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Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland;
mmadziel@prz.edu.pl

Abstract: Accurate estimations and assessments of vehicle emissions can support decision-making
processes. Current emission estimation tools involve several calculation methods that provide
estimates of the exhaust components that result from driving on urban arterial roads. This is an
important consideration, as the emissions generated have a direct impact on the health of pedestrians
near the roads. In recent years, there has been an increase in the use of emission models, especially
in combination with traffic simulator models. This is because it is very difficult to obtain an actual
measurement of road emissions for all vehicles travelling along the analysed road section. This
paper concerns a review of selected traffic simulations and the estimation of exhaust gas components
models. The models presented have been aggregated into a group with respect to their scale of
accuracy as micro, meso, and macro. This paper also presents an overview of selected works that
combine both traffic and emission models. The presented literature review also emphasises the
proper calibration process of simulation models as the most important factor in obtaining accurate
estimates. This work also contains information and recommendations on modelling that may be
helpful in selecting appropriate emission estimation tools to support decision-making processes for,
e.g., road managers.
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1. Introduction

Air pollution is a major component of the risk to human health and the state of the
environment [1]. Outdoor pollution is responsible for approximately 1.2 million annual
deaths [2]. Road transport, which is widely considered the only major source of pollution
in urban areas, contributes to this [3]. Therefore, great effort is being made to reduce
the exhaust emissions from transport. As a result, many new vehicle designs and new
fuel components are being implemented, as well as strengthening traffic management
in cities to maximize traffic flow [4,5]. Vehicle emissions have become a key issue for
the global community in recent years. The number of vehicles on the road is constantly
increasing, compounding the problem, and making road transport a major contributor
to pollution [6,7]. The main components of vehicle exhaust emissions include carbon
monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), particulate matter (PM),
and greenhouse gases such as carbon dioxide (CO2) [8–10]. However, it should be borne
in mind that the future share of electric vehicles will increase, so that the proportion of
pollutants in the road environment will decrease dramatically, which will not make their
impact on human health any less significant.

Vehicle exhaust emissions depend on many factors. Estimating emissions is chal-
lenging and depends, among other things, on the scale at which vehicle emissions are
measured [11,12]. Exhaust emissions in terms of modelling depend, among other things,
on the vehicle category and also on the traffic flow of a certain group of vehicles. These
emissions depend on a number of factors, e.g., the specification of the fuel used, the emis-
sion control technology, and the environmental and operational conditions of the vehicle
(driving style, contribution of cold-start emissions, etc.) [13,14]. Vehicle emission models
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are used to accurately estimate emissions from road transport. It is important to under-
stand the connection between vehicle emissions and the environment in order to develop,
among other things, strategies that can minimize the impact of exhaust emissions on the
environment. For this purpose, vehicle emission models and vehicle traffic simulation
models are used.

Vehicle emission models estimate the amount of exhaust emissions based on various
input data. These data are differentiated according to the scale of the model used [15,16].
Examples of input data can be detailed vehicle data, for example, engine specifications,
driving conditions, and fuel properties [17,18]. Traffic simulations can be a certain comple-
ment to emission models. Traffic simulation allows for a virtual representation of real-world
traffic scenarios, allowing for the analysis of vehicle interactions and their impact on the
immediate environment and the health of pedestrians travelling on arterial roads [19–21].
To generate a certain set of vehicle traffic data, simulators allow valuable information to be
provided on the magnitude of vehicle emissions versus, for example, air quality to inform
decision makers in controlling air pollution [22,23].

Models to estimate vehicle emissions are becoming increasingly sophisticated and
extensive [24]. This is undoubtedly related to the increasing number of vehicles and the
diversity of pollutants, modifications, and fuel types used [25]. For emission models, it is as
important to distinguish between models for different engine thermal states, e.g., cold start,
hot running, etc. The first emission models, which were developed in the 1980s and 1990s,
allowed the prediction of emissions from the warmed-up state of a vehicle’s engine for only
a few major emission components based on certified test data. Modern emission models
allow the estimation of all known exhaust compounds, regulated and unregulated, estimate
fuel consumption, and are based on data from actual road tests under different driving
conditions [26]. The first emission models were based solely on data from a dozen vehicles,
while the current emission models use data from thousands of different vehicles [27]. Over
the years, the approach has also changed from the classic modelling for driving mode
(acceleration, deceleration, idle, cruise) to also include other variables, such as data from
vehicle engines: engine load, speed, engine temperature, air-to-fuel ratio, etc [28,29].

This paper is a literature synthesis of the current state-of-the-art in the field of exhaust
emission models and traffic simulation. The topics described could be helpful to those
involved in modelling vehicle traffic and modelling environmental aspects more widely.
This work is divided into three main parts. The first presents the characteristics of the
described topic based on a Web of Science core collection search. This is followed by a
description of vehicles, the main components of exhaust gases, a description of selected
emission models and traffic simulators, examples of their use, and trends, and further
developments in the field. The work also considers the problem of calibrating vehicle traffic
summation models for a more accurate estimation of vehicle emissions.

The scope of this work also includes a comparison of exhaust emission models with
selected parameters. Such an overview of the work could be helpful for those seeking
information on the complexity and usefulness of emission models and their potential use
for traffic simulation purposes. The numerous examples and comparisons could also be
useful to decision makers in traffic management. Based on the review, recommendations
on the usefulness of the selected models were also developed in terms of their potential
use for traffic simulation and environmental analysis of the impact of road transport on
exhaust emissions for use by transport decision-makers.

To show the contribution of this article to the development of the topic, Table 1
presents the contribution of this article compared to other review papers dealing with
similar research topics. The comparative papers dealt with the topics of emission model
reviews, traffic simulation models, the combination of the two topics, and the description
of additional things related to the topic, such as the characterisation of vehicle exhaust
components and the essence of model calibration.
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Table 1. Authors contribution table.

Author(s) Emission Models Review Traffic Simulators
Models Review

Pollutants Emission
Description

Calibration Problem
Description

Boulter et al. [30]
√

(instantaneous emission models)
Smit et al. [31]

√

Faris et al. [32]
√ √ √

Demir et al. [33]
√

(review of 6 emission models)
Gokhale, et al. [34]

√

Wang et al. [35]
√

Pel et al. [36]
√

Nguyen et al. [37]
√

(agent based)
Ejericto et al. [38]

√

Liu et al. [39]
√

Alghamdi et al. [40]
√

Mubasher et al. [41]
√

Forehead et al. [42]
√ √

Algers et al. [43]
√

(micro)
Madi [44]

√ √

Franco et al. [45]
√

(emission factors)
This paper

√ √ √ √

2. Methodology and Characteristics of the Literature Review

The general structure of this paper is shown in Figure 1. The literature review was
based on prior identification of the main keywords of the topic under analysis. This
analysis was based on the Web of Science Core Collection search engine. Web of Science
Core Collection is a database of scholarly literature that provides access to some of the
world’s most influential scientific, technical, and medical research. It is widely considered
one of the most comprehensive and authoritative sources of research information, and it is
widely used by researchers [46,47].
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The general research methodology for the literature analysis of the topic described
was based on a preliminary identification of the main tools that are used in the context
of emissions modelling and traffic modelling. Subsequently, this paper describes selected
emission models and traffic models, provides examples of the use of these tools, and
identifies directions for further work.

The detailed description of the literature review methodology carried out on the topic
described first dealt with identification. This identification consisted of the following:
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• Analysis of vehicle exhaust components and modelling methods resulting from the
method of data collection: chassis dynamometer data, road data using the PEMS system;

• Analysis of selected micro-, meso-, and macro-scale exhaust emission models, their
characteristics, and a presentation of their main features;

• Analysis of selected micro, meso, and macro traffic simulation models and their description;

The second step of the literature analysis consisted of providing examples for:

• Combining the use of emission models and traffic simulation models with their
brief characteristics;

• Calibration of the simulation model and emission models as the main determinant of
the results obtained.

In a third step, this paper describes recommendations for the applicability of the
described emission models in combination with traffic simulation models. Future trends in
the development of future simulation models are also described.

The following keywords were used to identify the main keywords linked to the topic
in the Web of Science Core collection search: emission model and traffic simulation, and
vehicle—1250 results were retrieved (information obtained for 12 April 2023). No time
frame was specified for the search. Figure 2 presents a keyword map based on the data
recovered from the database and the VOSviewer software. From the keyword map, we can
see which keywords occur most frequently for the topic described, for example. Based on
this, we can see, e.g., keywords such as VT-Micro, car following model, VISSIM, COPERT,
SUMO, etc. This makes it possible to pre-classify the most common emission models and
simulators used in research. For such analyses, we can additionally search for new papers
with the addition of a new keyword related to, for example, the emission model. This way,
it is additionally possible to determine the exact number of papers that use, among other
things, the analysed tool. For example, with the additional keyword COPERT, we can find
at least 155 work results. On this basis, a set of emission models and traffic simulation
software were selected, which are described in the following section.
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Based on data from the Web of Science Core collection, a world map was also generated
showing the frequency of papers in the searched article database (Figure 3).
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Figure 4 shows the number of records for the entries for the topics studied. From it we
can see an upward trend for published works. The first records analysed date from 1997,
while the most recent are from 2023.
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The content presented in this paper in the field of emission and traffic simulation
models can be useful particularly in the following aspects:

• This work presents an up-to-date overview of emission models indicating their calcu-
lation capabilities for a selected range of model inputs and outputs, which will speed
up the process of selecting a suitable tool for those involved in modelling;
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• The overview of the selected vehicle traffic simulation models presented can be useful
for selecting a suitable tool with mapping vehicle traffic for different scales of accuracy;

• The link between the topic of emission models and the topic of traffic simulation
models gives some insight into the capabilities of the software for different accuracy
scales, which can also speed up the selection and correct use of a given tool for emission
estimation and traffic simulation;

• This work presents the essence of the calibration of emissions and traffic simulation
models in order to obtain results close to real values, which gives information for
people modelling vehicle traffic and emissions, whose parameters for which the
models need to be calibrated and checked against real values, e.g., traffic volume or
speed profile;

• From the whole work, the most important recommendations for emissions and traffic
modelling have been selected;

• This work shows future trends in the modification of existing emission and traffic
models as well as the development of completely new models.

3. Emission from Vehicles—Literature Review
3.1. Main Components of Vehicle Exhaust

Conventional internal combustion engines, as well as hybrid systems, are the main
sources of exhaust pollutants in urban areas [48,49]. These emissions result from the
combustion of both gaseous and liquid fuels. The main groups of exhaust emission
components considering their formation and source include [50–52]:

• High-temperature combustion products such as nitrogen oxide (NOx);
• Products of incomplete combustion, including particulate matter (PM), carbon monox-

ide (CO), and hydrocarbons (THC);
• Combustion products from waste fuels, including heavy metals and sulphur ox-

ides (Sox);
• Products from other sources, e.g., volatile organic compounds (VOC);
• Products of total combustion that generate the greenhouse effect (CO2).

PM can be classified into three types of categories: PM1, these are particles not ex-
ceeding 1 µm in diameter; PM2.5, particles not exceeding 2.5 µm in diameter; and PM10,
particles not exceeding 10 µm in diameter (containing carbon particles) [53]. Motor vehicles
are an important source of PM1 and PM2.5 emissions. For different engines, the particle
emissions are different. Diesel engines emit mainly 20–130 µm, while petrol engines emit
20–60 µm [54,55].

In addition to emissions resulting from combustion processes, particulate matter is
also produced as a result of the wear and friction of materials, mainly brake friction linings
and vehicle tyres [56,57].

The harmful components of the exhaust gases contained in vehicle exhaust negatively
affect human health and the state of the surrounding environment [58–61]:

• Carbon monoxide—The poisonous effect is due to the reaction of its combined with
hemoglobin and metalloproteins; internal organs such as the heart and central nervous
system are damaged; at low concentrations of gas, loss of consciousness occurs; CO
shares in the inhaled air already at the level of 0.02% have a negative effect on human
health, and life-threatening concentrations of 0.1% cause.

• Short-term exposure of nitrogen oxides to high concentrations leads to lung edema and
death, lower concentrations cause the so-called silo disease; in addition to negative
direct effects on human health, nitrogen oxides are the main cause of photochemical
smog (Los Angeles-type smog), which appears over cities during hot, sunny weather.

• Carbon dioxide—one of the greenhouse gases.
• Hydrocarbons—one of the components of smog; they irritate the conjunctiva, cause

allergies, and have strong carcinogenic effects.
• Particulate matter—breathing air polluted with PM2.5 can lead to atherosclerosis,

complications of pregnancy, and respiratory diseases; PM10 can contain toxic sub-
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stances such as polycyclic aromatic hydrocarbons (e.g., benzo/a/pyrene), dioxins
and furans, which are carcinogenic; the limit level for the average concentration is
50 µg/m3 and must not exceed more than 35 days per year; particulate matter is part
of London smog, which mainly occurs in the months of November to February during
temperature inversions.

In view of the increasing emission of exhaust pollutants, coordinated action is being
taken in the European Union to reduce the harmful effects of vehicle exhaust. One of the
key decisions to reduce exhaust emissions was the introduction of EURO standards [62].
Currently, the regulations cover NOx, THC, CO, and PM emissions [63]. The New European
Driving Cycle (NEDC) test, which was carried out under controlled laboratory conditions to
ensure the reproducibility and comparability of the results obtained, was used to determine
motor vehicle emissions until September 2017 [64,65]. However, it was found that the
NEDC test often did not reflect the conditions actually experienced when driving on public
roads [66,67]. To improve the emissions and fuel consumption that occur when driving
under road conditions, a new WLTP (World Harmonised Light Duty Procedure) driving test
procedure was created [68]. With the new procedure, in addition to the determination of
emissions during controlled driving tests with a chassis dynamometer, real driving emission
(RDE) road tests are also carried out using mobile emission measurement systems—PEMS
(Portable Emissions Measurement System) [69–71].

Based on the described dynamometer tests, initially using data from measurement
bags in which car exhaust was collected, the first calculation models for exhaust emissions
were developed [72]. As the first aggregations of emissions data were for bagged emissions,
the models only allowed the calculation of emission factors. Subsequent emission tests
involved a modal analysis of the exhaust gas, which allows for a detailed analysis of the
emissions of individual exhaust components during the entire dynamometer test. With the
development of technology, today, the latest emission models are based on road tests that
use on-board exhaust emission measurement systems (PEMS) to record the data [73,74].

3.2. Overview of Selected Exhaust Emission Models

Emission models are divided according to their precision scale into macro (regional,
national area), meso (local area), and micro (areas of a dedicated part of a city, intersection
road sections) [75].

We can divide emission models into two categories [76,77]:

• Based on parameters: average speed, vehicle type, etc.
• Based on traffic parameters such as acceleration, deceleration, idle, and continu-

ous driving.

Another division of emission modes is based on [78,79]:

• Models that require the uploading of speed profiles;
• Models that generate the speed profiles themselves as part of the emissions mod-

elling process;
• Models that include uploaded velocity profiles.

3.2.1. Macroscopic Emission Models

Macroscopic models are mainly based on the parameter of the average driving speed
in the analysed section of the road [80]. They are based on the relation presented in
Equation (1).

F = A +

(
B
V

)
+ C·V + D·V2 (1)

where:

A, B, C, D—coefficients selected according to the type of vehicle and road;
V—average driving speed (km/h);
F—fuel consumption (l/100 km).
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In terms of modelling, fuel consumption is highly correlated with CO2 emissions,
compared to CO, THC, and NOx [81].

The macro model is used to estimate fuel consumption and road traffic’s environ-
mental impact. They can determine the total energy consumption of projects and road
infrastructure development strategies and assess the impact of greenhouse gas emissions on
the study area. Some environmental impacts are local, regional, or global and can be short-
and long-term. Macro-scale emission models allow transport impacts to be determined on
a large regional scale (regional transport corridors) [82,83].

An example of software that includes macro-scale emission calculation models is the
Operat FB package. It is used to model the dispersion of pollutants in ambient air from
point, line, and surface sources [84]. It has a “car” module, which makes it possible to
calculate the emissions from car traffic on roads. Pollutant emission results are calculated
according to the EMEP/Corinair B710 and B760 methodology [85]. This involves calculating
the hot emissions from the exhaust of the vehicle engine, the cold emissions arising at the
start of engine operation, and the evaporative emissions, the sources of which include
changes in the volume of fuel vapour in the vehicle tanks and the cooling of the tank after
the vehicle engine has stopped. Brake pads and abrasion can also be calculated [86]. The
Corinair model distinguishes more than 200 vehicle categories, allocated to six groups:
passenger vehicles, vans, lorries, buses, mopeds, and motorbikes. A further criterion for
classification is the engine capacity of the vehicle and the compliance with a given emission
standard. To calculate emissions, it is necessary to specify the share of specific vehicles in a
given section of the road, specify their speed, and indicate whether the trip was made on
an urban, suburban, or motorway road section [87].

Another model to calculate macro-scale emissions is COPERT. It is based on European
data using: kilometrage, vehicle structure, driving speed, humidity, and air temperature.
Emission factors are calculated for the following vehicle categories [88,89]:

• Passenger cars;
• Vans (<3.5 t);
• Lorries (>3.5 t);
• Motorbikes and mopeds.

In the COPERT model, emissions are calculated based on Equation (2):

Ei = Σ j
[
Σ m

(
FCj,m·EFi,j,m

)]
(2)

where:

Ei—emission of exhaust component I (g);
FCj,m—fuel consumption for vehicle category j, using fuel m (kg);
eFi,j,m—fuel consumption emission factor of component i for vehicle category j and fuel
m (g/kg).

We can consider petrol, diesel, LPG, and CNG as fuels in this model [90].
For US emissions data, the MOBILE model is used, which was developed by the US

EPA [91]. This model includes data from vehicle manufacturers collected by CARB and the
EPA. Emissions are calculated for a given class of post-vehicle traffic conditions for assumed
traffic conditions. Emission calculations take into account model calibration factors such as
operating conditions, vehicle specifications, and the surrounding environment [92,93].

Another example is the model for calculating emissions developed by the European
Union, called Artemis. Calculate the total emissions of a given traffic component as a
product of a given emission factor and the amount of vehicle traffic activity. Unlike other
models, emission factors are calculated as a result of the kinematics of vehicle movement in
the modelled area. This approach to calculating emissions is contained in three steps [94,95]:

• Identification of cycles by the kinematics of vehicle motion;
• Selection of an appropriate cycle representing a specific group, which determines the

corresponding emission factors for road activities;
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• Determination of correction factors to determine reference emission factors.

The current approach to macro-scale emission models used for the determination
of harmful exhaust components is based on two calculation steps. The first is the selec-
tion of a set of emission factors that determine the emissions for a given traffic condition,
while the second stage is the assessment of vehicle activity in the area under study. Emis-
sions are calculated by multiplying these two stages. However, this methodology has
two main disadvantages:

• Inaccuracy of emission results—most of the data included in the macro models are
based on measured emissions data from engine dynamometers, while the driving
cycles that are used do not correctly represent real-world driving (e.g., they take into
account frequent rapid acceleration or braking); in addition, they may not be fully reliable,
as some car manufacturers have been found to have manipulated emissions results.

• Inadequate characterisation of current driver behaviour—current methods of de-
termining emission factors are based on the average driving performance over a
predetermined driving cycle used for certifying vehicles with emission standards;
recent modifications to the introduction of the new driving cycle have rendered older
generation cycles obsolete.

3.2.2. Microscopic Emission Models

Micro-scale models need a large amount of data related to the measurements of
vehicle parameters such as acceleration and speed, as well as road parameters such as
terrain gradient and position coordinates [96]. Micro-scale models usually have a recording
resolution of 1 s. To date, several micro-scale models have been developed that are based
both on vehicle exploration parameters, such as engine power, and vehicle speed [97].

A classification of micro-scale models that takes into account the type of data used for
input includes [98–101]:

- Based on speed profile: Enviver Versit+, VT, RoundaboutEM;
- Based on vehicle parameters, such as power: CSIRO, CMEM, VT-CPFM, LPGemission;
- Combining the above methods.

The power-based CMEM model was developed in 2006. Emission processes fall into
different categories that correspond to physical phenomena associated with vehicle opera-
tions. Each component of the exhaust gas is modelled analytically and includes parameters
specific to its generation process [102]. In developing these models, emissions were mea-
sured both directly in the engine and at the exhaust outlet of the vehicle under study. In
total, more than 300 vehicles were tested under laboratory conditions for three driving
cycles [103]. Developing this type of model requires a large amount of data. To calculate
real-time emissions, many physical variables must be collected, and vehicle speed profiles
must be entered.

Another model based on engine power is CSIRO. This model predicts fuel consump-
tion, THC, and CO emissions very well, in relation to brake and road test data [104].

The power equation used in this model is shown as follows:

Zt = Zd + Zr + Za + Ze + Zm (3)

where:

Zt—vehicle power;
Zd—vehicle power to overcome internal losses; Zd = 2.36·10−7 V2M;
Zr—vehicle power to overcome rolling resistance; Zr = (3.72·10−5 V + 3.09·10−8·V2)M;
Za—vehicle power to overcome air resistance; Za = 1.29·10−5 CdAV3;
Ze—power needed to overcome the inertia force and climbing resistance;
Ze = 2.78·10−4 (a + gsinθ)MV.
Zm—power lost to power the vehicle’s accessories;
M—vehicle mass (kg);
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V—vehicle speed (km/h);
a—vehicle acceleration (m/s2);
Cd—vehicle drag coefficient;
A—vehicle frontal area (m2);
θ—road gradient (%).

The emission rate (Em) is calculated from Equation (4).

Em = α′ + β′Zt (4)

where:

α′—emissions at idle;
β′—emission per unit power output of the vehicle.

Equation (4) reflects the emissions when the engine is idle (or fuel consumption) when
the useful power is equal to 0. This method can provide adequate estimates of emissions for
micro-scale emission models. However, these results are based on the statistical average of
power, fuel consumption, and emissions. In micro-modelling, changes in the characteristics
of the vehicle (e.g., age and catalytic converters) must be taken into account.

However, sometimes parameters such as the vehicle drag value are not available. The
MOVES emission model uses the VSP to determine the amount of time a vehicle spends
in each operating mode bin. This model uses vehicle-specific power (VSP), defined as the
output of the engine per vehicle unit and expressed as a function of vehicle speed, road
gradient, and acceleration [105]:

VSP = V·1.1·a + 9.81·θ·0.132 V + 0.000302·V3 (5)

where:

VSP—vehicle specific power (kW/t);
V—vehicle speed (km/h);
a—vehicle acceleration (m/s2);
θ—road gradient (%).

The proposed model of Ahn et al. [106] is based on the relationship between emissions
and speed. The results show that exhaust emissions and fuel consumption increase as the
speed increases, even when the vehicle accelerates. This phenomenon cannot be described
in a model based on vehicle power [107]. The model is based on linear acceleration and
speed regression and is relatively compatible with raw data (R2 > 0.92). Regression results
are sensitive to the test methods used, that is, the cycles of driving and selected vehicles
represent the composition of the fleet. The model is based on Equation (6):

EM = ∑3
i=0 ∑3

j=0 ke
i,j·Vi·Aj (6)

where:

EM—instantaneous fuel consumption and emissions of harmful exhaust components;
ke

i,j—coefficients of the regression model for MOE, both for speed i and for acceleration j;

Vi—velocity (m/s);
Aj—acceleration (m/s2).

The model described in [108] contains six variable values. The emission functions for
each vehicle provide on-the-fly results with speed and acceleration inputs, using nonlinear
multiple linear regressions. The model was calibrated using emissions data from 25 vehicles
(6 buses, 2 trucks, and 17 cars). As a result of the fact that the data from the tests obtained
revealed a clear distinction in emissions for the acceleration and braking phases, the entire
data set was divided into three elements, namely: acceleration, greater than 0.5 m/s2;
deceleration less than −0.5 m/s2, constant speed driving, and idling. The model can be
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used to estimate NOx emissions, volatile organic compounds (VOCs), CO2, and PM. The
model has the form shown in Equation (7):

En(t) = max[E0, f1 + f2Vn(t) + f3Vn(t)
2 + f4 An(t) + f5 An(t)

2 + f6Vn(t) An(t)] (7)

where:

Vn(t)—vehicle speed n at time t;
An(t)—acceleration of vehicle n at time t;
Eo(t)—lower emission limit for a specific emission type of an exhaust constituent [g/s];
f1–f6—emission constants determined by regression analysis for a given type of vehicle and
exhaust constituents.

As part of Enviver, the VERSIT+ speed profile-based emissions model includes a
variable related to the vehicle’s driving cycle. From the speed profiles obtained in VISSIM,
emission factors (g/km) can be estimated for different classes of vehicles [109]. VERSIT+
offers 246 emissions models for each category and toxic exhaust component. The speed
profiles used in the model represent actual road conditions, as opposed to those derived
from the New European Driving Cycle (NEDC) [110]. The emission factors (EFj,k,l) were
obtained by multiple linear regression to find the empirical relationship between emission
rates, speed profiles, and dynamic variables [111]. Road transportation exhaust emissions
(g/h) for specific exhaust components in one or more road sections are calculated from
Equation (8):

TEj = ∑ k, m
(

EFj,k,l ·TVk,m·Lm

)
(8)

where:

EFj,k,l—average emission factor (g/km);
j—emission component;
k—vehicle class;
l—speed profile;
TVk,m—volume of—road traffic (vehicles/h);
m—road section;
Lm—length of the road section (km).

Another software package in which the emissions of harmful exhaust components can
be calculated on the micro scale is the AVL simulation package, in particular, Cruise, which
uses Matlab/Simulink for modelling and simulation processes [112,113]. In addition to
estimating model emissions, it is also possible to calculate vehicle fuel consumption. This
package is designed to model any vehicle powertrain configuration (including EVs, fuel
cells, and HEVs) [114]. To estimate the emissions, it is necessary to determine the trajectory
using an uploaded speed profile. For speed profiles, there is a free choice, depending
on whether we estimate vehicle emissions for a driving test, for example, WLTC, FTP-
75, NEDC, or for a real-world driving trip [115]. The modelling approach in the AVL
simulation package includes detailed vehicle specifications and projections for selected
chassis components, for which we have the freedom to model shape [116].

3.2.3. Comparison of Selected Emission Models

A summary of the selected emission models in terms of their scale, the input data
needed for the calculation, and the main model-specific features is presented below in
the form of Table 2. Information on the availability of an update is also provided, which
may be helpful for those wishing to make up-to-date estimates of vehicle emissions. The
update feature is also relevant in the context of new vehicle designs that are approved
for road use, while they need further testing of actual road emissions to provide valuable
data for updating emission models. Updating emission models will also be a challenge in
the context of the upcoming EURO7 emission standards, which will be a new emissions
standard and will revolutionise the subject of vehicle emissions.
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Table 2. Selected emission models with their characteristics regarding input data, scale of detail,
selected features, and information on availability of updates.

Model Scale Input Data Features Updates
Information Source

COPERT Macro

Vehicle category, number of
vehicles, weather conditions,
load, average speed, distance

travelled, etc.

The wide availability of
vehicle types and emission

components studied.

Continuously
updated, current

version: 5.6.
[117,118]

MOVES Macro

Vehicle category, number of
vehicles, weather conditions,
load, average speed, distance

travelled, etc.

Ability to calculate emissions
for a large number of exhaust
components, including: HC,

CO, CO2, NOx, CH4, N20,
and PM.

Continuously
updated, current

version: MOVES3.
[119–121]

PHEM Micro Among other things, the speed
profiles of the vehicles tested.

Accuracy of emission
estimation for the entire route,

wide range of engine types
and test vehicles, time

resolution 1 Hz.

Continuously
updated. [122,123]

CMEM Micro/macro Among other things, the speed
profiles of the vehicles tested.

In addition to application at
the micro scale, it is also

possible to estimate emissions
at the macro scale, making

the model versatile

Currently without
update support. [124]

Versit+/Enviver Micro Speed and acceleration profiles
of vehicles.

Automatic generation of
emission maps, full support

for selected traffic simulation
models, e.g., VISSIM.

Currently without
update support. [125,126]

VT-Micro micro Speed and acceleration profiles
of vehicles.

The ability to calculate
continuous emissions along

the route and fuel
consumption for the exhaust

gases: CO2, NOx, CO,
and THC

Currently without
update support. [127,128]

ESTM BOSH micro Speed and acceleration profiles
of vehicles.

The possibility of creating
emission maps within the

scope of the VISSIM software,
which allows very precise

localisation of areas of
increased concentrations of

exhaust constituents.

Continuously
updated. [129]

EMPA micro Speed and acceleration profiles
of vehicles.

Possibility to calculate
emissions for LDVs only.

Currently without
update support. [130,131]

EMFAC macro

e.g., average vehicle speed, type
structure of vehicles, vehicle

load, ambient conditions:
temperature, humidity, etc.

Ability to calculate emissions
for a number of indicators:

THC, CO, NOx, PM, SOx and
CO2.

Last update in 2021. [132,133]

MODEM micro Speed and acceleration profiles
of vehicles.

Continuous emission
estimation; no emission

estimation possible for heavy
duty vehicles.

Currently without
update support. [134,135]

HBEFA macro e.g., average vehicle speeds,
type structure of vehicles.

Estimation of emission factors
for vehicles of different

categories: PC, LDV, HGV,
urban buses, and motorbikes.

Last update in 2022. [136–138]

The selected emission models presented above, together with their characteristics,
mainly apply to the micro- and macro-scale. For the given example micro- and macro-scales,
Table 2 also gives examples of the input data required for the model emissions calculation.
For example, for macro-scale models, it is necessary to determine the average speed of
the vehicles, their type of structure, the fuel used, the vehicle load, and, for example, the
percentage of urban, extra-urban, and motorway driving [139]. For the macro input data,
data on ambient conditions such as minimum, maximum, and average temperatures for the
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whole year for the given months as well as the prevailing atmospheric humidity are often
also required [140]. For the micro scale, a vehicle speed profile recorded at a frequency of
at least 1 Hz is usually the basic parameter required. Such input data can be obtained from
the vehicle’s GPS and OBDII system, or, for example, can be obtained as simulation data.
Most simulation software, such as VISSIM or Matlab Simulink, allow the generation of
vehicle parameter data from the simulation, and these data are then loaded into micro-scale
models. Sometimes, for the specifics of some micro-scale models, it is necessary to adapt
the input file for the appropriate coding for the emission model, e.g., when uploading
speed profiles to Enviver Versit+, it is necessary to adapt the input data and save them
in .fzp format.

Tables 3 and 4 show the characteristics of the selected parameters for selected emission
models. Table 2 deals with the estimation of the emission for a selected component of the
exhaust gas and shows which model offers the calculation possibilities for a given emission
factor. Table 3, on the other hand, shows the emission calculation possibilities for a given
vehicle category for selected emission models.

Table 3. Presentation of emission calculation options for selected vehicle exhaust components for
selected emission models.

Pollutant

Emission Model

PHEM
(Micro)

COPERT5
(Macro)

HBEFA
(Macro)

Versit+
(Micro)

MODEM
(Micro)

CO2 No Yes Yes Yes Yes
CO Yes Yes Yes Yes Yes

THC Yes Yes Yes Yes Yes
PM Yes Yes Yes Yes Yes

NOx Yes Yes Yes Yes Yes
CH4 No Yes Yes No No

Benzene No Yes Yes No No
Toluene No No Yes No No
Xylene No No Yes No No
NO2 No Yes Yes No No
N2O No Yes Yes No No

1,3-butadiene No Yes No No No
SO2 No No Yes No No

Fuel consumption Yes Yes Yes No Yes

Table 4. Presentation of emission calculation options for selected vehicle categories for selected
emission models.

Vehicle Category
Emission Model

PHEM
(Micro)

COPERT5
(Macro)

HBEFA
(Macro)

Versit+
(Micro)

MODEM
(Micro)

Passenger cars Yes Yes Yes Yes Yes

LGV No Yes Yes No No

HGV Yes Yes Yes No No

Urban bus Yes Yes Yes No No

Coach Yes Yes Yes No No

Motorcycles No Yes Yes No No

Based on Table 3, it can be observed that the lower the detail of the model (macro-scale
models), theoretically they allow emission calculations for a larger number of exhaust
components. Micro-scale models are characterised by lower emission estimates. This is
due to the fact that micro-scale models allow for the generation of detailed second-by-
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second emission profiles, which are generally difficult to obtain when building an emission
model. Macro-scale models allow for either averaged estimates or emission factors, which
is simpler to model, as it allows for a larger margin of error.

Figure 5 shows the overall combination of the emission models for different scales for
different transport models of vehicle traffic simulations. From it, it can be seen for which
example applications and input data the emissions of vehicle exhaust components can be
estimated. However, an unambiguous link between a given emission model and a given
type of vehicle traffic simulation is not clear-cut, as will be shown later in the presentation
of case studies of other works.
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A list of websites to access the simulation software is in the Appendix A.

3.3. Traffic Simulation Tools and Exhaust Emissions

Traffic simulation techniques have been used since the middle of the 20th century.
The intensive development of information technology, including numerical computer
techniques coupled with high-powered computers, has contributed significantly to the
development of modern computational procedures used in traffic engineering. These proce-
dures take into account an increasing group of factors that affect the complex phenomenon
of traffic [141]. Three levels of analysis have emerged: network—macro, local—micro, and
intermediate—meso. Macroscopic models assess vehicle traffic at a high level of aggre-
gation as traffic flow (the number of vehicles passing a given point in an hour) without
focussing on its components (vehicles) [142]. Microscopic models describe the behaviour
of the units that make up the traffic stream, as well as the interactions that occur between
them [143]. Mesoscopic models, on the other hand, are characterised by an intermedi-
ate level of detail. They describe individual vehicles, but do not take into account the
relationships between them [144].

Macroscopic models are used to estimate the emission of exhaust pollutants on the
basis of the average speed and kilometres travelled by a specific group of vehicles. Micro-
scopic models, on the other hand, simulate the movement of individual vehicles included in
traffic streams, giving them specific speeds and accelerations, creating very large amounts
of data when recording these situations. These data are successively used by additional
applications to calculate vehicle emissions [145,146].

One example of traffic microsimulation software is TRANSIMS. It is a system that
enables the analysis of transport systems on a regional scale. It contains a number of
modules, among which we can highlight the Traffic Microsimulator. It is based on the
theory of cellular automata (CA) system and uses the Nagel–Schreckenberg model [147].
The main feature of CA-based models is temporal and spatial discretisation. For this reason,
each path in the network is divided into small cells of equal size. Each cell can be in one of
two states: occupied by a vehicle or empty. Due to this simplification, compared to other
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micro-scale models, the model is efficient and can be applied practically to simulate large
and complex regional and even national road networks [148]. TRANSIMS is also equipped
with an additional module that is used to evaluate vehicle emissions from the model. It
allows the estimation of THC, CO, and NOx [149].

The software for traffic microsimulation is SUMO (Simulation for Urban Mobility).
It is a system developed by the German Aerospace Centre (DLR). It includes the Krauss
leader driving model, an extension of the Gipps model, and the Krajzewicz lane change
model [150,151]. The system allows traffic simulations for different types of vehicles and
different intersections with or without traffic lights, and for different road networks with
more than 10,000 roads. SUMO also allows dynamic traffic distribution procedures and
graphical visualisation of traffic in 2D [152]. It also allows for the estimation of exhaust
emissions based on the HBEFA and PHEM models, which provide results for CO2, CO,
THC, NOx, PM, and vehicle fuel consumption [153].

The most popular software for traffic microsimulation is VISSIM. It is a system devel-
oped by the German company PTV. It uses the psychophysiological model of Wiedemann’s
driver behaviour [154,155] to model driving behind the leader. This software implements a
rule-based model of lane change based on Wiedemann’s work [156]. The VISSIM software
does not follow the classical approach of modelling a road network with a dedicated graph
consisting of vertices (nodes) and edges (segments). Instead, the road network is built using
sections connected to each other by connectors. This solution makes it possible to model
almost any road system. VISSIM is not only characterised by a high degree of accuracy in
modelling the geometry and parameters of the road network, but also enables a precise
representation of vehicle traffic. In addition to motor vehicles, the program can simulate
pedestrians, cyclists, motorbikes, and rail vehicles. Dynamic traffic distribution can also
be used in the program to iterate the driver learning process [157]. Two-dimensional and
three-dimensional simulations can be visualized using the software. The leader driving
model used in the programme also describes the boundaries between the distinguished
states, which are [158,159]:

• Free driving;
• Approaching;
• Dependent driving;
• Braking.

In the software, in addition to the 1974 Wiedemann model, there is also the 1999 model,
which is more extensive (with a greater number of calibration parameters). In order to
calculate vehicle emissions, the software can use the VERSIT+ emissions model developed
by the Dutch Organisation for Applied Scientific Research (TNO) and also the integrated
ESTM BOSH emissions model. [160,161].

3.4. Simulation of Vehicle Traffic and Emission Models—Examples

The emission models described above are used in vehicle movement simulation
studies. The use of these models is noted in many cases for VISSIM and SUMO. The
models represent the movement of vehicles on a micro scale, i.e., in addition to measuring
parameters such as speed and vehicle acceleration, they measure any relationships that
occur between vehicles appearing in the simulation. A similar use is for meso-scale models,
except that the interaction between vehicles is then excluded. The typical use of these data
is to use, among other things, the previously mentioned parameters for the computation of
micro-scale emission models. However, it is possible to aggregate these data to some extent,
i.e., to determine, for example, the average speed parameter or the distance travelled for a
given vehicle or group of vehicles. As a result of such operations, it is also possible to use,
e.g., emission models on a macro scale, for the input data, in addition to general parameters
of the studied fleet, such as the number of vehicles, their type, size, and fulfilment of the
emission class, need, e.g., vehicle operation data, such as, e.g., speed or vehicle load. Table 5
below shows a cross section of the work on vehicle traffic simulation and the calculation
models used to assess emissions.
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Table 5. Examples of work using traffic simulations and emission models.

Traffic Simulator
Model (Scale) Emission Model Description Source

Dynamic Traffic
Assignment (meso)

Integrated microscopic
estimation model (MOVES)

The study proposed an alternative approach for a mesoscopic
traffic simulation model with an integrated microscopic emission

model. The study used a postprocessing procedure to generate
detailed vehicle trajectories.

[162]

VISSIM (micro) MOVES2010a Emission prediction with the use of VISSIM road model and
emission model MOVES of vehicles on a limited-access motorway. [163]

VISUM/AIMSUN
Next (macro) HERMESv3/PHEMLight

The study presents a macroscopic traffic emission model for
Barcelona. The developed system is used to, e.g., quantify the

hourly level of NOx and PM10 emissions.
[164]

AIMSUN (micro) Cruise/COPERT
The studies demonstrate a new approach for the estimation of fuel

consumption of vehicles with different levels of congestion in
Turin city.

[165]

EMME 4.0 COPERT–Chile Traffic simulation model used for environmental impact modelling
for the South American city, Bogota. [166]

VISSIM (micro) COPERT
The work describes the computing of CO2 and NOx based on

average speed as the input variable. A real-world study describing
intercity corridors with many alternative routes are presented.

[167]

VISSIM (micro) VSP

Two scenarios based on real-world data networks were analysed in
VISSIM in the context of CO, HC, and NOx emissions. The used

emission model was VSP-calibrated using the collected field
emission data.

[168]

VML (macro) HERMESv3 The work describes the changes in the air quality at street level for
different traffic management strategies in Barcelona. [169]

VISSIM (micro) Enviver Pro
The work presents a case study for the city of The Hague during the
morning peak in 2040. Several SAV market penetration scenarios
were tested. Emission analysis concerns CO2, NOx, and PM10.

[170]

VISSIM (micro) Enviver Pro
The article addresses the use of different rights of way at four-arm
intersections. The emission analysis is related to the comparison of

NOx and PM10 for the assumed VISSIM road models.
[171]

SUMO (micro) GT-Suite

This work is the combination of traffic flow and vehicle simulations
to investigate the vehicle performance. In the simulation of SUMO,

the authors used the real-world elevation profile and rolling
resistance factor.

[172]

SUMO (micro) PHEMlight
The work describes the adoption of smooth driving habits on

emissions in large-scale urban networks. The dataset contains a
total of 4156 urban trips from 100 drivers.

[173]

NFD (meso) Integrated microscopic
estimation model

The network-wide fundamental diagram (NFD) and microscopic
emission models are estimated using mesoscopic traffic simulation

tools at different scales for various traffic compositions for
13 simulated scenarios.

[174]

MATSim (macro) MOVES/R-Line The simulation is performed in MATSim to simulate individual
vehicle emissions. [175]

VISUM (macro) Integrated emission model
Estimation of CO2 and NOx emissions based on average speed as

input variables for the scenarios with shared vehicle (SV),
automated vehicle (AV), and electric vehicles (EV).

[176]

DTA (macro) Integrated emission model

The work presents a macroscopic dynamic modelling framework in
an urban city that has numerous central business districts to assess
the emissions. The computation of emissions includes NOx, VOC,

CO2, and PM in urban areas.

[177]

VISSIM (micro) Enviver/RoundaboutEM
The work assumed the analysis of different roundabout scenarios
and the impact of the traffic flow on them on the emissions of CO2,

CO, and THC.
[160]

The large cross section of vehicle traffic and emission models used shows the wide
applicability of such tools for estimating vehicle emissions into the environment. Table 1
shows a selection of works that combine the topics of emission models with vehicle traffic
simulation models for the years 2015–2023. From this, it can be seen that the development
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of models at the micro- or macro-scale does not always come down to using a model that
corresponds to the scale of the simulation. Examples of the number of papers that use a
particular type of software are as follows; based on the Web of Science core collection for a
search of article abstracts where the key search term was simulation, emission, and VISSIM
for the years 2008–2023, 120 results were found. Using the same keywords, but for VISSIM
software, six papers were found. On the other hand, 73 results were found for the SUMO
traffic simulation tool.

Figure 6 shows the classification and grouping for the simulation models of the
delineation for micro-, meso-, and macro-scales. Some traffic simulation tools, for example,
are located in two clusters; for example, for VISSIM, the simulation can be carried out
at two levels of detail: micro and meso. The respective clusters of traffic simulators are
combined with groups of emission models. For traffic simulators on the micro-scale, the
connection to the emission model naturally occurs not only for the micro-scale emission
models, but also for the macro-scale models. The reason for this is that we can generate
instantaneous speed and acceleration data from these models, which can then be aggregated
and used to calculate, for example, the average speed of a vehicle. Such a parameter,
together with traffic volume information, already allows such micro-scale simulation
models to be used to calculate macro-scale emissions.
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3.5. Importance of Traffic Simulator Calibration in the Context of Emission Calculation

An important aspect in the context of emission and traffic simulation models is their
appropriate calibration [178]. A previously performed analysis of papers in the Web of
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Science Core collection database confirmed this statement, while the calibration itself was
found to be in the closest proximity to the main keyword emission. The calibration of vari-
ous parameters in simulation models is crucial to achieve sufficiently good results for the
application under analysis. The calibration aspect mainly concerns micro-scale models, where
we have many vehicle movement parameters that affect their dynamics, and consequently the
generated emissions. These parameters are strictly according to the particular driving model
that is used in the application [179]. Examples include parameters such as minimum spacing
between vehicles, the time it takes to join the traffic stream, acceleration from 80 km/h, and
any statistical distribution of speed and acceleration [180,181]. In VISSIM, the parameters
related to vehicle speed and acceleration are defined as the desired speed and acceleration
and are functions that we can freely shape based on real data. If we do not perform this
step of model calibration, the standard values of the model parameters provided by the
software manufacturer are only applicable for specific conditions, which are not described
in the software manual files. The model calibration should be performed not only for the
national scale, but also for the regional scale. For example, the driving style of drivers
in Tokyo, London, or Paris is different from that of drivers in smaller cities such as Enna,
Görlitz, and Rzeszow [182,183]. The number of calibration variables in simulation models
is usually large, which makes the process complicated for the normal user. Sometimes the
calibration carried out is also wrong, because, for the vehicle traffic example, for simulation
models, users are guided by the calibration of, e.g., the traffic volume parameter, so that the
simulation is as close as possible to the real one, which is not efficient considering aspects
of vehicle emissions [184].

For micro-scale simulation models, vehicle trajectories, vehicle speeds, and acceler-
ation should be taken into account in particular [185]. The software-generated results of
these trajectories should then be as close as possible to the real ones. Although some macro
traffic characteristics, such as queues and travel times, are the results of the simulation,
more detailed characteristics, such as speed and acceleration profiles, are not guaranteed
to be realistic enough to predict emissions. To obtain an accurate estimate of emissions,
calibration must be carried out from the perspective of real vehicle trajectories. In case
studies, the default parameter settings of, e.g., the VISSIM and AIMSUN microsimulation
software did not produce realistic trajectory results [186–188]. It is clear that the default
parameter settings do not produce an effective result for estimating emissions.

An overview of the work in which traffic simulation models were calibrated to estimate
emissions from computational models is presented in Table 6.

Table 6. Selected papers describing the essence of calibrating traffic simulation models and exhaust
emission models.

Traffic Simulator
Model Emission Model Calibration Description Source

VISSIM VERSIT+

This paper describes the process of calibrating a microscopic model for an
intersection in Rotterdam. The selected pairs of parameters for calibration that
have the greatest influence on the calculation of emissions are: desired speed
distribution, desired deceleration and acceleration functions, time headway,

threshold for entering the state following, following variation, oscillation
acceleration, acceleration to standstill. Failure to carry out this process would

result in emission underestimates for CO2 of 9.3%, for NOx of 13%, and for PM10
of 0.3%.

[189]

Paramics MOBILE6

This paper proposes an intermediate component model that provides a better
estimation of vehicle speeds on sections. The model was developed using

multimodel linear regression and was then calibrated using a traffic microscopic
simulation model. This calibration was mainly based on the vehicle speed

parameter of the road sections under study.

[190]
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Table 6. Cont.

Traffic Simulator
Model Emission Model Calibration Description Source

VISSIM PHEM

This work involves combining traffic simulation models with emission models to
assess the impact of traffic on environmental factors. Based on the actual results, a
traffic model calibration was carried out for the acceleration and desired speed
parameters. It was shown that not carrying out the calibration step results in an
underestimation of fuel consumption by about 12%, NOx emissions by 19%, CO

by 11%, HC by 29%, PM by 17%, PN by 16%, and NO by 25%.

[191]

NGSIM Instantaneous vehicle
emission model TU Graz

This work assumes the use of 90 vehicle trajectories along with nine collected in
the NGSIM software database. This work uses two car-following models for
which the trajectories were generated: Newell and Gipps. The models were

calibrated using standard goodness-of-fit indicators. The focus of this study was
on the analysis of fuel consumption, NOx, and PM emissions.

[192]

VISSIM/NGSIM MOVES

The calibration process is based on different compositions of the measure of effect
(MOE) (calibration levels), which contain aggregated traffic volume data in order

to identify those variables that affect the micro-scale emission estimates. First,
five more detailed measurement calibration levels are defined, important

calibration levels are identified, and finally reliable calibration levels are selected
based on the available traffic data. The influence of vehicle type composition (light

and heavy vehicles) on the estimated emissions is also assessed in a
well-calibrated simulation.

[193]

AIMSUN VSP

This paper describes the calibration of a micro-scale emission model based on real
data from the PEMS system. This calibration relates to the embedded emissions

model in the AIMSUN software. The road data refers to 35 vehicles. The
recommendation of this work is to integrate the emission data from the AIMSUN

software with the MOVES emission models.

[194]

VISSIM COPERT SL/R-LINE

The aim of this study was to analyse vehicle emissions as a result of reducing
vehicle traffic and increasing pedestrian traffic in the city of Madrid. Modelling
was done on a macro scale, while it was important to validate and calibrate the

traffic volume obtained on the studied streets with that of the VISUM programme.
This aspect had the greatest impact on the CO, NOx, and PM parameters studied.

The model was checked with the GEH.

[195]

VISSIM Enviver/RoundaboutEM

In this study, microsimulation models of vehicle traffic were calibrated for the
parameters: time headway, following variation, oscillation acceleration,

acceleration from standstill, threshold for entering the state following, and time
gap and minimum headway for yield sign. In addition to this, parameters such as

speed and acceleration desired for the actual journey through the roundabout
under study were calibrated.

[160]

VISSIM VSP/EMEP/EEA

This work deals with the evaluation of emissions from autonomous vehicles for
their different traffic shares. In this work, the driving model behind the

Wiedemann 99 leader was used. The parameters that were calibrated were
acceleration at 80 km/h, standstill acceleration, oscillation, acceleration, following
threshold, headway time, and standstill distance. For the lane changing model,

the minimum headway and safety distance reduction factor were calibrated. With
these assumptions, CO2, CO, NOx, and HC emissions were analysed in the paper.

[196]

VISSIM VERSIT+

This paper describes the process of calibrating the car-following model to reflect
the actual driver behaviour for eco-driving style. The parameters of the

car-following model that were modified were: desired acceleration from standstill
at 80 km/h, oscillation during acceleration, influence of distance on speed
oscillation, positive speed difference during the following process, start of

deceleration process, distance difference, headway time, standstill distance. The
emission parameters studied were CO2 and NOx.

[197]

VISSIM VSP

This work concerns a micro-scale simulation model with a signal controller, for
which light duty vehicles were equipped with a cooperative vehicle infrastructure

system. The following parameters were calibrated inVISSIM: maximum
look-ahead distance, average standstill distance, the number of observed, vehicle
waiting time before, diffusion, additive part of safety distance, and desired speed.
After the calibration process, emissions were measured for the parameters CO2,

NOx, HC, and CO.

[198]

4. Future Steps in Emission Modelling and Traffic Simulation and Recommendations

The subject of emissions modelling, as well as traffic modelling has developed rapidly
in recent years. Initially, emission models were created on the basis of chassis dynamometer
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tests and the collection of emission data during their execution. Subsequent years and
the technological development of emission measurement equipment made it possible to
collect emission data while driving in real traffic conditions. This was made possible by
PEMS equipment [199]. Many research institutes around the world now carry out vehicle
emission tests in this way, generating large amounts of data that can then be used to develop
new and more accurate emission models through processing [200,201].

In terms of vehicle traffic modelling, calibration of the traffic model is also an important
topic in the work described earlier. The calibration of the traffic models for further analysis
is of great importance because this process has a major impact on the results obtained from
the exhaust emissions from simulated vehicles [202,203]. Traffic simulation calibration
is the process of adjusting the simulation parameters in relation to the actual observed
traffic conditions. This is crucial to ensure that accurate and reliable results are obtained.
This process is usually concerned with adjusting parameters such as vehicle speed and
acceleration, but also includes parameters related to, for example, vehicle spacing or
determined issues of priority. Failure to carry out this process accurately, or omitting it
altogether, can result in differences in exhaust emissions, differences of up to several dozen
percent [204]. In the context of emission calculations, acceleration and vehicle speed are the
most important simulation parameters, particularly at the micro scale.

Vehicle emission models need to be continuously developed and improved as more
and more vehicles are put on the road every year. New vehicle designs require on-road
emissions testing, and the data collected is used to create new emissions models and update
the current database. This applies to almost any scale of emission models. New hybrid
vehicles are another challenge facing the aspect of emission modelling [205]. These vehicles
do not always generate emissions while driving, which means that micro-scale models in
particular need to be sensitive to such emission characteristics. To prepare, for example,
an emissions map, modern emission models must show precisely where there are, for
example, increased emissions [206]. The development of new emission models is also
influenced by the emergence of new fuel mixtures for road transport [207–209]. This is
linked to the emergence of hydrogen as a fuel and of biofuels, which can be produced from
renewable fuels [210–213]. In recent years, there has been an increase in the use of, for
example, artificial intelligence computing methods so that newly developed models can
reflect the emissions of hybrid vehicles [214,215].

There is also great potential in the use of data banks where information is collected, for
example, for the management of a road section. Large amounts of data are generated for the
main arterial roads in the city, which we can describe as big data sets. These data can also
be processed in the context of accurately calibrating traffic simulation models, as well as
being used as input data for emission models. The increased volume and detail of data also
allows models to be developed with improved spatial resolution [216]. The development
of more advanced mapping and geospatial technologies is leading to a greater focus on
high-resolution emission models that take into account the unique characteristics of specific
locations [217]. This is particularly relevant for traffic and emission simulations in urban
areas. The increased accuracy of such models allows for better analysis of the spread of
emissions near roads, pavements, cycleways, as well as in pedestrian crossing areas.

The directions for further work for both emission models and traffic simulation mod-
els are concerning electric vehicles. The traffic characteristics of these types of vehicles are
somewhat different from those of conventional vehicles, i.e., they have different torque charac-
teristics, resulting in a slightly different acceleration distribution of acceleration [218–220]. In the
context of traffic simulation models, this state of affairs requires the additional calibration
of vehicle movements with this type of vehicle. Regarding the modelling of emissions from
EVs, it is important to consider the topic of energy efficiency, as the converted emissions
generated by an EV depend on the power source used to charge this type of vehicle. This is
mainly the case in countries where non-renewable energy, such as coal deposits, is used for
energy production, where we can speak of non-direct emissions.
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Recommendations on the Applicability of Emission Models and Traffic Simulation Models

Based on the information from the review of the work presented above, some recom-
mendations can be made to those who are or will be involved in the field of emissions
modelling and traffic simulation. Selected recommendations for modelling are as follows:

• For micro-scale models, it is often necessary to collect data at a frequency of at least
1 Hz. Such data for road tests, e.g., for the speed parameter, can be obtained using
GPS and the OBDII interface; traffic models such as, e.g., VISSIM can also aggregate
simulation data, which can then be exported to emission models such as Versit+.

• The combination of emission models and simulation models is not always at the same
scale, and it is often possible to find work that uses micro-scale traffic models while
using macro-scale emission models for emission estimations.

• For micro-scale traffic models, it is possible to aggregate the results of, for example, all
vehicle trips into the average speed parameter, which can be used as an input for the
macro-scale emission models.

• For both micro and macro scales, it is necessary to calibrate the traffic simulation
models, as this has a significant impact on the emissions calculation.

• At the micro scale, calibration concerns parameters related to vehicle dynamics such
as acceleration and desired speed, but also other parameters such as vehicle lateral
distance, among others.

• Calibration is necessary because the emission models do not contain universal data
that are characteristic of the whole world, and emission estimates are to a large extent
influenced by the driving style of the driver, which varies according to the size and
characteristics of the region.

• Standard settings of traffic simulation software, for example, VISSIM and Aimsum,
often do not include actual vehicle trajectories.

5. Conclusions

This paper provides an overview of the emission models used for different traffic
simulation methods for environmental analyses. The use of emission models with a
combination of traffic simulation models is essential for transportation management and
planning. This approach allows for a better understanding of the emissions generated by
vehicles and their impact on air and environmental quality. In the context of emissions and
traffic modelling, accurate calibration is necessary so that emission results can be reliably
obtained. Simulation models are used as a tool to generate travel data from the input data
of emission models. A common use of simulation is as a decision support tool, and the same
is true for driving simulators, which can help decision makers in the road transport sector.
The right choice of tools is crucial for an adequate understanding of the problem under
analysis. The variety of tools available on the market, both in terms of emission models
and traffic simulation models, is a challenge for those who wish to use them to calculate
emissions from road transport sources. This paper also draws attention to the important
aspect of calibrating traffic simulation models to obtain as reliable vehicle emission results
as possible. For example, in the context of micro-scale models, it is important to obtain
vehicle speed and acceleration profiles that are as close to the actual trajectories.

Future topics related to emissions and traffic modelling include better access to
databases, which are created by road operators, and which can be used to calibrate models,
and the use of modern computing techniques based on artificial intelligence methods.
Vehicle emission models and traffic simulators should be integrated with other models
and data sources, such as land use and energy models, to provide a complete and more
accurate picture of the vehicle emissions generated. The shortcomings of this study are
related to the choice of papers and models to be analysed, while the rationale for this is
that it was guided by the popularity of the solutions used and the scope of this work had
to be limited. Another shortcoming of this study is the broader description of topics related
to artificial intelligence and support for modelling of vehicle traffic and emissions, while
the shortcomings mentioned will also be the scope of new and other works.
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This main conclusions from the literature review are the following:

• In order to select suitable emission calculations and vehicle movement modelling tools,
it is important to know their various capabilities in advance.

• It is necessary to carry out a calibration process for the traffic model, e.g., for micro-
scale modelling, it is necessary to calibrate the vehicle acceleration function and the
vehicle speed.

• It is possible to use, e.g., micro-scale traffic models and use the emission model for the
macro scale, but an input data set must be prepared beforehand, and these data must
be validated accordingly.

• Standard data generated by models are often a generalisation and assume some
standard data of the software manufacturer. It is necessary to adapt these data and
validate them to the local, regional, and national conditions under analysis.
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Appendix A

Table A1. A list of access pages for selected emission models and traffic simulation models.

Type of Model Name of the Model Source

Emission model (macro) COPERT [221]
Emission model (macro) MOBILE [222]
Emission model (macro) HBEFA [223]
Emission model (micro) CMEM [224]
Emission model (micro) ESTM BOSH [225]
Emission model (micro) EMPA [226]

Traffic simulator model (micro) VISSIM [227]
Traffic simulator model (macro) AIMSUN [228]
Traffic simulator model (micro) SUMO [229]
Traffic simulator model (macro) VISUM [230]
Traffic simulator model (macro) MATSim [231]
Traffic simulator model (macro) EMME 4.0 [232]
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