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Abstract: In recent years, a major focus on wind farm wake control is to maximise the production of
wind farms. To improve the power generation efficiency of wind farms through wake regulation, this
study investigates yaw optimisation for wind farm production maximisation from the perspective of
time-varying wakes. To this end, we first deduce a simplified dynamic wake model according to the
momentum conservation theory and backward difference method. The accuracy of the proposed
model is verified by simulation comparisons. Then, the time lag of wake propagation and its impact
on wind farm production maximisation through wake meandering is analysed. On this basis, a yaw
optimisation method for increasing wind farm energy capture is presented. This optimisation method
uses the proposed dynamic wake model for wind farm prediction. The results indicate that the
optimisation period is critical to the effect of the optimisation method on wind farm energy capture.

Keywords: dynamic wake model; production maximisation; wind farm; yaw meandering

1. Introduction

Wind energy utilisation is crucial to address the interrelated concerns of environmental
sustainability, economic stability, and energy security. The increasing demand for energy,
coupled with the detrimental environmental impacts of non-renewable sources, highlights
the need for transitioning towards cleaner and more sustainable sources. Wind power
technology has emerged as a viable solution due to its numerous environmental benefits:
it produces no greenhouse gas emissions, consumes fewer resources, reduces pollution,
and minimises land-use impacts [1]. Moreover, research on wind power technology is
essential from an economic perspective to reduce costs, improve efficiency, and generate
job opportunities. Finally, from an energy security perspective, the use of wind power
can enhance energy independence by minimising dependence on oil supplies and volatile
fossil fuel prices. Therefore, wind power technology research plays a crucial role in ad-
dressing these multifaceted challenges and can lead to a more sustainable future for our
planet. Recently, wind power has occupied an increasing share of the electricity market. In
this context, improving the efficiency of wind energy utilisation has gradually become a
research hotspot.

A wake region exists downstream of an operating wind turbine and is characterised
by lower wind speed and higher turbulence intensity. As a result, reduced power output
and more severe load fatigue will happen to the turbines operating in the wake region [2,3].
In commercial wind farms, many wind turbines are usually concentrated in a limited area,
which aggravates the power loss of the wind farm caused by wake interaction. Recently,
researchers have shown an increased interest in increasing wind farm power output through
wake control [4]. For this purpose, a considerable amount of literature has grown around
the theme of establishing control-oriented wake models for wind farm prediction. The wake
models proposed in earlier studies, such as the Jensen wake model [5], the Frandsen wake
model [6], and the Katic wake model [7], are for unyawed turbines. In subsequent studies,
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various improvements were developed to improve the accuracy of wake calculation or for
yawed turbines. Jiménez et al. [8] analysed the wake deflection caused by yaw operation
through large eddy simulation (LES) and proposed a simple analytical wake model suitable
for yawed turbines. Bastankhah and Porté-Agel [9] studied the wake distribution of a
yawed turbine through wind tunnel experiments and theoretical analysis, and developed a
wake model for yawed turbines. Ishihara and Qian present a wake model with Gaussian
distributed spanwise wind speed in [10], considering the effects of ambient turbulence
intensity and thrust coefficient, and then extended it for yawed turbines in [11]. In the works
in [12], the turbine wakes are described with a nearly top-hat shape in the near wake and
with a Gaussian shape in the far wake through the super-Gaussian model. Zong and Porté-
Agel [13] improved the accuracy of a yawed turbine wake model by taking the secondary
wake steering effect and the influence of near-wake length and turbulence intensity into
account. Lin et al. [14] proposed two analytical wake models based on Gaussian shape and
cosine shape, respectively, to improve the accuracy of the wake model. In recent years, the
non-centrosymmetric distribution of the spanwise wind speed of the yawed wake, known
as the curled wake, has been explored. Martínez-Tossas et al. identified the mechanism
of the curled wake and proposed a simplified curled wake model in [15]. Dou et al. [16]
proposed a yawed wake model reflecting the non-centrosymmetric distribution of spanwise
wind speed and validated it with experimental results.

The above wake models are static, which means that those models cannot reflect
the changing process of wakes over time. In reality, it will take some time for a mass
flow to move from the most upstream turbine to the most downstream one in a wind
farm row. Therefore, there is a time lag for the control action of an upstream turbine to
affect a downstream one through the wake. However, far too little attention has been
paid to dynamic wake models reflecting time-varying wakes. Dynamic wake modelling is
implemented in a data-driven manner in some studies, such as machine learning [17,18]
and reduced-order modelling (ROM) [19–21]. Such models are greatly limited by the
datasets for model building. In addition, there are sporadic reports of control-oriented
analytical dynamic wake models. Gebraad et al. presented a dynamic wake model called
the FLORIDyn model using a linear state-space structure to describe wake propagation
in [22] and developed a Kalman filter to correct the flow field predictions of the model in [23].
FLORIDyn is a quasi-dynamic model that simulates wake propagation by estimating the
characteristics of the observation points with the help of an extra static FLORIS wake model.
Kheirabadi et al. [24] proposed a dynamic wake model for floating wind turbines named
FOWFSim-Dyn based on one-dimensional momentum conservation. The FOWFSim-Dyn
was not compared with high-precision fluid simulation results or experimental results.
Boersma et al. [25] presented a dynamic wake model named the WFSim model, based on
the two-dimensional Navier-Stokes equations, neglecting the vertical dimension. WFSim
cannot reflect the wake characteristics in the vertical direction, and its calculation is still
more time-consuming than analytical models.

Dynamic wake modelling balancing low computational complexity and high fidelity
is an urgent research topic for wake control. Inspired by the above research, this paper
deduces a dynamic wake model suitable for yawed turbines from the momentum con-
servation theory. Then, the model is discretized to facilitate the solution according to the
backward difference method. In this way, the proposed dynamic wake model strives to
reflect the three-dimensional characteristics of the wake while reducing the computational
complexity for control applications. Hereafter, the dynamic model will be used to investi-
gate the wake regulation for wind farm production maximisation from the perspective of
time-varying wakes.

For commercial wind turbines, several wake control methods have been proposed
for maximising wind farm production, including yaw control, axial induction factor con-
trol, and turbine repositioning [4,26,27]. Yaw control is to steer the wake away from the
downstream turbine through the yaw operation of the upstream one, thereby reducing the
wake coverage of the downstream turbine [28,29]. Axial induction factor control, including
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pitch control and torque control, reduces the wind speed deficit in the wake region by
limiting the power of the upstream turbine, thereby increasing the effective wind speed of
the downstream one [30,31]. Turbine repositioning is a novel concept proposed for floating
wind turbines, which reduces the wake coverage of the downstream turbine by changing
the position of the upstream turbine [32]. Among them, yaw control is currently considered
to have the greatest potential to increase wind farm energy production and has become
the mainstream of wake control research in recent years. Therefore, this study applies yaw
control as the wake regulation method.

Various studies have evaluated the efficacy of yaw control for increasing wind farm
energy capture. Fleming et al. [33] conducted a field experiment on a subset of a commercial
wind farm to investigate the performance of yaw operation in reducing wind farm power
loss, and a reduction in wake losses of approximately 6.6% in the operating region was
reported. In addition, Doekemeijer et al. [34] carried out a field experiment on a subset
of a wind farm in Italy for the same purpose. Archer et al. [35] analysed the optimal
yaw settings of different turbine rows in a wind farm with eight rows of wind turbines
through LES and found that yawing first and sixth rows would more effectively lead to an
increase in overall power production. Due to its excellent effect, wake steering through yaw
operation has been widely applied to increase wind energy capture. For these applications,
a wake model for wind farm prediction is necessary. Doekemeijer et al. [36] presented a
closed-loop control method for maximising wind farm production by yaw control, which
applied the FLORIS modelling tool for wind power prediction. Dou et al. [16] proposed
a yaw angle optimisation strategy to maximise the wind farm power output based on a
three-dimensional yawed wake model. Qian and Ishihara [37] used a multi-wake model for
increasing wind energy extraction by yaw-based wake steering control. Stanley et al. [38]
present a Boolean yaw optimisation method for wind farm power maximisation based on
the FLORIS tool. Rak et al. [39] investigated the impact of the Jensen model, the Gaussian-
shaped Bastankhah model, and the Gauss-Curl Hybrid (GCH) model on wake meandering
for wind farm energy maximisation.

To date, the wake models that have been reported for maximising wind farm produc-
tion by wake regulation are mainly static. Due to ignoring the time lag between the changes
of control settings and the responses of downstream turbines, wake regulation based on
static wake models will misjudge the increase in wind farm energy production. This indi-
cates a need to understand the effect of wake propagation delay on wake regulation and
to maximise wind farm production considering the time-varying wake. By developing
a dynamic wake model for wind farm prediction, this study investigates the yaw-based
wind farm production maximisation from the perspective of time-varying wakes.

The remaining part of this paper has been organised in the following way. The dynamic
wake model is deduced according to the momentum conservation theory and backward
difference method in Section 2. Then, the deduced model is validated in Section 3. Finally,
simulation experiments are conducted to analyse the time lag of wake propagation and the
effect of wake regulation under different period lengths.

2. Model Description

In this section, the dynamic wake model for wind farm prediction is described in detail.
Firstly, the power calculation of yawed turbines is introduced. Secondly, the dynamic wake
model of a single turbine is derived according to the momentum conservation theory,
followed by the initial conditions and modifications of the model. Finally, the superposition
method of multiple wakes is introduced.
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2.1. Wind Turbine Power

Theoretically, the power output of a wind turbine has a cubic relationship with its
inflow wind speed. For a wind farm with N wind turbines, the power output of the ith
turbine Pi is calculated as below [40]:

Pi =
1
2

ρAiCi
pU3

i , i ∈ [1, 2, · · · , N]. (1)

where ρ is the air density; Ai is the wind rotor swept area; Ui is the inflow wind speed of
turbine i; Ci

p is the power coefficient, which is a function of the axial induction factor ai as
below when turbine i is unyawed [40]:

ai = 1−Ui
d/Ui (2)

Ci
p = 4ai(1− ai)

2 (3)

where Ui
d is the wind speed at the rotor.

When the turbine is in a yawed state, its power coefficient and power output will
decrease. We apply a correction proposed in [41] to describe the effect of the yaw misalign-
ment angle γi on Ci

p as follows:

Ci
p = 4ai(cos γi − ai)

(
cos γi + tan

χi
2

sin γi − ai sec2 χi
2

)
(4)

where χi is the initial wake skew angle defined as:

χi = (0.6ai + 1)γi (5)

Simultaneously, a modified thrust coefficient Ci
t in [41] is also applied here:

Ci
t = 4ai

(
cos γi + tan

χi
2

sin γi − ai sec2 χi
2

)
(6)

2.2. Single-Wake Model

When there is a yaw misalignment angle between the nacelle centre line and the
inflow wind direction, the wake of the wind turbine will deflect sideways. With the yaw
misalignment increasing, the deflection will be greater. Figure 1 shows the yawed wake
of the ith turbine viewed from above. The calculation of the characteristic parameters
of the wake is deduced from the momentum conservation theory. The control volume
is established as shown in the area enclosed by the blue lines in Figure 1. The dot-dash
line downstream of the turbine is the wake centreline. The magenta dashed lines indicate
the boundary of the wake region. The inflow wind speed shown in Figure 1 is aligned
with the x-axis direction. We extend the inflow direction to a more general case where
there is a deviation angle θi between the inflow direction and the x-axis direction. This
extension enables the consideration of secondary steering in wake calculations [4]. Then,
Ui is decomposed into the x component ui and the y component vi:

Ui = [ui, vi] = [Ui cos θi, Ui sin θi] (7)

According to the established control volume, the momentum equation is as follows:

Fi = m1Ui
d + m2Ui −m3Ui

w (8)

where m1, m2, and m3 are, respectively, the mass flow passing through the wind rotor,
mixing into the wake region, and crossing the control volume outlet; Fi is the external force
acting on the control volume; and Ui

w is the effective wind speed at a downstream section
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in the wake region. Decomposing Ui
d, Ui

w, and Fi according to the x-axis direction and the
y-axis direction proceeds as follows:

Ui
d =

[
ui

d, vi

]
= [(1− ai)ui, vi] (9)

Ui
w =

[
ui

w, vi
w

]
(10)

Fi =
[

Fi
x, Fi

y

]
(11)
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Figure 1. Schematic diagram of the wake of a yawed wind turbine (θi = 0°). 
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According to Equations (9)–(11), Equation (8) can be rewritten as:

Fi
x = ρ

π

4
D2

i (1− ai)ui + ρ

(
π

4

(
Di

w

)2
− π

4
D2

i

)
ui − ρ

π

4

(
Di

w

)2
ui

w (12)

Fi
y = ρ

π

4

(
Di

w

)2(
vi − vi

w

)
(13)

where Di and Di
w are the rotor diameter and wake diameter of the ith turbine, respectively;

and ui
w and vi

w are the streamwise and spanwise wake velocities, respectively. In this work,
the inlet of the control volume is placed just behind the rotor to avoid the effect of the thrust
force. Thus, Fi is equal to zero. Then, the partial differential equations of (12) and (13) are
obtained as follows:(

Di
w

)2
(

∂ui
w

∂t
+ ui

∂ui
w

∂x

)
= 2Di

wui
∂Di

w
∂t

+
(

Di
w

)2 ∂ui
∂t
− D2

i ui
∂ai
∂t
− aiD2

i
∂ui
∂t
− 2Di

wui
w

∂Di
w

∂t
(14)

∂vi
w

∂t
+ ui

∂vi
w

∂x
=

2
Di

w

(
vi − vi

w

)∂Di
w

∂t
+

∂vi
∂t

(15)

The offset distance of the wake centre yi
w is accumulated by vi

w against time [24],
which means:

∂yi
w

∂t
+ ui

∂yi
w

∂x
= vi

w (16)

In static wake models, the wake diameter typically expands at a fixed rate with
downstream distance. In [24], a constant temporal expansion rate kt was proposed to model
the dynamical wake expansion, which is adopted here:

∂Di
w

∂t
+ ui

∂Di
w

∂x
= ktui (17)
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By solving the partial differential Equations (14)–(17), the characteristic parameters of
the single-wake model can be obtained. According to the backward difference method, the
equations are discretized into the following form to solve:

ui
w(x, t) = ku2/ku1 (18)

ku1 =

(
Di

w(x, t)
)2

T
+

ui(t)
h

+ 2Di
w(x, t)

Di
w(x, t)− Di

w(x, t− T)
T

(19)

ku2 =

(
Di

w(x, t)
)2

T
ui

w(x, t− T) +
ui(t)

h
ui

w(x− h, t) + 2Di
w(x, t)ui(t)

Di
w(x, t)− Di

w(x, t− T)
T

+
((

Di
w(x, t)

)2 − ai(t)D2
i

)ui(t)− ui(t− T)
T

− D2
i ui(t)

ai(t)− ai(t− T)
T

(20)

vi
w(x, t) = kv2/kv1 (21)

kv1 =
1
T
+

ui(t)
h

+
2
(

Di
w(x, t)− Di

w(x, t− T)
)

Di
w(x, t)T

(22)

kv2 =
2
(

Di
w(x, t)− Di

w(x, t− T)
)

Di
w(x, t)T

vi(t) +
vi(t)− vi(t− T)

T
+

vi
w(x, t− T)

T
+

vi
w(x− h, t)

h
ui(t) (23)

yi
w(x, t) =

vi
w(x, t) + yi

w(x, t− T)/T + ui(t)yi
w(x− h, t)/h

1/T + ui(t)/h
(24)

Di
w(x, t) =

kt + Di
w(x, t− T)/T + ui(t)Di

w(x− h, t)/h
1/T + ui(t)/h

(25)

where T and h are the time step and distance step, respectively; Di
w(x, t) is the wake diameter

at time t at the downstream distance x, and other similar variables will not be repeated.

2.3. Initial Conditions

To solve Equations (18)–(25) iteratively, we set the initial conditions at time 0 according
to the Jensen wake model [5] as below:

yi
w(x, 0) = (vi(0)/ui(0))x

ui
w(x, 0) = ui(0)− ui(0)(aiDi/(Di/2 + kxx))2

vi
w(x, 0) = vi(0)

Di
w(x, 0) = Di + kxx

(26)

where kx is the static wake expansion rate, taken as 0.05 in this study. The initial conditions
at x = 0 are set as below [24]: 

yi
w(0, t) = 0

ui
w(0, t) = ui0(t)

vi
w(0, t) = vi0(t)

Di
w(0, t) = Di

(27)

[
ui0(t)
vi0(t)

]
= ‖Ui(t)‖(1− ai(t))

[
cos
(
ξ i

w0(t) + θi(t)
)

sin
(
ξ i

w0(t) + θi(t)
)] (28)

where ξ i
w0(t) is the wake skew angle at x = 0, which is calculated as below [8]:

ξ i
w0(t) = Ci

t(t) cos2 γi(t) sin γi(t)/2 (29)

2.4. Modifications of Single-Wake Model

The single-wake model in Section 2.2 simplifies the spanwise of the wake velocity
to a top-hat shape distribution. A super-Gaussian model is applied here to modify the
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top-hat shape distribution for higher accuracy. In the super-Gaussian model shown in
(30), n is a positive integer. The larger n is, the closer the distribution is to a top-hat shape
distribution [42]. When n = 2, the distribution is a Gaussian shape.

g(r) =
1√

2πσ0
exp

(
−rn

2σn
0

)
(30)

where σ0 is the characteristic wake width, which has the following transformation relation-
ship with the standard deviation σ of Gaussian distribution:

σ = σ0(π/2)2/n−1 (31)

For the requirement that the momentum deficit of the wake flow per unit length in the
x-direction is the same as the original top-hat shape distribution, the spanwise distribution
of the wake velocity in Section 2.2 is modified to a super-Gaussian shape as below:

^
U

i

w(x, t, r) = Ui(t)−Ui(t)C(x) exp
(
−rn/

(
2σn

0
))

C(x) =
n
(
Ui(t)−Ui

w(x, t)
)

Di
w(x, t)2(1/

(
2σn

0
))2/n

8Ui(t)Γ(2/n)

(32)

where
^
U

i

w(x, t, r) is the wake velocity at a spanwise distance r from the wake centre at time
t, while the wake centre is at a distance x downstream of turbine i; C(x) is the maximum
velocity deficit, of which the derivation process is listed in Appendix A; Γ(.) is the Gamma
function. To determine σ0, σ takes a value as:

σ(x, t) = Di
w(x, t)/

(
4
√

ln 2
)

(33)

By doing this, over 95% of the momentum loss is distributed within a circle of radius Di
w/2

around the wake centre.
In addition, due to the wake expansion effect, the spanwise velocity induced by the

wind rotor will gradually decrease along the flow direction [43]. This means that as x
increases, yi

w will gradually tend to be constant. In [11], Qian and Ishihara proposed a
Gaussian-based wake model and compared the wake centreline offset of the Gaussian-based
model with the Jimenez wake deflection model [8] and wind tunnel experimental data. The
results showed that the Jimenez wake deflection model generally overestimated the wake
deflections under different yaw angles, while the Gaussian-based model agreed well with
the experimental data. Therefore, this paper selects the wake offset of the Gaussian-based
model proposed by Qian and Ishihara as a more reliable basis. To ensure the technical
accuracy of the model, we establish that spanwise velocity decay should begin at 6D to
allow the model’s wake offset to agree well with the Gaussian-based model. Therefore, (21)
is empirically modified as below:

vi
w(x, t) =

{
kv2/kv1, x ≤ 6Di

(x− 6Di)
−1kv2/kv1, x > 6Di

(34)

After the modification, the spanwise wake velocity vi
w will gradually decay to 0 when

x is greater than 6Di.

2.5. Wake Interaction

Figure 2 shows the wake interaction between an upstream turbine j and a downstream
turbine i. The blue shaded area is the wake section of turbine j at the downstream distance
of turbine i, and Oj

w is the centre of the wake section. The black circle represents the rotor
plane of turbine i, and Oi is its centre. yj

w is the distance between Oj
w and Oi. O1 (ro, θo)
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is a random point inside the rotor plane. l is the distance between Oj
w and O1, which is

calculated as:

l(ro, θo) =

√(
yj

w

)2
+ r2

o − 2yj
wro cos(π − θo) (35)

Establishing a polar coordinate system as shown in Figure 2 and setting the pole at Oi,
we obtain the effective wind speed Uij of turbine i under the wake of turbine j as below:

Uij(t) =
∫ 2π

0

∫ Di/2

0
ro

^
U

j

w(l(ro, θo), t)drodθo/
(

πD2
i /4

)
(36)

In wind farms, a downstream turbine is usually affected by the wakes of multiple
upstream turbines to varying degrees. The effect of multi-wakes on the turbine needs to be
superimposed equivalently. Several wake superposition methods have been proposed [37].
The rotor-based root sum square method is applied here to calculate the effective wind
speed Ui of the ith downstream turbine [44]:

Ui = U∞ −
√

∑m
k=1

(
Uj −Uij

)2 (37)

where U∞ is the free-stream wind speed unaffected by wakes; m is the number of upstream
turbines with wake effect on turbine i; Uj is the inflow wind speed of an upstream turbine j.

Energies 2023, 16, x FOR PEER REVIEW 9 of 21 
 

 

roOi

O1

O
j
w

y
j
w

l

θo

 

Figure 2. Wake interaction between two turbines. 

3. Model Validation 

The proposed dynamic wake model in Section 2 is validated in this section by multi-

ple comparative analyses, including the comparison with widely accepted static wake 

models and the comparison with the dynamic calculation results from SOWFA. Relevant 

parameters are set as: T = 1 s, h = 1 m, kt = 0.08, n = 8. 

3.1. Comparison of Static Wake Distributions 

In this section, we first verify the static characteristics of the proposed dynamic model 

(Dyn-model). To this end, the results after stabilization will be compared with the results 

of two static wake models from the FLORIS modelling tool [45]. The first static model for 

comparison is the well-known Jensen wake model [5]. The other static model is an im-

proved Gaussian-based wake model proposed by Qian and Ishihara in [11] and [10]. 

The simulation is based on a DTU 10MW wind turbine, of which the rotor diameter 

D is 178.3 m. More parameters of DTU 10MW turbine are in [46]. The free-stream wind 

speed is set to U∞ = 10 m/s, and the axial induction factor is set to a = 1/3. The distributions 

of the dynamic wake are taken at 600 s when the wake is fully developed and stable. As 

shown in Figure 1, a coordinate system is established at the location of the turbine. The 

wake velocity distributions of the turbine at 0°, 10°, 20°, and 30° yaw misalignment are 

shown in Figure 3. 

(a)

γ = 0°
a = 1/3

(b)

γ = 10°
a = 1/3

(d)

γ = 30°
a = 1/3

(c)

γ = 20°
a = 1/3

0 1Uw/U  

Dyn-model Gaussian-based model Jensen model 

 

  

 

 

  

 

 

Figure 3. Static wake distributions. (a) Wake distributions when γ = 0°, (b) wake distributions when 

γ = 10°, (c) wake distributions when γ = 20°, (d) wake distributions when γ = 30°. 

Figure 2. Wake interaction between two turbines.

3. Model Validation

The proposed dynamic wake model in Section 2 is validated in this section by mul-
tiple comparative analyses, including the comparison with widely accepted static wake
models and the comparison with the dynamic calculation results from SOWFA. Relevant
parameters are set as: T = 1 s, h = 1 m, kt = 0.08, n = 8.

3.1. Comparison of Static Wake Distributions

In this section, we first verify the static characteristics of the proposed dynamic model
(Dyn-model). To this end, the results after stabilization will be compared with the results
of two static wake models from the FLORIS modelling tool [45]. The first static model
for comparison is the well-known Jensen wake model [5]. The other static model is an
improved Gaussian-based wake model proposed by Qian and Ishihara in [11] and [10].

The simulation is based on a DTU 10MW wind turbine, of which the rotor diameter D
is 178.3 m. More parameters of DTU 10MW turbine are in [46]. The free-stream wind speed
is set to U∞ = 10 m/s, and the axial induction factor is set to a = 1/3. The distributions
of the dynamic wake are taken at 600 s when the wake is fully developed and stable. As
shown in Figure 1, a coordinate system is established at the location of the turbine. The
wake velocity distributions of the turbine at 0◦, 10◦, 20◦, and 30◦ yaw misalignment are
shown in Figure 3.
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Figure 3. Static wake distributions. (a) Wake distributions when γ = 0◦, (b) wake distributions when
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As can be seen in Figure 3, when the yaw misalignment γ is 0◦, the wake deficit
distributions of the three models are close. In more detail, the overall wake deficit of the
dynamic model is closer to the Jensen model and higher than the Gaussian-based model.
This is because the momentum conservation method used in the dynamic wake derivation
is the same as that utilized in the Jensen model. The wake deficits of the dynamic model
are distributed in a super-Gaussian shape. The Jensen model is unavailable in yawed states.
In [39], it was combined with the Jimenez wake deflection model [8] for yawed states.
This combination is applied here when yaw misalignment is 10◦, 20◦, and 30◦. In yawed
states, the wake centrelines of the dynamic model under different yaw settings agree well
with the Gaussian-based model, though the wake velocity deficit is higher than it. The
overall wake deficit of the dynamic model is still closer to the combined Jensen model.
Also, Table 1 shows the amount of wake velocity deficit at different downstream distances
of the three wake models when γ = 10◦. It can be seen that the results of the Jensen model
and Dyn-model are very close, while the Gaussian-based model relatively underestimates
the overall wake deficit. This phenomenon holds for different yaw angles.

Table 1. Wake velocity deficit at different downstream distances (γ = 10◦, ×105 m/s·m2).

2D 4D 6D 8D 10D

Gaussian-based model 1.0719 1.0719 1.0719 1.0719 1.0719

Jensen model 1.6639 1.6639 1.6640 1.6641 1.6641

Dyn-model 1.6668 1.6677 1.6681 1.6682 1.6682

For all the three models, the offset of the wake centreline is more obvious with increas-
ing yaw deviation. When x is greater than 6D, the offset of the wake centrelines of the
dynamic model and the Gaussian-based model hardly increase. The centreline offset of the
combined Jensen model is greater than that of the other two models under different yaw an-
gles, while the wake deviations calculated by the proposed wake model always agree well
with the Gaussian-based model. In [11], the wake centreline offset of the Gaussian-based
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wake model has been validated through wind tunnel experimental data. This indirectly
validates the proposed wake model’s ability to accurately predict wake deviation.

To verify the time-varying process of the dynamic wake model, dynamic yaw simula-
tions based on the Dyn-model and the combined Jensen model are conducted on a single
row of two DTU 10 MW turbines, as shown in Figure 4a. The results are compared with the
results reported in [20], which are obtained from SOWFA, a high-fidelity simulation tool.
Other parameters are also set according to the case in [20]: the turbines are aligned with the
free-stream wind speed at a 5D interval; the free-stream wind speed is set to U∞ = 9 m/s
and kept constant; the yaw angle variation of the upstream turbine is set as shown in
Figure 4b, while the downstream turbine remains unyawed during the simulation. Each
time the yaw angle is adjusted, it changes continuously at a rate of 1◦.s−1.
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Figure 4. Simulation settings for dynamic validation. (a) Layout of wind farm with two turbines,
(b) yaw setting of upstream turbine.

3.2. Validation of Dynamic Wake

Figure 5 displays the time-varying characteristic parameters of the upstream turbine
of the Dyn-model, including ui

w, vi
w, yi

w, and σ0 at any downstream distance from 0 to 5D
during the simulation. As mentioned in Section 2.3, the wake is distributed according to the
Jensen model as the initial condition when t = 0 s. At that moment, ui

w gradually recovers
with increasing downstream distance, and σ0 expands linearly; vi

w and yi
w are 0 along with

the downstream distance, as the vertical component of the free-stream wind speed is 0. The
yaw setting changes over time thereafter. As shown in Figure 5a,d, the distributions of ui

w
and σ0 are not affected by the yaw angle and are in close agreement with the distributions
of the Jensen model. Moreover, vi

w increases with yaw amplitude, and its value does not
change with the downstream distance, as shown in Figure 5b. Accordingly, yi

w increases
with yaw amplitude and downstream distance.

The power output is compared as shown in Figure 6. As the yaw angle increases, the
power output of the upstream turbine P1 decreases rapidly in both cases. Meanwhile, the
power output of the downstream turbine P2 increases with a larger yaw angle. Due to the
delay in wake propagation, there is a time lag between the variation of the downstream
turbine and the upstream one. It can be seen that the time lag described by the Dyn-model
is in close agreement with that of SOWFA. As a static model, the combined Jensen model
failed to reflect the time lag. Moreover, the power outputs of the upstream turbine in all
cases are close. For the downstream turbine, even ignoring the time lag, the power output
calculated by the Dyn-model is still closer to SOWFA than the combined Jensen model.
For the same yaw angle of the upstream turbine, P2 calculated by the combined Jensen
model will be greater than that calculated by the Dyn-model. This phenomenon can be
explained by the excessive yaw deflection estimated by the Jimenez wake deflection model.
Due to the overestimated wake deflection, the wake deficit of the downstream turbine will
be underestimated.
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Figure 6. Power output of wind turbines.

Then, another dynamic yaw simulation is carried out on the dynamic wake model,
with the same layout as shown in Figure 4a and U∞ = 9 m/s. The yaw setting of the
upstream turbine is displayed in Figure 7. Each time sample Tk in Figure 4 represents a
time interval of 2 s. To compare the wake development process of the Dyn-model with
SOWFA, the wake velocity distributions in the range of 0–5D downstream of the upstream
turbine at some time samples are shown in Figure 8. The compared results of SOWFA are
also reported in [20]. The selected time samples are Tk = 410, 430, 450, 470, 490. The yaw
angles at these moments are displayed in the enlarged view of Figure 7.
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Figure 8. Wake distribution comparison.

In Figure 8, the left column shows the wake distributions calculated by SOWFA,
and the right column displays the corresponding distributions of the Dyn-model. When
Tk = 410, the yaw angle is about to gradually change from 0◦ to −20◦, and no significant
wake deflection can be observed in either case. The yaw angle reaches −20◦ when Tk = 417,
after which the −20◦ yawed wake propagates backward. The −20◦ yawed wake develops
to a position about 250 m downstream of the upstream turbine when Tk = 430, and it then
develops to a position about 550 m downstream when Tk = 450. The yaw angle returns
to 0◦ when Tk = 467, after which the new unyawed wake develops downstream again.
When Tk = 470, the −20◦ yawed wake develops a position close to 800 m downstream
(the Dyn-model develops slightly faster), and the unyawed wake develops to a position
of about 80 m downstream. When Tk = 470, the 5D downstream position is covered by
the −20◦ yawed wake, while the unyawed wake develops to a position of about 320 m
downstream. In general, the wake development process of the Dyn-model is close to that of
SOWFA. In addition, the Dyn-model underestimates the near-wake wind speed compared
with SOWFA. In the far wake region, the wind speed of the Dyn-model is close to that
of SOWFA. Since the distance between turbines in a wind farm is usually large to reduce
wake losses, the accuracy of the far wake region is more of a concern. Moreover, it can be
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seen from the Figure 8 that the yawed wake deviations calculated by the proposed model
at different moments are in good agreement with the results calculated by SOWFA.

In summary, the dynamic wake model proposed in this study has a static wake distri-
bution that is close to the accuracy of the common control-oriented wake models, i.e., the
Jensen model and the Gaussian-based model. At the same time, the wake delay during the
dynamic simulation process is close to the result of the high-precision computational fluid
dynamics (CFD) software, SOWFA.

4. Wind Farm Production Maximisation Based on Dynamic Yawed Wake Calculation

In this section, we first analyse the influence of wake propagation time lag on wind
farm yaw control, and then explore a yaw optimisation method for increasing wind farm
energy capture based on the dynamic wake model. As shown in Figure 9, case studies in
this section are based on a single row of five turbines with a diameter D1 of 100 m. The
distance between two adjacent turbines is 5D1.
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4.1. Wake Propagation

The free-stream wind speed is set to U∞ = 10 m/s. The yaw misalignment of the
most upstream turbine (WT1) γ1 is set to 0◦ and 30◦, while the downstream turbines
remain unyawed during the simulation. The effective wind speed of each turbine under
different yaw settings of WT1 is shown in Figure 10. For about the first 50 s, different
yaw settings do not affect the wind speed of the downstream turbines. Subsequently,
the wind speed of each downstream turbine begins to change and converges to a higher
value. Moreover, the further downstream the turbine is, the longer it takes for its wind
speed to converge to the higher value. This phenomenon can be explained by the time lag
of wake propagation, which is instructive for increasing wind farm production through
wake regulation. Moreover, it can be seen that u3, u4, and u5 first drop and then rise
back. When calculating the effective wind speed of the downstream turbine through wake
superposition, the effective wind speed of the downstream turbine will decrease with the
increase of the effective wind speed of the upstream turbine. However, when the yaw wake
continues to propagate to the downstream turbine, its wind speed rises back. It can be seen
from u4 and u5 that the effective wind speed drop of the downstream turbine is mainly
affected by the adjacent upstream turbine.

To further understand the impact of wake propagation on wind farm production
maximisation, another simulation experiment is conducted. The free-stream wind speeds
of two sequential simulation periods are assumed to be constant during each period and
set as U∞ = [8, 10]. The optimisation period Tc is set as 100 s. As shown in Figure 11a, three
scenarios are set according to different yaw settings of WT1. The downstream turbines
remain unyawed. The wind farm electrical energy outputs in each optimisation period
under different scenarios are shown in Figure 11b. During period 1, WT1 remains unyawed
in Scenario 1, while it performs a 30◦ yaw misalignment in Scenarios 2 and 3. This results in
a lower wind farm electrical energy output for Scenarios 2 and 3 than Scenario 1 in period 1.
This is because in Scenarios 2 and 3, the power output of WT1 decreases immediately after
yaw, but the yaw wake has not yet propagated to WT2 during period 1 to increase the
power output of WT2.
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Figure 11. Wind farm electrical energy output under different scenarios of yaw settings. (a) Yaw
settings of WT1, (b) wind farm electrical energy output.

During period 2, WT1 remains unyawed in Scenarios 1 and 2, and performs a 30◦ yaw
misalignment in Scenario 3. As a result, the relationship between the energy output of
the three scenarios is: Scenario2 > Scenario 3 > Scenario 1. The results can be explained
by the fact that, in Scenario 2, WT1 does not yaw during period 2, so its power does not
drop. Meanwhile, the yaw wake caused by the yaw action of WT1 in period 1 reaches
WT2 in period 2 due to the propagation time lag, so that the power of WT2 increases in
period 2. In Scenario 3, although the yaw action of WT1 in period 1 also caused the power
increase of WT2 in period 2, WT1 keeps yawing in period 2, causing its own power to
decrease. Moreover, the yaw wake in period 2 has not yet reached WT2. Therefore, the
power generation of Scenario 3 is less than that of Scenario 2. In Scenario 1, WT1 remains
unyawed in periods 1 and 2, so the power of WT2 does not increase in period 2 while the
power of WT1 does not decrease. Due to the fact that the yaw of WT1 causes the power
increase of WT2 to be larger than its own power decrease, the overall power of Scenario 1
is less than that of Scenario 3.

Overall, two time periods are crucial for increasing the power generation of wind
farms by wake offset. The first is the time lag from the yaw operation of the upstream
turbine to when the wake starts to deviate from downstream turbines. The second is the
time for the increased power of downstream turbines through wake offset to compensate
for the decreased power of the yawed turbine. When the optimisation period is too short,
the yaw operation may not lead to the production increase of the wind farm within one
period and may cause a production increase in the subsequent period.
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4.2. Wind Farm Production Maximisation Based on Dynamic Wake Model

Based on the proposed dynamic wake model, a yaw optimisation method for increas-
ing wind farm energy capture is present here.

4.2.1. Problem Statement

Wind farm production maximisation based on static wake models usually takes wind
farm power Pwf as the optimisation objective. Such an objective is not feasible for the
optimisation based on a dynamic wake model, because the power output of the wind farm
is constantly changing in the dynamic calculation. In this study, we take the generated
electrical energy Ewf of the wind farm within one optimisation period as the optimisation
objective and use the proposed dynamic wake model for wind farm prediction. Therefore,
the optimisation problem is formulated as below [40]:

maxEw f (U, a, γ) = ∑5
i=1 Ei(Ui, ai, γi)

= ∑5
i=1
∫

Pi(Ui, ai, γi)dt

s.t.γi
min ≤ γi ≤ γi

max, i = 1, 2, · · · , 5

(38)

where Ei is the generated electrical energy of turbine i within one optimisation period; Pi
is the power output of turbine i at time t, which is calculated according to Equations (1)
and (4). The optimisation variables are the yaw angles of each turbine γ = [γ1, γ2,· · · ,γ5].
Constraints on the yaw misalignment angles of the turbines are considered. According
to previous studies [35,47], positive yaw misalignment angles (yaw counterclockwise) are
more efficient in achieving wind farm power increases in the northern hemisphere, due to
the effect of the Coriolis force. Thus, we set: γi

min = 0◦, γi
max = 30◦. During the optimisation

process, the axial induction factor of each turbine is set to ai = 1/3.

4.2.2. Optimisation Results

The problem described in Equation (38) is an uncomplicated optimisation problem
with low dimensions. The particle swarm optimisation (PSO) method is widely utilized
in wind farm optimisation problems [28]. A stochastic PSO method is applied here to
solve the problem (38). The number of particles is set to 20, and the number of iterations
is set to 50. The cognitive and social parameters are set to c1 = c2 = 2. More details of the
stochastic PSO omitted here can be found in [48], as the solution method is not the focus
of this paper. The free-stream wind speed of each optimisation period is assumed to be
constant. Then, the free-stream wind speeds of ten sequential simulation periods are set
as U∞ = {6, 8, 10, 9, 5, 7, 9, 11, 10, 8}. Different wake models have different emphases
and precisions. Therefore, it is difficult to directly compare the wake control effects of
different wake models. Researchers often rely on high-precision fluid simulations for
third-party comparisons. This study focuses on exploring wake regulation for wind farm
production maximisation considering wake propagation and is limited by high-precision
fluid simulation conditions. Thus, the results under different optimisation period settings
are compared with those under the maximum power point tracking (MPPT) strategy based
on the proposed dynamic wake model.

Under different period lengths of 100 s, 300 s, and 600 s, respectively, the generated
electrical energy of the wind farm and the optimised yaw settings of each turbine in each
period are shown in Figure 12. It is apparent that with a longer period or higher free-stream
wind speed, the energy production increase of the wind farm is more obvious. When Tc
is set to 100 s, all turbines remain unyawed. According to the analysis in Section 4.1, it is
because the increased energy of downstream turbines through wake offset is not enough to
compensate for the decreased power of the yawed turbines within one period. As shown in
Figure 12c,e, the first period has a lower energy increase than all subsequent periods. This
is because the wind turbines are still affected by the yawed wakes of the previous period
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at the beginning of a subsequent period, while the yaw wakes in the first period have not
fully developed to the downstream turbines.
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Figure 12. Optimisation results under different period lengths. (a) Electrical energy of the wind farm,
Tc = 100 s, (b) yaw settings of turbines, Tc = 100 s, (c) electrical energy of the wind farm, Tc = 300 s,
(d) yaw settings of turbines, Tc = 300 s, (e) electrical energy of the wind farm, Tc = 600 s, (f) yaw
settings of turbines, Tc = 600 s.

As the wind speed increases, the yaw wake reaches the downstream turbines faster.
Therefore, the wake optimisation at a high wind speed can be set for a shorter regulation
period. This study explores a more general period length for different wind speeds. To
this end, the increases of the wind farm energy during all the ten periods under different
period lengths are shown in Figure 13. It can be seen that after Tc is greater than 300 s, the
effect of extending the period length on energy increment is no longer obvious. Moreover,
control accuracy degrades with a longer optimisation period length. Thus, 300 s should
be a suitable period length for wind farm production maximisation based on the dynamic
wake model.
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5. Conclusions

This study develops a simplified dynamic wake model capable of simulating the
time-varying process of wake propagation. Based on the dynamic wake model, a wind
farm production maximisation method through yaw optimisation is proposed, considering
the time lag of wake propagation. The main conclusions of this research are as below:

1. A simplified dynamic wake model for wind farm prediction is derived according
to the momentum conservation theory and backward difference method. The span-
wise velocity deficit of the wake is based on super-Gaussian distribution. The wake
superposition is conducted by the rotor-based root sum square method.

2. The static distribution of the proposed model is validated with the Jensen model and a
Gaussian-based static model. The time-varying process of the proposed model agrees
well with numerical results from SOWFA.

3. The wind farm production maximisation through wake meandering is analysed from
the perspective of dynamic wake calculation. Different from the optimisation methods
based on a static wake model, the increase in wind farm production is closely related
to the optimisation period length, due to the time lag of wake propagation.

In the future, better optimisation methods for increasing wind farm energy capture
could be explored considering the time-varying wake. Moreover, as can be seen from the
results in Section 3.2, the downstream turbine power calculated by the proposed wake
model in this paper is still somewhat in error with that of SOWFA. Further research will be
conducted to improve the accuracy of the proposed wake model.
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Appendix A. Derivation of C(x)

According to the super-Gaussian distribution model, the wake velocity deficit is
expressed as:

Ui(t)−
^
U

i

w(x, t, r)
Ui(t)

= C(x) exp
(
−rn

2σn
0

)
(A1)
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Since the momentum deficit of the wake per unit length in the x-direction is the same for
different distribution models, the following equation can be obtained:

∫
Ui(t)−

^
U

i

w(x, t, r)dA =
(
Ui(t)−Ui

w(x, t)
)

Aw∫ ∞
0

(
Ui(t)−

^
U

i

w(x, t, r)
)

2πrdr =
(
Ui(t)−Ui

w(x, t)
)
πDi

w(x, t)2/4

∫ ∞
0

(
Ui(t)−

^
U

i

w(x, t, r)
)

rdr =
(
Ui(t)−Ui

w(x, t)
)

Di
w(x, t)2/8

(A2)

Substituting Equation (A1) into the left side of Equation (A2) yields:

∫ ∞
0

(
Ui(t)−

^
U

i

w(x, t, r)
)

rdr =
∫ ∞

0 Ui(t)C(x) exp
(
−rn

2σn
0

)
rdr

= Ui(t)C(x)
∫ ∞

0 r exp
(
−rn

2σn
0

)
dr

(A3)

For the formula x·exp(a·xn), there are the following known conclusions [12]:

ϕ(x) ∆
=
∫

x exp(axn)dx = −Γ(2/n,−axn)xn

n(−axn)2/n ,

and


lim

x→∞
ϕ(x) = 0

lim
x→0

ϕ(x) = − Γ(2/n)

n(−a)2/n

Thus, Equation (A3) is rewritten as:

∫ ∞

0

(
Ui(t)−

^
U

i

w(x, t, r)
)

rdr = Ui(t)C(x)
Γ(2/n)

n
(
1/
(
2σn

0
))2/n (A4)

Combining Equations (A2) and (A4), C(x) is obtained as follows:

C(x) =
n
(
Ui(t)−Ui

w(x, t)
)

Di
w(x, t)2(1/

(
2σn

0
))2/n

8Ui(t)Γ(2/n)
(A5)
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