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Abstract: In this paper, narrow-bandgap polymer acceptors combining a benzotriazole (BTz)-core
fused-ring segment, named the PZT series, were used with a high-absorption-efficiency polymer
(PBDB) compound with branched 2-butyl octyl, linear n-octyl, and methyl to be utilized as a graded-
index (GI) active layer of the polymer solar cells (PSCs) to increase the photocurrent and enhance
solar efficiency compared to the existing PBDB-T:PZT and PBDB-T:PZT-γ. In addition, a two-
dimensional photonic crystal (2D-PhC) structure was utilized as a light-trapping anti-reflection
coating (ARC) thin film based on indium tin oxide (ITO) to reduce incident light reflection and
enhance its absorption. The dimensions of the cell layers were optimized to achieve the maximum
power-conversion efficiency (PCE). Furthermore, the design and simulations were conducted from a
300 nm to 1200 nm wavelength range using a finite difference time-domain (FDTD) analysis. One of
the most important results expected from the study was the design of a nano solar cell at (64 µm)2

with a PCE of 25.1%, a short-circuit current density (JSC) of 27.74 mA/cm2, and an open-circuit
voltage (VOC) of 0.986 V.

Keywords: PSC; FDTD; PCE; FF; 2D-PhC; GI-Active layer

1. Introduction

In recent years, the common advantages of all-polymer solar cells all-(PSCs), such as
their lighter weight, flexibility, and the low-cost printing of for fabrication, have attracted
significant interest [1–3]. At the same time, some methods have appeared that contribute to
circumventing the challenges that have impeded improvements to the efficiency of solar
cells that depend on semiconductors and methods for converting natural resources into
electrical energy [4–6]. A layered PSC structure consists of at least a transparent front
electrode, an active layer—which is the real semiconducting polymer material—and a back
electrode fabricated on a plastic substrate. The active layer thickness is 150–400 nm, which
uses significantly less material than conventional silicon solar cells [7,8]. The popularity of
all-PSCs, which use conjugated polymers as electron donors or electron acceptors in the
light-trapping layer [9–11], has increased over the past decade compared to other PSC types
based on fullerene acceptors or non-fullerene small-molecule acceptors (SMAs) [12,13].
Owing to their outstanding thermal and mechanical stability, they are attracting growing
interest [14–17]. Recent advances in active layer material design, device engineering, and
bulk heterojunction morphology control have allowed the power-conversion efficiency
(PCE) of all power-supply converters to increase by over 15%, which is potentially suitable
for future practical applications [18]. PSCs are handled from a solution in organic solvents,
which have gained global recognition for their good properties, such as flexibility, light
weight, and low cost of manufacturing. Within fifteen years, the PCE of PSCs has increased
from 1.5% to 17.5% using small-molecule polymer acceptors [19–22]. Therefore, novel
n-type polymers with narrow bandgap energy and desirable characteristics that can match
efficiently with the commonly utilized polymer donors are the key for further evolving
all-PSCs development [23].
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After all these studies and research, the increasing of cell efficiency remains a problem,
and this efficiency does not exceed 18% in theory in the best previous research proposals.
Therefore, the core objective of this study was to improve the cell efficiency using the
following techniques:

• An indium tin oxide (ITO) anti-reflection coating (ARC) thin-film two-dimensional
photonic crystal (2D-PhC) structure was optimized to reduce reflection loss, enhance
the absorption coefficient, and increase the in-coupling efficiency at the solar-surface interface;

• The active-layer refractive index was gradually distributed to improve the quantum
efficiency and increase the photocurrent inside the cell heterojunction;

• Cell-layer thicknesses were optimized and doping was made sufficient to extend the
cell visibility range and thus enhance the cell-absorption coefficient again.

Nano-solar cells can be used in different applications, as they can be used as a sub-
stitute for earphones and mobile phone chargers [24–28]. They can also be manufactured
with these devices, such that some of them are inseparable. This objective can be quantified
explicitly as:

• Designing a nano PSC of around 64 µm2 in size;
• Increasing the in-coupling and quantum efficiency at the cell-surface interface using

an optimized ITO 2D-PhC thin-film structure;
• Using the “branched 2-butyl octyl, linear n-octyl, and methyl” (PBDB-T:GI-PZT) poly-

mer compound as the active layer based on a graded-index (GI) technique. This
compound obtained good results when used in the semiconductors polymer solar
cells [23]. In this study the GI technique was used to improve the confinement char-
acteristics of the active layer, prevent light reflection, enhance cell absorption, and
increase the photocurrent;

• Increasing the PCE to 25.1%;
• Enhancing the cell’s electrical characteristics.

Achieving these objectives can create a large market potential for 2D-PhC crystalline
semiconducting-PSCs. In addition, the main objective of this study was itemized into
different specific objectives to ensure the successful control of the existing challenges in
achieving the main goal. To achieve such challenging objectives, the proposed solar cell will
simultaneously work on efficiency, materials, and steps toward entry and acceptance, as
well as the development process, related dissemination, scale-up, and excitation. In order
to design the units, it was necessary to design a new high-efficiency PSC structure. As was
discussed in the literature review, most of the cells that are designed and manufactured
have limitations preventing efficiencies in excess of 17.5% for all PSCs. Nano-polymer
2D-PhC technologies will achieve novel solar-cell structures that allow for greater efficiency
by using the finite time-domain (FDTD) technique. In addition, the energy bandgap was
studied to improve the quantum efficiency and light in-coupling efficiency. This will yield
developed cells with at least a 25.1% PCE and 64 µm2 cell size.

2. Literature Review

In Ref. [1], the authors used a sol–gel TiO2 to fabricate the PSC, the results ob-
tained from this study were a 0.67 fill factor, 9.5% conversion efficiency, and a 0.63 V
open-circuit voltage.

In Ref. [2], the authors demonstrated a specific fabrication experimental model of
a PSC with conversion efficiency and post-production on annealing at 150 ◦C. Also, the
authors proved that when the series resistance of the cell is reduced, the cell-conversion
efficiency increased.

In Ref. [3], the authors introduced a new cell metallization technique that could be
directly applied to standard industrial cells, thus eliminating the need for rear pads and
front busbars. Experiments showed that the modified cell efficiency was 0.8% higher cell
efficiency when compared to reference cells. Also, the same technique was applied to
eight-inch cells which obtained a result of 77.9% fill factors.
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In Ref. [7], the authors investigated the effect of self-organization by controlling
the growth rate on the performance of polymer/fullerene bulk-heterojunction solar cells,
resulting in a 31–155 A/m2 short-circuit current and 0.62–0.4 V open-circuit voltage.

In Ref. [8], the authors investigated the submicrometric periodic patterning of an
organic solar-cell surface to optimize the cell-conversion efficiency. Patterning was achieved
using a single-step all-optical technique based on photoinduced mass transport in azo
polymer films.

In Ref. [9], the authors investigated the effect of interfacial buffer layers—cesium
carbonate Cs2CO3 and vanadium oxide (V2O5)—on the performance of PSCs based on a
regioregularity poly-[3-hexylthiophene] and phenyl C60 butyric acid methyl ester blend,
resulting in 8.42 mA/cm2 short-circuit current, 0.56 V open circuit voltage, and 2.25% PCE.

In Ref. [10], the authors demonstrated a reflective tandem cell where single cells
reflected the non-absorbed light upon another adjacent cell. By folding two planar but
spectrally different cells toward each other, the results obtained an enhancement of PCE of
a factor of 1.8 ± 0.3 by combining spectral-broadening and light-trapping.

In Ref. [11], the authors constructed a PSC based on a low-bandgap polymer structure,
(PBDTTT4) which can be tuned, step-by-step, using different functional groups in order to
achieve open-circuit voltage as high as 0.76 V. This increased open-circuit voltage, combined
with a high short-circuit current density, resulted in a polymer solar cell with a PCE as high
as 6.77%.

In Ref. [12], the authors investigated a unique nano-ridge structure of zinc oxide (ZnO)
and its application in high-performance inverted PSCs. The ZnO nano-ridge structure
was formed by a sol–gel process using a ramp annealing method. The cell showed a
PCE of 4.00%, and a 25% improvement over similar solar cells using a planar film of
ZnO nanoparticles.

In Ref. [13], the authors describe a photovoltaic study and synthesis of a series of new
semiconducting polymers with alternating thiophene and benzodithiophene units. Also,
the authors adjusted the polymer energy levels to increase the open-circuit voltage. The
achieved efficiency was higher than the efficiency of a simple planner cell by a factor of 6%.

In [15], the authors present a new class of push–pull polymers combined with a
fullerene derivative in a bulk-heterojunction (BHJ) structure that enabled organic photo-
voltaic (OPV) efficiencies reaching 10%. This was a significant improvement compared to
the 5% efficiency achieved by the well-studied polymer poly(3-hexylthiophene) (P3HT).

In Ref. [16], fluorinated organic molecules exhibited a series of unique features and
achieved 7% solar conversion efficiency.

In Ref. [17], the authors developed a Cu (In, Ga)Se2 thin-film solar cell on a polyimide
film. A PCE of 17.1%, measured under standard test conditions at the European Solar Test
Installation (ESTI) of the Joint Research Centre (JRC) of the European Commission, Ispra,
was reported.

In Ref. [18], the authors demonstrated plasmonic effects on an inverted tandem poly-
mer solar cell configuration by blending Au nanoparticles into the interconnecting layer that
connects two sub-cells. The results showed that the plasmonic-enhanced interconnecting
layer improved the top and bottom sub-cells’ efficiency simultaneously by enhancing the
optical absorption. The presence of Au nanoparticles did not cause electrical characteristics
to degrade within the tandem cell. As a result, a 20% improvement in PCE was attained by
the light concentration of Au nanoparticles via plasmonic near-field enhancement.

In Ref. [19], the authors demonstrated a polymeric retroreflective textured sheet which
was produced separately and applied onto the glass substrate after completion of the solar
cell. Also, the injection of donor polymers in the cell’s active layer was proposed. In this
paper, the achieved PCE ranged from 5.9% to 19%.

In Ref. [20], the authors designed a single junction inverted PSC with a PCE of 10.31%
using dual-doped zinc oxide nano-film as cathode interlayer and liquid-based growth
of polymeric carbon nitride layers with their use in a mesostructured PSC with VOC
exceeding 1 V.
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In Refs. [21–23], PSCs based on the donor polymer PBDTTT-EFT for high efficiency
were demonstrated and the artificial inverted compound eye-structured polydimethylsilox-
ane films with light harvesting and self-cleaning functions for the improvement of solar
power generation in III–V encapsulated gallium arsenide single-junction solar cells were
proposed. The results showed that the efficiency approached 17.5%.

Refs. [24–27] included the deposition of organic polymer films for solar-cell applica-
tions, multilayered polymer materials based on polymeric ammonium cations for stable
large-area solar cells, polymer doping for high-efficiency solar cells with improved moisture
stability, low-temperature processed high-performance thick-film ternary polymer solar
cell with enhanced stability and solar cells using indium tin oxide thin film to enhance the
solar absorption. The most-expected results from these works is the solar-cell stability at a
7–25% increase in conversion efficiency compared with the simple planner cell.

In Ref. [28], all-PSCs architecture, such as single-junction organic solar cells using a
fused-ring acceptor with an electron-deficient core, biomimetic diodon-skin nano-thorn
polymer antireflection film-based solar cell, nonhalogenated-solvent-processed high per-
formance all-PSC, and a PSC based on adding a polymer mixture in the photoactive layer
were demonstrated in order to improve solar-cell efficiency and stability. The best results
were 19.88% PCE, 0.88 V VOC, and 20 mA/cm2 JSC.

3. Solar Cell Modeling

Figure 1 presents the architecture of the proposed solar cell after optimization of the
layer thicknesses based on a narrow-bandgap polymer PBDB compound with branched
2-butyl octyl, linear n-octyl, and methyl groups on the BTz unit, namely PZT, a graded-
index (GI) active layer (PBDB-T:GI-PZT).
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Figure 1. The proposed solar cell architecture and its active-layer index profile.

This compound has a high absorption efficiency, and the graded-index technique adds
some significant advantages to this compound, which prevents carrier reflections from
the active layer, increases the quantum efficiency, and increases the photocurrent. The
poly polystyrene sulfonate, HTL layer (PEDOT:PSS), and 2D-PhC indium tin oxide (ITO)
layer are confinement layers that increase the absorption efficiency of the solar cell and
provide more carrier confinement with the titanium (IV) oxide (ETL (TiO2) back layer. The
Ag silverback electrode was used to collect electrons and function as a cathode for the solar
cell. Table 1 summarizes the names and descriptions of the materials used in the proposed
cell architecture. Figure 2 presents the proposed cell model energy-band diagram. This
figure shows that the active layer with a graded refractive index has a gradual band level
that supports carrier transportation from the confinement layers to the active layer and
prevents carrier reflections.

Figure 3 shows the FDTD simulation model and the top, side, and perspective views.
The model has dimensions of 64 µm× 64 µm× 1.159 µm, but the simulation was conducted
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over 10 µm × 10 µm × 1.159 µm to reduce the simulation time. Furthermore, the FDTD
mesh size was 0.025 µm with a stability factor of 0.99. The design of the ITO 2D-PhC layer
was the same as that described in [26].

Table 1. Proposed model material description.

Symbol Name and Description

SiO2 Silicon dioxide, glass

ITO Indium Tin Oxide, an electrode that collects hole/anode

PEDOT:PSS Poly polystyrene sulfonate; HTL

PBDB-T:GI-PZT Narrow bandgap polymer acceptor; graded index active layer

TiO2 Titanium (IV) oxide; ETL

Ag Silver; electrode that collects electrons/cathode
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Inside the thin-film layer stack, optical processes can be described by the optical
transfer matrix theory to evaluate the PCE of a photovoltaic PSC [3]. The exciton generation
rate G(z, λ) can be defined as a function of the photon depth z and wavelength λ as follows:

G(z, λ) =
Q(z, λ)

hω
(1)

where Q(z, λ) is the photon energy at point z and wavelength λ [9], and h is the Planck constant.
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Over the spectrum ranged from 300 nm to 1200 nm, the total exciton generation rate
at point z can be evaluated by (2) as

G(z) =
1200nmm∫
300nm

G(z, λ)dλ (2)

Assuming 100% quantum efficiency, and under AM1.5 illumination, the short circuit
current density JSC in (mA/cm2) can be also written as

JSC = q *
t∫

0

G(z)dz (3)

where t is the active layer thickness and q is the electron charge.
In addition, JSC can be expressed as a function of the reverse saturation current density

J0 (mA/cm2) and open-circuit voltage VOC using the following equation:

JSC = J0

(
exp

(
qVOC

kT

)
− 1
)

(4)

where k is the Boltzmann constant and T is the temperature at 0K. The cell J −V character-
istics can be represented by the following equation [26]:

J = JSC − J0

(
exp

(
q(V + JRS

kT

)
− 1
)
−
(

V + JRS
Rsh

)
(5)

where, RS Rsh, and V are the serial resistance, Rsh is the shunt resistance, and V is the cell
output voltage, respectively.

The cell performance usually represented by two parameters, the first one is the fill
factor (FF), which is defined as:

FF =
Pmax

VOC.JSC
=

Vmax.Jmax

VOC.JSC
(6)

The second important factor is the cell PCE η, which is defined as:

η =
Pmax

Pin
= FF

VOC.JSC
Pin

(7)

where Pin is the incident solar power (photon flux) in (mW·cm−2) which corresponds to
AM1.5 (100 mW·cm−2), Vmax and Jmax are the voltage and current density related to the
maximum power Pmax that can be delivered from the cell.

4. Results and Discussion

From the previous analysis, the PCE of the proposed solar cell was determined as a
function of layer thickness. For example, the ITO layer thickness, active layer thickness,
and two confinement layer thicknesses are significant factors that directly affect PCE.
Figure 4 presents the PCE optimization with the cell-layer thicknesses. This result indicates
that the cell optimum PCE of 25.1% was achieved when we optimized the thicknesses
of PBDB-T:GI-PZT active layer, ITO layer thickness, PEDOT:PSS confinement layer, and
TiO2 confinement layer at 310 nm, 550 nm, 52 nm, and 47 nm, respectively. The design
of the ITO layer was presented in [26,27]. After the optimization of the cell dimensions,
the absorption coefficient of the proposed cell was compared with that of the same cell
of different active-layer materials, such as PBDB-T:PZT and PBDB-T:PZT-γ, as shown in
Figure 5.
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Figure 5. The absorption coefficient of the proposed cell compared with two others cell models versus
the wavelength.

The result indicated that the proposed cell of the PBDB-T:GI-PZT active layer has
a wider absorption range of up to 975 nm with an absorption coefficient equal to 0.8,
compared to 850 nm and 780 nm with the same absorption coefficient for the PBDB-T:PZT-
γ and PBDB-T:PZT active layers, respectively, owing to the matching between the layers
in the proposed cell model. Before, and up to 700 nm, the absorption coefficients of all
the cells were approximately the same and equal to approximately 98. The electric field,
magnetic field, and plan-wave power intensities results inside the active layer are shown in
Figures 6–8, respectively.

The FDTD simulation time depended on the mesh size, and the relationship between
them was nonlinear. When the mesh size was smaller than 20 nm, the processing time was
greater than 8 h; however, for 20 nm, this time was approximately 1 h, and the resolution
was unclear. To solve this problem, we exported the resultant files from FDTD and imported
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these files into MATLAB to show perfect resolution results in Figures 6b, 7b and 8b. In the
FDTD simulations, we used the plan-wave source with a normalized amplitude of 1 V/m
and a wavelength ranging from 300 nm to 1100 nm. Further, the cell model dimensions
were 64 µm2, and the results of these simulations were taken in 10 µm in the X direction
centered at the origin from −5 µm to 5 µm, Y equals 0, and Z span is 0.3 µm. The perfect
matched layer (PML) technique must be used as boundary conditions, but this requires
a supercomputer for the simulations. The metal boundary conditions were used in this
simulation to prevent the overwrite errors resulting from the PML boundary conditions.
Furthermore, all these results, depending on the 25.1 PCE and the GI active layer, were
modeled using MATLAB and imported as a new material in the FDTD library.
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Figure 6. (a) The FDTD illustration of the total electric-field distribution in the cell active layer
over the wavelength spectrum from 300 nm to 1100 nm and mesh size of 20 nm. (b) The MATLAB
illustration of the total electric-field distribution in the cell active layer over the wavelength spectrum
from 300 nm to 1100 nm and mesh size of 20 nm.

The output power from the active layer was 25.1 from the input power absorbed at the
upper surface interface, as shown in Figure 8. The transmission and reflection coefficients
of the proposed cell are shown in Figure 9, in comparison with the coefficients of the two
other cell models that used PBDB-T:PZT and PBDB-T:PZT-γ as active layers with the same
thickness. From the results, it can be observed that above 700 nm, the proposed cell has
a lower reflection coefficient and higher transmission coefficient owing to better index
matching between the layers provided by the index modulation in the active layer and the
confinement layers.
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Figure 7. (a) The FDTD illustration of the total magnetic-field distribution in the cell active layer over
the wavelength spectrum from 300 nm to 1100 nm and mesh size 20 nm. (b) The MATLAB illustration
of the total magnetic-field distribution in the cell active layer over the wavelength spectrum from
300 nm to 1100 nm and mesh size of 20 nm.

The transmission and reflection coefficients of the proposed cell model are very low
and the same as the coefficients resulting from the two cell models in both the ultraviolet
and the visible light regions. Overall, the absorption of the proposed cell is better than
that of the others owing to the increase in the diffraction of photons within the active layer
provided by the confinement and ITO trapping layers. Figure 10 illustrates the short-circuit
current density versus the open-circuit voltage of the proposed cell compared with the two
related cell models that use the active-layer materials PBDB-T:PZT and PBDB-T:PZT-γ. The
parasitic absorption losses between the confinement layer TiO2 and the Ag electrode were
considered in the analysis.

The GI technique was used to reduce these losses compared with the other cell models,
which also improved the short-circuit current. This improvement led to an increase in the
current by 20% at an open-circuit voltage of 0.8 V compared with the model using the
PBDB-T:PZT active-layer material, as shown in Figure 10. Also, the results illustrate that
the proposed cell produce a 27.74 mA/cm2 short-circuit current at 0.986-V open-circuit
voltage, which is outperforms the other cells in the literature.
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Figure 8. (a) The FDTD illustration of the total power distribution in the cell active layer over the
wavelength spectrum from 300 nm to 1100 nm and mesh size 20 nm. (b) The MATLAB illustration of
the total power distribution in the cell active layer over the wavelength spectrum from 300 nm to
1100 nm and mesh size of 20 nm.
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Figure 11 presents the variations in the PCE of the proposed cell with respect to the
incident light angle. The results show that the PCE decreases when the incident light angle
increases, owing to the reflections of light rays at the cell surface. Additionally, from this
result, we can observe that the PCE decreased to 50% from the maximum value at an
incident angle of 42.50. This angle is the critical angle of the proposed cell structure; above
this angle, the PCE decreased to 0% at an incident angle of 72 (i.e., the cut-off absorption
angle of the proposed model). The photonic bands of the ITO layer were almost flat. The
Bloch modes can then control the absorption band of the cell.
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The results of the proposed cell were compared with the previous results in Table 2, and
all the materials mentioned in this comparison are described in Table 3. This comparison
shows that the proposed cell model based on the GI technique outperforms the other results
in terms of open-circuit voltage, short-circuit current, fill factor, and PCE. The GI technique
in the active layer decreases the number of reflections and increases the photocurrent owing
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to the perfect index-matching and therefore the impedance-matching between layers and
the energy bandgap between layers.

Table 2. Illustration of the comparison between the proposed cell-model simulation results and the
previous related work simulation and experimental results.

Refs. Polymer VOC (V) JSC (mA/cm2) Fill Factor (FF) η (%)

[14] PBDTT-DPP 0.94 12.3 0.57 6.6

[10] PBDTT-4S-TT and PBDTT-4S-BDD 0.98 11.9 0.67 7.8

[3,25] P3HT:ICBA 0.94 10.09 0.68 8.1

[9] PTB7-TH:PCBM 0.92 10.03 0.62 8.8

[2] PDTP-DFBT:PCBM 0.96 10.35 0.71 9.1

[1] PBDB-T:PYT 0.892 20.8 0.696 12.9

[23] PBDB-T:PZT 0.91 23.2 0.686 14.5

[23] PBDB-T:PZT-γ 0.896 24.7 0.713 15.88

This work PBDB-T:GI-PZT 0.986 27.74 0.88 25.1

Table 3. Description of materials used for the comparison in Table 2.

Refs. Polymer Name and Description

[14] PBDTT-DPP

Poly{2,6′-4,8-di(5-ethylhexylthienyl) benzo[1,2-b;3,4-b]
dithiophene-alt-5,5’-dibutyloctyl-3,6-bis(5-thiophen-2-yl)

pyrrolo[3,4-c] pyrrole-1,4-dione}low band-gap polymer with strong
photosensitivity in the range of 650–850 nm, with an onset absorption

at 858 nm (Eg = 1.45 eV, near infrared absorption).

[10] PBDTT-4S-TT and PBDTT-4S-BDD
Two new two-dimensional conjugated polymers PBDTT-4S-TT and
PBDTT-4S-BDD based on benzo[1,2-b:4,5-b′] dithiophene unit with

4-methylthio substituted thiophene side chains.

[3,25] P3HT:ICBA poly (3-hexylthiophene) (P3HT):indene-C60 bisadduct (ICBA)

[9] PTB7-TH:PCBM

low bandgap polymers, Poly([2,60-4,8-di(5-ethylhexylthienyl)
benzo[1,2-b;3,3-b] dithiophene] {3-fluoro-2[(2-ethylhexyl) carbonyl]

thieno[3,4-b] thiophenediyl}), electron donor (PTB7-Th)
[6,6]-phenyl-C71-butyric acid methyl ester, electron acceptor (PCBM)

[2] PDTP-DFBT:PCBM
poly[2,7-(5,5-bis-(3,7-dimethyl octyl)-5H-dithieno[3,2-b:2′,3′-d]pyran)-
alt-4,7-(5,6-difluoro-2,1,3-benzothiadiazole)] low bandgap 1.38 eV and

high mobility polymer compound.

[1] PBDB-T:PYT
conjugated donor-acceptor (D-A) block copolymer (PBDB-T-b-PYT)

synthesized via a one-pot polymerization of a wide-band-gap donor
block (PBDB-T) and a narrow-band-gap PYT-based acceptor block

[23] PBDB-T:PZT
Polymer donor PBDB compound with branched 2-butyloctyl, linear
n-octyl, and methyl on the BTz unit, namely PZT. High absorption

efficiency polymer compound.

[23] PBDB-T:PZT-γ higher regiospecificity for avoiding the formation of isomers during
polymerization and more extended absorption than PBDB-T:PZT

5. Conclusions

This work presented a new design and performance analysis of a PSC based on a PBDB-
T:GI-PZT active-layer polymer compound material with a thickness of 310 nm supported
by a 2D-PhC ITO-ARC light-trapping layer at the cell top surface, with a 200-nm Ag back
electrode reflector to accumulate the electrons. In addition, for further enhancement, the
refractive index of the active layer was distributed gradually to prevent carrier reflections
at the active-layer interface and consequently increase the photocurrent. Based on the
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photovoltaic spectra of the solar cells, the results of the proposed cell displayed a substantial
improvement in absorption compared to the same cell models using PBDB-T:PZT and
PBDB-T:PZT-γ as active-layer polymer materials with the same thickness. The results
also proved that the use of GI-PZT in the proposed cell enhanced the PCE by 76.7% and
58.8% compared with those of the cells that use PBDB-T:PZT and PBDB-T:PZT-γ polymers,
respectively. Finally, the simulation results of the proposed cell also achieved a PCE of
25.1% and short-circuit electric current of 27.74 mA/cm2 at 0.986 V open-circuit voltage.
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