearized using the first-order
Pade approximation expressed as Equation (2), Equation (3) is easily obtained:

e−Tws ≈ 1− TWs/2
1 + TWs/2

, (2)

GMAF(s) ≈
1

TWs/2 + 1
. (3)

From Equation (3), it is noted that the MAF provides approximate unity gain in
the low-frequency region (below the fundamental frequency) and large attenuation at
the frequencies in the high-frequency region, which matches the magnitude–frequency
character in Figure 2. According to the analysis above, with the aim of improving the
frequency gain at the passband, the first correction link Gc1(s) that has only one zero is
introduced, and its transfer function is given as follows:

Gc1(s) =
TWs

2
+ 1, (4)

Gc1(s)GMAF(s) ≈ 1. (5)

Figure 5 shows the Bode plot of Gc1(s)GMAF(s) after adding the correction link Gc1(s),
which introduces a zero into the original filter. Compared with Figure 2, the amplitude–
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frequency gain at the passband in the high-frequency region almost achieves 0 dB, and the
phase also improves. The gain at the vicinity of the notch frequencies is not flat enough,
which also affects the dynamic performance. One possible way of obtaining flatter gain at
the passband is to fine-tune the amplitude–frequency gain by adjusting the quantity and
position of the poles.
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To better discuss the phase compensation scheme from the zero–pole replacement
perspective, it is preferable to analyze the system in the z-domain. By discretizing the MAF,
the transfer function in the z-domain can be obtained:

GMAF(z) =
1− z−N

N
· 1

1− z−1 =
1
N

N

∏
K=1

z− zk
z− p1

, (6)

where N denotes the sample order.
It can be observed from Equation (6) that there are N zeros on the unit circle and

one pole fixed at the origin. Consequently, the MAF is essentially an FIR filter with a
linear phase–frequency curve whose drawback is that its performance cannot be tuned
by changing the position of its poles because it only has a fixed pole at the origin. For
the purpose of system adjustment, N poles will be introduced. Furthermore, for system
stability, all introduced poles should be located in the unit circle. Therefore, a second
correction link Gc1(s) that has only poles is given as follows:

Gc2(s) =
1

1− re−Tws , (7)

where the parameter r ∈ [0, 1) denotes the attenuation factor at the notch frequencies.
Similarly, Equation (7) can be rewritten as Equation (8) by approximating the delay term
e−Tws using the first-order Pade approximation expressed as Equation (2).

Gc2(s) =
1 + TWs/2

(1− r) + (1 + r)TWs/2
=

Gc1(s)
(1− r) + (1 + r)TWs/2

. (8)

Noted that the correction link Gc1(s) is included in Equation (8), we can use the correc-
tion link Gc2(s) instead of Gc1(s). Equation (9) can be obtained by multiplying Equation (8)
with Equation (4).

Gc2(s)GMAF(s) =
1

(1− r) + (1 + r)Tws/2
. (9)
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From Equation (9), after adding Gc2(s), another pole arises. To ensure that the
amplitude–frequency gain of Gc1(s)GMAF(s) at the passband is equal to 0 dB, Gc2(s) is
modified into Gc(s) as Equation (10).

Gc(s) =
(1− r) + (1 + r)TWs/2

1− re−TWs . (10)

By discretizing Equation (10) and doing some simple mathematical operations, the
discrete expression can be neatly given as Equation (11):

Gc(z) = K
1− βz−1

1− rz−N , (11)

where
K =

N
2
(1 + r) + (1− r),

β =
N(1 + r)

N(1 + r) + 2(1− r)
.

For a given N and r, K and β are both constant. After introducing some zeros and
poles synthesized in Gc(s), the transfer function of GCIIRF(z) can be obtained as

GCIIRF(z) = GMAF(z)Gc(z)

= 1−z−N

N(1−z−1)
K(1−βz−1)

1−rz−N = K
N

N
∏

k=0

z−zk
z−pk

(12)

It is easily seen from Equation (12) that in the complex z-plane, there exist N + 1 zeros
on the unit circle and poles of the same quantity in the circle.

Zk = ej2π(k fS/N), k = 0, 1, 2, · · · , N, (13)

Pk =
N
√

r · ej2π(k fS/N), k = 0, 1, 2, · · · , N. (14)

Through some mathematical operations on Equation (12), the following is obtained:

GCIIRF(z) =
K(1−βz−1)
N(1−z−1)

1−z−N

1−rz−N

=
K
(
1− βz−1)

N(1− z−1)︸ ︷︷ ︸
fg gain

·
N/2

∏
K=1

Gk(z)︸ ︷︷ ︸
harmonics rejection

, (15)

where

Gk(z) =
(z− zk)(z− zN−k+1)

(z− pk)(z− pN−k+1)
(16)

It is noted that GCIIRF(z) is the proposed alternative filter of MAF in this paper, i.e.,
CIIRF, which is divided into two parts. The first part represents the tracking gain at the
fundamental frequency, and the second part consists of a set of second-order IIR filters
expressed as Equation (16), which is responsible for the harmonic rejection. Curve 2 in
Figure 6 depicts the Bode plot of GCIIRF(z) (r = 0.99).
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For better visualization, the Bode plot in Figure 5 is redrawn as Curve 2 in Figure 6.
Curve 2, that is, the frequency characteristic curve of GCIIRF(z), has a flatter passband when
compared with Curve 1, but with a smaller negative gain at the notch frequencies. This is,
however, sufficient for harmonic suppression and has a larger phase in the low frequency
region although the phase–frequency characteristic is slightly nonlinear; this is negligible
in this application. It can be concluded that CIIRF, such as the IIR filter, has adjustable poles
that can fine-tune the amplitude–frequency gain and phase of the filter, thus adjusting the
performance of the filter. Next, CIIRF will be further discussed.

Figure 7a depicts the open-loop Bode plot of GCIIRF(z) with different values of the
parameter r. The enlarged plot in Figure 7b shows that GCIIRF(z) provides the flatter mag-
nitude response at the passband. Moreover, the 3 dB bandwidth at the notch frequencies
decreases with an increase in parameter r, which provides a flat magnitude response at
the passband; hence, it improves the transient performance. However, the attenuation at
the notch frequencies decreases with an increase in parameter r. To achieve a better perfor-
mance tradeoff between the flatter magnitude response at the passband and more sufficient
attenuation at the notch frequencies by adjusting the value of parameter r, one possible
solution is to minimize the filter gain–bandwidth product at the notch frequencies [28].
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3.2. Selection of Parameter r

By converting Equation (16) into another form, the following is obtained:

Gk(z) =
1 + akz−1 + z−2

1 + ρkakz−1 + ρ2
kz−2

, (17)

ωk = cos−1(−ak/2)rad, −2 < ak < 2, (18)

BWn = π(1− ρk)rad, ρk =
N
√

r < 1, (19)

where the tuning parameters ak and ρk are related to the normalized center frequency ωk
and the normalized bandwidth BWn at the notch frequencies, respectively.

Figure 8 shows the pole–zero plot of the second-order IIR filter Gk(z) shown in
Equation (17). Two pole–zero pairs are of mirrored layout in the z-plane. The pole–zero
pair lying in the upper half of the z-plane is mapped to the real frequency in the frequency
domain, i.e., the harmonic frequency.
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Assuming that c is an arbitrary point on the unit circle that is in close vicinity of the
zero Zk that corresponds to the line frequency ωk, the gain of Gk(z) at point c on the unit
circle that corresponds to the line frequency ωc can be obtained by substituting the z = ejωc

into Equation (17) and calculating the amplitude of Gk(ejωc). The further the distance
between point c and zero Zk, the larger the attenuation gain of Gk(z) at point c for a fixed
pole Pk or ρk. However, for a fixed point c, tuning the position of the pole Pk can regulate
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the gain and phase of Gk(z), thus improving system performance. When moving point c
infinitely close to the zero Zk, the difference Rzk between the vector Zk and ejωc approaches
ε which is a infinitesimal constant. The ratio of the vectors Rzk and Rpk is the difference
between the vectors Pk and the vector ejωc and is approximately equal to ε/(1− ρk), which
represents the gain of Gk(ejωc) at the point c. However, from the attenuation point of view,
the decay multiple is equal to the reciprocal of the gain, i.e., (1− ρk)/ε. According to the
aforementioned analysis, for simplicity, the filter gain–bandwidth product at the notch
frequencies is represented by the product of the bandwidth and decay multiple, as shown
in Equation (20):

G = π(1 − ρk) ·(1 − ρk)/ε = π(1 − ρk)
2/ε. (20)

The minimization of the filter gain–bandwidth product at the notch frequencies is
equivalent to minimizing the value of the expression G by tuning the parameter ρk. When
ρk comes infinitely close to 1, i.e., N

√
r ≈ 1, expression G takes the minimal value. Taking

processing unit resolution into account, it is assumed that ρk = 0.9999, then r = 0.99 when
N = 100.

4. PI-Type Controller Parameter Design

Some controller design guidelines for the PLL are presented in this section. This
paper proposes the replacement of MAF in Figure 3 with the CIIRF. Therefore, as shown in
Figure 9, the small-signal model of the CIIRF-based PLL can be obtained by referring to
Figure 3.
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According to this model, the open-loop transfer function of CIIRF-PLL can be obtained as

Gol(s) = GCIIRF
kps + ki

s2 . (21)

As seen in Figure 7, the IIIRF with ρk = 0.9999 provides almost unity gain at the
passband. Therefore, GIIIRF is approximately equal to one and can be neglected. The
close-loop transfer function of CIIRF-PLL can be obtained.

Gcl(s) =
Gol(s)

1 + Gol(s)
≈

kps + ki

s2 + kps + ki
(22)

It is easily observed that Equation (22) is a typical second-order system. In contrast to
the common expression of a typical second-order system, kp = 2ζωn and ki = ω2

n, where
ωn and ζ are the natural frequency and damping factor, respectively. To achieve the best
damping effect and a fast transient response, ζ = 0.707, ωn = 2π20 rad/s, kp = 177.71,
ki = 15,791.

Figure 10 shows the close-loop Bode plot of the proposed CIIRF-PLL. Compared with
the close-loop Bode plot of the MAF-PLL in Figure 4, the magnitude and phase margin
increase considerably; moreover, the bandwidth improvement more than doubles.
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5. Frequency-Adaptive CIIRF Implementation

The CIIRF-PLL can block the sinusoidal disturbance of integer multiples of the fre-
quency f d which is twice the nominal frequency when Tw = 0.01, and the grid fundamental
frequency keeps the nominal value unchanged. However, the CIIRF-PLL cannot completely
block the disturbance components due to the variation in the disturbance frequency f d
with the grid fundamental frequency. Therefore, a frequency-adaptive CIIRF-PLL structure
(FACIIRF-PLL) is proposed in this paper. To achieve frequency–adaptive performance,
many online adjustment approaches are provided in the earlier literature [10].

According to the expression of the sample order N = f s/f d, one possible method is
to keep the N constant by adjusting the system sample frequency adaptively to the grid
frequency variations. It is worth noting that, in most cases, changing the system sample
frequency will deteriorate the system control strategy; thus, adjusting the sample frequency
adaptively is not feasible. The authors of [28] proposed that N can vary adaptively to
the grid frequency variations according to the estimated grid frequency; this is associated
with different detailed approaches found in the earlier literature. The sample order N
can be adjusted via the rounding-down, rounding-up, rounding-to-nearest integer, weight
mean value, and linear interpolation methods. Contrary to the round-to-nearest integer
method, the rounding-down and rounding-up methods produce greater error, but they
are easier to be implement on digital hardware. The weighted mean value and linear
interpolation methods can provide less error; however, they cause greater calculation
load on the processor in digital implementation. Therefore, considering the tradeoff, the
round-to-nearest integer method is a relatively good option.

According to the aforementioned analysis, the notch center frequency of FACIIRF
is determined by the value of N corresponding to the variant estimated frequency. The
estimated frequency within a certain range matches the same N because the value of N
is attained by using the round-to-nearest integer method. For example, assuming that
N = 90 or N = 91, the estimated frequency ranges are approximately (55.55± 0.3) Hz and
(54.95± 0.3) Hz, respectively, which are shown in Figure 11.

From Figure 11, it can be seen that intersection a represents the critical frequency, and
its corresponding gain is approximately −36 dB. The closer to the center frequencies the
estimated frequency is, the larger the attenuation gain.

The first row of Table I lists the distortion limits in IEEE Standard 519-2014 [29]. The
second row lists a given worse case of grid voltage distortion, which is far beyond the
distortion limits listed in the first row. When the fundamental frequency of the given grid
voltage drifts to the intersection a shown in Figure 11, each individual harmonic will be
attenuated by 36 dB adopting the FACIIRF. After filtering, the data related to harmonic
distortion are listed in the third row of Table 1. The total distortion is far below that in the
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first row. Therefore, the FACIIRF is also applicable under the most unfavorable conditions
in practical applications.
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Table 1. Harmonic distortion list.

Harmonic Order h h < 11
11 ≤ h

and
h < 17

17 ≤ h
and

h < 23

23 ≤ h
and

h < 35
h ≥ 35 Total Distortion

Distortion
Limits 4.0% 2.0% 1.5% 0.6% 0.3% 5.0%

Voltage harmonics 30% 5% 0 0 0 35%
After

Filtering 0.47% 0.08% 0 0 0 0.55%

Figure 12 shows the digital implementation schematic diagram of CIIRF, which is
described by the difference equation, i.e., Equation (23).{

x(k) = 1
N [x(k)− x(k− N)] + x(k− 1)

y(k) = r · y(k− N) + K · x(k)− K · β · x(k− 1)
, (23)

where x(k), y(k) are the input and output variables, respectively, and x(k) is intermedi-
ate variable.
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6. Simulation Analysis and Experimental Result
6.1. Simulation Analysis

Simulations are implemented in the Matlab/Simulink environment to analyze the
effectiveness of the proposed PLL structure in this section. To highlight the effectiveness of
the proposed method, some comparative analysis will be completed with the conventional
SRF and standard MAF, where the control parameter designs of the latter two are carried
out using the symmetrical optimum method.

To investigate the stability and dynamic performance of the proposed FACIIRF-PLL,
three different operating cases will be provided, which, respectively, represent the frequency
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step, phase angle jump, and unbalanced sag followed by harmonic injection. The specific
description is as follows:

Case 1: The grid voltage undergoes a frequency step change of +5 Hz at time 0.15 s and
injection of 0.2 pu for the 5th harmonic, 0.1 pu for the 7th harmonic, and 0.05 pu for the
11th harmonic at time 0.3 s.
Case 2: The grid voltage undergoes a phase angle jump of +20◦ at time 0.15 s and an
injection of 0.2 pu for the 5th harmonic, 0.1 pu for the 7th harmonic, and 0.05 pu for the
11th harmonic at time 0.3 s.
Case 3: The grid voltage undergoes an A-phase amplitude drop of 0.3 pu at time 0.15 s and
an injection of 0.2 pu for the 5th harmonic, 0.1 pu for the 7th harmonic, and 0.05 pu for the
11th harmonic at time 0.3 s.

The simulation results of the three PLLs under Case 1 are shown in Figure 13a. When
the grid voltage undergoes a frequency step of +5 Hz at 0.15 s, the frequency error and
phase angle error of SRF-PLL and FACIIRF-PLL both reach zero much faster than those of
MAF-PLL. As to the frequency and phase angle errors, when the harmonics are injected
into the grid voltage at 0.3 s, SRF-PLL produces a violent oscillation so as not to reach zero,
and MAF-PLL fluctuates slightly in the vicinity of zero while FACIIRF-PLL can approach
zero soon.

The simulation results of the three PLLs under Case 2 are shown in Figure 13b. When
the grid voltage undergoes a phase angle step of +20◦ at 0.15 s, the frequency error of
FACIIRF-PLL is faster to reach zero than that of MAF-PLL but is a bit slower than that of
SRF-PLL. The phase angle error of FACIIRF-PLL reaches zero as fast as that of SRF-PLL,
but much faster than that of MAF-PLL. When harmonics are injected into the grid voltage
at 0.3 s, SRF-PLL produces a violent oscillation so that the frequency error and phase angle
error cannot reach zero, while those of MAF-PLL and FACIIRF-PLL can both approach
zero soon.
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The simulation results of the three PLLs under Case 3 are shown in Figure 13c. When
the grid voltage experiences an unbalanced sag at 0.15 s and harmonics injection at 0.3 s,
the frequency and phase angle errors of FACIIRF-PLL reach zero as quickly as those of
MAF-PLL, whereas those of SRF-PLL vibrate and cannot converge.

To sum up, among the three PLLs, the FACIIRF-PLL improves the dynamic response
speed while ensuring that the phase is locked accurately.

6.2. Experimental Results

In this section, the effectiveness and hardware implementation of the proposed method
are validated. In this experiment, a set of experimental devices for detecting the grid voltage
synchronization signal are used. The main control processor is the TMS320F28335 digital
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signal processor of the TI company, which realizes the digital operation of the algorithm.
For simplicity, three different operating cases associated with the grid voltage signal are
generated by the same control processor. They are implemented by code placed in the
interrupt program, which can avoid the impact of sampling errors on the verification
results. The sampling frequency of the DSP is set to 10 kH. In addition, the waveform
data generated in the experiment are transmitted to the upper computer software through
cache and serial port communication, then the graphics are drawn. Figure 14 shows
the experimental devices used in experiments. The three working conditions set in the
experiment are consistent with those in the simulation, and the waveforms of various PLLs
are shown in Figure 15.
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It can be seen from Figure 15 that the experimental waveforms of the phase angle
error and frequency error of the three PLLs under three different operating cases are almost
consistent with the simulation results.

Under the test condition of harmonic injection after the frequency step, phase angle
jump, and unbalanced sag, the frequency dynamic response of the SRF-PLL is fastest
among the three PLLs, but the waveforms of the frequency error and phase error vibrate
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under the cases of unbalanced sag and harmonic injection. In the following discussion,
some performance comparisons between MAF-PLL and FACIIRF-PLL are made.

In Figure 15a, in the case of the frequency step and compared with the frequency
tracking performance of MAF-PLL, FACIIRF-PLL is about 30 ms faster and has a little less
overshoot; compared with the phase tracking performance of MAF-PLL, FACIIRF-PLL
reaches the stable state with a significantly smaller overshoot and faster speed. It is obvious
that after the harmonics are added at 0.3 s, the waveform of FACIIRF-PLL achieves the
stable state quickly, while the waveform of MAF-PLL shows a slight oscillation around
the stable value; this indicates that FACIIRF-PLL can quickly adjust the notch frequency
and filter out the harmonics due to the frequency–adaptive strategy, while the harmonic
suppression ability of MAF-PLL is insufficient as a result of the much too small harmonic
attenuation gain in the low-frequency region.

Comparing the frequency and phase tracking performances at 0.15 s, it is clear that the
adjustment time and overshoot of MAF-PLL and FACIIRF-PLL in Figure 15c are almost the
same. In Figure 15b, the adjustment times of MAF-PLL and FACIIRF-PLL are close in terms
of the frequency tracking, but the adjustment time of FACIIRF-PLL is about 25 ms faster
than that of MAF-PLL in terms of the phase tracking. Furthermore, as seen in Figure 15b,c,
FACIIRF-PLL exhibits a slightly worse harmonic rejection capability when it comes to
frequency tracking after the harmonics are added at 0.3 s. This has two explanations.
One is that the slight frequency drift caused by the phase angle step or unbalanced sag
of grid voltage at 0.15 s does not completely vanish at 0.3 s; the second is that when the
harmonics are injected at 0.3 s, MAF-PLL can reject the harmonic quickly due to its higher
3 dB bandwidth at the notch frequencies. In contrast, FACIIRF-PLL cannot attenuate the
harmonics quickly as a result of its relatively lower 3 dB bandwidth at the notch frequencies
until the frequency estimation comes closer to 50 Hz at about 0.34 s. The THD statistics
of the filtered input voltage are listed in Table 2; this permits an easier evaluation of the
harmonic suppression abilities of the three separate PLLs in Figure 15 under 3 different
operating cases.

Table 2. Comparison of THD (%).

PLL Case 1 Case 2 Case 3

SRF-PLL 22.46 22.48 22.41
MAF-PLL 1.89 0.19 0.15

FACIIRF-PLL 0.32 0.21 0.16

Table 2 makes clear that MAF-PLL and FACIIRF-PLL are equally capable of sup-
pressing harmonics, virtually eliminating all set harmonics in the power grid. Table 3
compares and assesses the performance of three PLLs in several aspects based on the
analysis presented above.

Table 3. Performance comparison of 3 PLLs.

PLL Computing Overhead (µs) Harmonic Suppression Dynamic Performance

SRF-PLL 13 Poor Average
MAF-PLL 25 Excellent Average

FACIIRF-PLL 29 Excellent Good

7. Conclusions

Based on the aforementioned analysis, it is clear that the FACIRF-PLL suggested in
this paper performs significantly better in terms of dynamic performance while having
roughly the same harmonic suppression capabilities and computing overhead as MAF-PLL.
The experimental results verify the feasibility and effectiveness of the parameter tuning
and frequency–adaptive implementation of the FACIIRF-PLL proposed in this paper.
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