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Abstract: The environmental factors of greenhouses affect crop growth greatly and are mutually
coupled and spatially distributed. Due to the complexity of greenhouse climate modeling, the
current optimal control of greenhouse crop growth rarely considers the spatial distribution issues
of environmental parameters. Proper Orthogonal Decomposition (POD) is a technique to reduce
the order of a model by projecting it onto an orthogonal basis. In this paper, POD is used to
extract environmental features from Computational Fluid Dynamics (CFD) simulations, and a low-
dimensional feature subspace is obtained by energy truncation. With multi-dimensional interpolation,
fast and low-dimensional reconstruction of the dynamic variation of greenhouse climates is achieved.
On this basis, a rolling-horizon optimal control scheme is proposed. For each finite horizon, the
external meteorological data are updated, and the response of the greenhouse environment is quickly
calculated by the POD model. With the performance criterion J of maximizing crop production
and energy efficiency, through the particle swarm optimization algorithm, the optimal settings for
the greenhouse shading rate and the fan speed are derived. Such control computations are rolled
forward during the whole planting season. Results of a case study show that the proposed method
has low computation cost and high spacial resolution and can effectively improve the spatiotemporal
accuracy of greenhouse climate management. In addition, different from traditional global optimal
control methods, the proposed rolling-horizon scheme can correct various external disturbances in the
procedure of crop growth, and thus it is more robust and has potential for engineering applications.

Keywords: greenhouse climate; POD; rolling horizon; optimal control; crop growth; energy efficiency

1. Introduction

With the growing population, depletion of resources and regional conflicts, it becomes
gradually important to increase food production and energy consumption efficiency [1].
Greenhouse planting can overcome unfavorable conditions of outdoor climate and geogra-
phy and thus plays a significant role in modern agriculture, especially in densely populated
areas in China. As a complex, high-dimensional system, the process of greenhouse climate
variation contains mutually interacting sub-processes with large differences in response
times and spaces. With the development of computing power and artificial intelligence,
practical designs of greenhouse climate management to promote crop growth and save
energy usage have attracted more and more attention [2–5]. The main idea of such control
techniques relies on using an objective function based on climatic and crop models over dif-
ferent timescales to determine the optimal trajectories of the main environmental variables.
For example, Van Henten proposed a receding-horizon optimal control strategy to derive
the main environmental variable trajectories throughout lettuce production [6,7]. To handle
time-varying parameters of the greenhouse crop model, Xu et al. [8] applied a two-time-
scale optimal controller for greenhouse crop cultivation with online parameter estimation.
Similar studies can be found in [4,5,9–11]. However, for large greenhouses, the distribution
of environmental parameters in the crop area is not uniform. The environmental variables
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to which the crops are subjected are not equivalent to the control outputs of the actuators
at the greenhouse boundary. To this end, without considering the spatial distribution of
the greenhouse, the environmental control sequence derived from the above studies is not
strictly optimal, but it is sub-optimal. Limited by the computational cost of environmental
simulation, there are few solutions to this problem.

A greenhouse system contains multiple mutually interacting subsystems such as the
indoor climate, crop dynamics (photosynthesis, respiration and transpiration) and crop
growth. Although there are several engineering practices for indoor environment modeling,
including nodal methods, zone methods, etc., Most of them only follow the laws of energy
conservation and mass conservation and do not meet the requirements of greenhouse
planting systems. Relatively, CFD methods are a suitable option. In fact, CFD simulation
has been widely used for high-resolution modeling and analysis of greenhouse flow fields.
For example, Santorini et al. [12] used a CFD method to study the numerical characteristics
of natural ventilation in a greenhouse. Zhang et al. [13] conducted CFD analysis on the
spatial distribution of the CO2 concentration in a strawberry greenhouse. Kim et al. [14]
used three-dimensional CFD to study the humidity distribution in a greenhouse that
was validated by experimental data. It is noted that due to the complex modeling and
high computational cost, CFD methods are mostly oriented towards systems analysis, not
optimal control [15]. Combining CFD simulation with model reduction tools to build a low-
dimensional surrogate model of a greenhouse environment is a new perspective. In 2008
and 2013, Sempey et al. [16] and Li et al. [17], respectively, successfully rebuilt indoor dy-
namical temperature fields based on POD order reduction. Similar studies include [18–22].
In 2020, Li et al. [23] first introduced the POD method to the greenhouse production field.
Reduced-order models of the temperature field and carbon dioxide concentration distri-
bution in a greenhouse were reconstructed. By combining a spline interpolation tool with
the obtained low-dimensional parameter models, the greenhouse environmental response
can be solved fast with low computation cost. It is interesting to combine low-dimensional
environmental models with climate-optimal control strategies. This will help us understand
the spatial distribution of crop growth trends, which will guide us to adjust the greenhouse
climate to optimal conditions with high spatial resolution. The challenges are: (1) During
the whole crop growth cycle, the external meteorological data changes a lot and external
disturbances exist. How do we quickly solve the greenhouse environmental response with
high-resolution at each time step? (2) The greenhouse climate model is built by a CFD-POD
method, and crop growth is commonly modeled by differential equations. How do we
coordinate the parameters of two such different types of models? (3) From the engineering
sense, the external meteorological conditions for the entire crop growth cycle are not known
in advance. How do we design a finite-horizon optimal control method based on short-term
weather data?

In view of the above issues, this paper aims to propose a rolling-horizon optimal
control strategy considering crop growth spatial distribution. The main contributions of
this paper are as follows:

(1) A reduced-dimensional model of the greenhouse climate is rebuilt by the POD method
and can provide indoor climate variation with high spatial resolution. With different
external meteorological data, the response of the greenhouse environment can be
quickly solved by multi-dimensional interpolation for each control step.

(2) The low-dimensional model of the greenhouse climate is integrated with a simplified
crop growth model. The environmental values to which the crop is subjected are
coordinated with the ambient parameters of the crop area in the climate model.

(3) Considering that the external meteorological conditions are not known in advance
for the entire planting season, a finite-horizon optimal control strategy is proposed.
The control horizon is set based on external weather condition forecasting. At each
finite horizon, the PSO optimization algorithm is applied to adjust the control vari-
ables of the climate model. Such control action rolls forward during the whole crop
growth cycle.
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(4) Through a case study, the effects of this method on economic benefits and energy
saving are validated and analyzed.

The rest of this paper is organized as follows: Section 2 describes basic principles
and methods used in this study, including the reduced-dimensional modeling method,
the greenhouse crop modeling method and the whole optimal control scheme. Section 3
presents the construction procedure of the proposed greenhouse climate model. Section 4
carries out a case study using the proposed optimal control scheme. Section 5 provides
a brief discussion of this method. The Conclusion Section gives some remarks and fu-
ture work.

2. Method
2.1. Reduced-Dimensional Modeling of Greenhouse Climate
2.1.1. Principles of POD Method

Proper orthogonal decomposition can be regarded as the optimal linear reconstruction
model in the sense of the least squares [24]. POD has been widely used to reduce the
dimensions of distributed environmental data [18–20]. After POD order reduction, by an
interpolation operation within the obtained low-dimensional parameter sub-space, the
response of the greenhouse climate can be solved quickly without losing the features of the
original model.

The basic idea of POD is: given a data set {θk ∈ H | k = 1 . . . n} in the n-dimensional
vector space V, find a group of m-dimensional (m << n) subsets s to form a subspace,
minimizing the error E(‖θk − Psθk‖) in mapping the original data to the subset, where V is
assumed to be a Hilbert space with inner product 〈·, ·〉, ‖θk − Psθk‖ is the energy norm of
H, and PS is the orthogonal mapping of the subspace S. In the application of greenhouse
climate modeling, the dimension of the θk vector represents the grid number of the area of
interest [25]. The above problem can be transformed to an eigenvalue problem, where R is
a square matrix of order n :

R = E(xk ⊗ x∗k ), (1)

Rϕk = λk ϕk, λ1 ≥ · · · ≥ λn ≥ 0, (2)

where ϕK is the eigenvector, or the so-called POD mode.
In the CFD simulation, the dimension of n is huge, which results in the very high

calculation cost of R. To this end, the snapshot solution method is applied in practice [23].
The snapshot solution method selects m groups of linearly independent data in the n-
dimensional vector space V and uses the linear combination of these m groups of data to
replace ϕK; it can be formulated as:

ϕK =
m

∑
k=1

Ckθk. (3)

By combining Equations (1)–(3), we get

E(xk ⊗ x∗k )×
m

∑
k=1

Ckθk = λ
m

∑
k=1

Ckθk. (4)

According to the property of tensor products, the above equation can be simplified as

1
m

AT AC = λC, (5)

where A is the original data matrix obtained by CFD simulation, and AT A is an m-order
square matrix. Because m << n, the calculation is simplified effectively.
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2.1.2. Reduced-Dimensional Modeling of Greenhouse Climate

The above POD method has achieved satisfactory results in the dynamic/steady-
state simulations of indoor environments [16,17]. From a mathematical point of view, the
POD method in an agricultural greenhouse climate system is used to find and extract the
dominant eigenvectors of environmental factors through multiple snapshots within the
feasible range of the control variables. Through the linear combination of mode coefficients
and eigenvectors, the subspace of environmental factor variation is reconstructed quickly.
In this way, calculation of the greenhouse environmental response is transformed from
complex CFD simulations to the interpolation of the mode coefficients. Such a modeling
procedure consists of two offline–online stages, which will be specified in Section 2.3.

The reconstruction of a low-dimensional environmental model based on POD mainly
includes the following steps:

S1. Set up a proper CFD model of the greenhouse climate considering external meteoro-
logical data and crop dynamics.

S2. Determine control variables and their feasible ranges. Set the variation range of
external weather conditions.

S3. Fully sample within the multi-dimensional space composed of the above control vari-
ables and external environmental parameters and carry out CFD steady simulations
accordingly.

S4. Extract the response parameter fields of each simulation (snapshots).
S5. Reconstruct parameter variation subspaces by POD (see Section 2.1(1) for details).
S6. According to the actual changes to the control variables/external conditions, ap-

ply multiple-dimensional interpolation in the obtained parameter subspace for fast
acquisition of the greenhouse climate response.

2.2. Greenhouse Crop Growth Modeling

A greenhouse system has complex, mutually interacting processes between the indoor
climate and crop growth. On the basis of the greenhouse climate model, a simplified lettuce
growth process is modeled in this study. It is known that Henten’s four-state-variable
dynamic model [9] integrates a one-state-variable lettuce growth model (including one state
variable: crop dry weight) and a greenhouse climate model (including three state variables:
air temperature, air humidity and carbon dioxide concentration). The adequacy of this
model has been verified based on the destructive measurement of 20 plants at multiple
sample dates [7]. A similar verification can be found at [26]. In this study, the greenhouse
crop model refers to the basic principles of Henten’s model. The difference is that the
climate-related state variables are either directly extracted from the POD climate model
or are simplified according to the planting conditions. The lettuce growth model refers
to Henten’s equation with crop dry matter as the main state variable. The first-difference
form of the model is as follows:

Xd(i + 1, k) = Cαβ ϕphot(i, k)− CrespXd(i, k)× 2(0.1XT(i,k)−2.5) + Xd(i, k)

ϕphot(i, k) =
(

1− e−Cpl,dXd(i,k)
)
×

Crad,photVrad(−Cco2,1XT(i, k)2 + Cco2,2XT(i, k)− Cco2,3)(Xc − CΓ)

Crad,photVrad + (−Cco2,1XT(i, k)2 + Cco2,2XT(i, k)− Cco2,3)(Xc − CΓ)
,

(6)

where Cαβ is the yield factor, ϕphot is the photosynthetic rate, Cresp is the respiratory rate,
Cpl,d is the effective canopy surface, Crad,phot is the light utilization efficiency, and Vrad is
the solar radiation outside the greenhouse; Cco2,1, Cco2,2 and Cco2,3 describe the effect of
temperature on the total photosynthesis of the canopy, Xc is the state variable of carbon
dioxide concentration, and CΓ represents the carbon dioxide compensation point. The
values of related coefficients also refer to Henten’s report [7,9] (Table 1).
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Table 1. Initial/correlation coefficients of greenhouse lettuce growth model.

Parameter Value

Cαβ 0.544
Cco2,1 5.11× 10−6 ms−1 ◦C−2

Cco2,2 2.30× 10−4 ms−1 ◦C−1

Cco2,3 6.29× 10−4 ms−1

Cpl,d 53 m2 kg−1

Crad,phot 3.55× 10−9 kg J−1

Cresp 2.65× 10−7 s−1

CΓ 5.2× 10−5 kgm−3

Xc 6.41× 10−4 kgm−3

Pr 0.55 kWh
N f an 3
S f an 3× 105 m3 h−1

Sgh 6.08× 102 m2

Cprice,1 1.5 RMB kg−1

Cprice,2 0.5283 RMB kWh−1

Cλ,1 22.5
Cλ,2 1.69× 10−1

From the above lettuce model, it is seen that the crop dry weight Xd is mainly deter-
mined by the indoor air temperature XT , the solar radiation Vrad and the carbon dioxide
concentration Xc. For this study, the indoor air temperature XT is extended to XT(i, k), and
its value is extracted from the greenhouse climate model, which can derive air temperature
at each time step and grid cell (i represents the time step and k means the No. of the
grid cell). The value of solar radiation Vrad is calculated by an external meteorological
report and the shading rate of the greenhouse. Considering the planting conditions of East
China’s summer, the carbon dioxide concentration Xc is not set as a control variable and is
simplified to a constant equal to the atmospheric concentration. The photosynthesis and
respiration of crops are directly given by Equation (6) [7].

2.3. The Optimal Control Scheme
2.3.1. Statement of the Climate-Optimal Control Problem

Different from other greenhouse climate models, the environmental factors affecting
crop growth are simulated by two models in this study. The crop growth model simulates
the increase in dry weight that is mainly affected by ambient air temperature, solar radiation
and carbon dioxide concentration (as a constant). In the greenhouse climate model, porous
material is used to simulate the crop area. According to the description in Section 2.2, the
coordination of the two models occurs mainly at the temperature field of the crop area.
The temperature distribution of the crop canopy is solved by CFD simulation considering
various environmental factors’ influences (outdoor radiation, outdoor air temperature,
relative humidity and air speed). The resulting values of the temperature field at time step
k are transferred to XT(i, k) of the crop growth model. In this way, the reduced greenhouse
climate model and lettuce growth equations are integrated to generate numerical solutions
to the optimal control problem.

The control variables are set according to field conditions of the greenhouse. In this
study, they are the ceiling shading rate and the fan speed of the greenhouse. The control
variables both have equality constraints, which will be specified in the following section.

From the engineering sense, the external meteorological conditions cannot be predicted
accurately in advance for the entire planting season. To this end, a kind of finite-horizon
optimal control strategy is proposed that is more feasible than global optimal control
methods. Based on the outdoor weather’s prediction time domain, the control horizon is
set accordingly. Step by step, the control action rolls forward during the whole crop growth
cycle. It should be noted that unlike traditional global optimal controls, rolling optimal
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control cannot obtain the ideal global optimal solutions because the performance criteria
are set piecewise for finite horizons. However, considering the complexity of external
weather variations, a finite-horizon optimal control strategy based on short-term weather
prediction has better robustness, and the accuracy can be guaranteed.

Crop yield and energy efficiency during the planting process are the two main targets
for greenhouse climate management. The crop dry matter weight is linearly related to the
crop yield. For each control time horizon, the dry matter increase is converted to economic
benefit, and the energy usage is converted to economic cost. Thus, for finite horizon [T0, Ts],
the performance criteria is set as following:

maxJ = Φ(X̄d(i))− L
(

v f an(i)
)

Φ(X̄d(i)) = Cλ,1(1− Cλ,2)SghCprice,1 ×
Ts

∑
i=T0

X̄d(i)

L
(

v f an(i)
)
=

N f an

∑
Ts

∑
i=T0

(
S f an × v f an(i)

Vf an,r

)3

PrCprice,2

(7)

where Φ(X̄d(i)) is the converted economic benefit of crops for [T0, Ts], L
(

v f an(i)
)

is the
economic cost of electrical energy consumed by the greenhouse fan wet curtain system;
X̄d(i) is the average increase in the weight of crop dry matter in the crop area for one time
step, Cλ,1 is the ratio of wet weight to dry weight of lettuce, Cλ,2 is the ratio of root dry
weight of lettuce to total dry weight, Sgh is the crop area, and Cprice,1 is the price of lettuce in
the wholesale market; S f an is the area of the greenhouse fan, Vf an,r is the rated air volume
of the fan, Pr is the rated power of the fan, N f an is the number of fans, and Cprice,2 is the
price of electricity per kWh [27] .

2.3.2. PSO Optimization Algorithm

Since a CFD-based climate model is combined with a crop growth model for this
optimal control issue, the traditional optimal control solutions are not applicable. In
this study, searching for optimal solutions is carried out by a stochastic optimization
algorithm—a particle swarm optimization algorithm—that has the characteristics of global
search ability, a simple structure and fast search speed [28–31].

In the search space, composed of fan speed and shading rate for this paper, N particles
are randomly placed with their positions and speeds initialized. For each iteration, the
particle quality is evaluated by calculating the fitness value given by Equation (7). Note
that the environmental response of the greenhouse for each particle is quickly calculated
by POD. The position and speed of each particle is updated according to the individual’s
best value (pbest) and the population’s best value (gbest). When the iteration number or
accuracy requirements are met, the iteration stops and the optimal result is obtained. The
details of the PSO algorithm can be found in [28].

2.3.3. Overall Optimal Control Framework Based on Offline–Online Strategy

Since the crop growth trend with high spatial resolution needs complex CFD simula-
tions, the process of the overall optimal control framework is divided into two stages:

Offline stage: The CFD simulation of the greenhouse climate model is reduced by
POD. The complex numerical iteration method of CFD is replaced by the fast interpolation
method. Considering the outdoor meteorological data and the greenhouse structure, the
greenhouse model is established and the control variables are set. Then, according to
the ranges of main outdoor meteorological conditions and control variables, a sufficient
number of sampling and corresponding steady simulations are conducted. The result-
ing temperature fields in the crop area are extracted, and POD is applied to rebuild a
reduced-order temperature field variation space with respect to mode coefficients. In this
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way, the particles’ fitness function calculation can be accelerated by multiple-dimensional
interpolation instead of CFD simulations.

Online stage: A simplified lettuce growth model is built in a first-order difference shape.
According to the outdoor meteorological prediction timescale, the optimal control’s time
horizon is set. The performance criteria considering economic benefits and energy savings
is set. For each time horizon, the PSO algorithm is applied for optimal control variable
searching in the control variable space. In each iteration of PSO, POD-based multiple-
dimensional interpolation is carried out for greenhouse climate response calculation. The
control operation rolls forward during the whole crop growth cycle. The overall optimal
control framework is shown in Figure 1.

Hourly outdoor meteorological data

(air temperature, humidity, radiation)

1. CFD greenhouse

climate modelling

On line

2. Control variables

setting (sunshade rate,

fan speed)

3. Sufficient number of

steady simulations

4. Snapshotting of

temperature field in crop

area

5. Reconstruction of

reduce-order parameter

subspace by POD

method

i. Lettuce growth

modeling (first order

difference)

ii. Setting finite-horizon

of optimal control

(hourly)

iii. Setting performance

criteria for finite-horizon

iv. PSO algorithm for

optimal control variables

searching

v. Obtain optimal control results for entire planting

season

6. Multi-D interpolation

in subspace for

calculation of

temperature field

Off line

Figure 1. The overall optimal control framework.

3. Construction of Greenhouse Climate Model
3.1. CFD Modeling

The greenhouse model used for optimal control in this paper refers to an actual green-
house building located in Zhenjiang City, Jiangsu Province, China (longitude 119.452753 E,
latitude 32.204402 N). The length of the greenhouse from north to south is 40 m, and the
width from east to west is 18 m. The four walls and ceiling are made of float glass with light
transmittance of 87%. Three negative-pressure fans are equipped in the north wall. In order
to verify the stability and accuracy of the CFD model, the actual greenhouse is equipped
with 36 wireless temperature sensors and 4 wind-speed sensors. The greenhouse’s location
and structure are shown in Figure 2.

For CFD simulation, the fans are simplified to square holes with side lengths of 1 m. A
wet curtain is simulated with a size of 38 m × 1.25 m and is located on the south wall 0.2 m
above the ground. A cube is simulated as the crop area with a size of length× width× height
= 36 m × 16 m × 0.2 m inside the greenhouse. The three-dimensional model is meshed with
72,492 grid units, and the wet curtain position is encrypted. The pressure-based solver is
selected for model calculation. The standard k−ω model is chosen for turbulence modeling.
A discrete-coordinate DO model is used for radiation modeling. A porous material is used
to simulate the crop area of the greenhouse. For simplicity, two momentum source terms,
including viscous resistance terms and inertial resistance terms, are added to the momentum
equation of the porous material, and the Ergun formula is used to estimate their values. To
simulate the crop’s transpiration effect, a temperature boundary is set at the crop canopy.
Referring to the data in other literature [32], the boundary temperature is simplified as a linear
function of the wet curtain temperature and the external temperature. The geometric structure
of the greenhouse model is shown in Figure 3, and the main physical properties of materials
applied in the greenhouse model are listed in Table 2 [33,34]. Figure 4 provides the residual
diagram of a typical CFD simulation by the above model setting, and Figure 5 provides the
resulting temperature contours at three different fan speeds.
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Figure 2. The test greenhouse’s location and structure.

Figure 3. CFD model of greenhouse with mesh grids.
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Figure 4. Residual diagram of CFD greenhouse modeling.

Table 2. Physical property parameters of greenhouse materials.

Material Density Specific Heat Cap. Thermal Cond. Absorption Coef. Refractive
(kgm−3) (Jkg−1K−1) (Wm−1K−1) (m−1) Index

Porous material 700 2310 0.17 0.26 2.77
Land 1900 2200 1.15 0.5 1.5

Float glass 2500 700 0.71 0.1 1.7
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Figure 5. Temperature contours at X–Z section (0.3 m high) of greenhouse for three fan speeds: 0 m/s,
2 m/s and 4 m/s.

3.2. Reduced Model for Greenhouse Climate Variation

It is known that lettuce growth in greenhouses is sensitive to high temperatures. The
most suitable temperature range for lettuce planting is 11–18 ◦C. Ambient temperatures
above 25 ◦C cause premature bolting, and temperatures above 28 ◦C cause slow growth and
poor quality [35,36]. For greenhouses in summer in East China, the outdoor temperature
and light intensity are usually higher than the proper values for lettuce growth. To this end,
it is necessary to control the indoor temperature of the greenhouse to make it suitable for
the growth of lettuce.

For summer planting, two months of hourly climate information for Zhenjiang City
(Jiangsu Province, China) is collected from the US National Oceanic and Atmospheric
Administration’s meteorological satellite (recorded in Figure 6).

According to the ranges of weather conditions collected, the variation ranges of the
three main environmental parameters for the greenhouse are set as follows: the outside
temperature range is 15–35 ◦C, the outside humidity range is 35–100%, and the solar
radiation range is 0–600 Wm−2. Additionally, the feasible speed range of the wet curtain
and the negative pressure fans is set to 0–4 ms−1.

Within the four-dimensional space composed of these four main variables, 135 sample
points are evenly sampled. Each sample point represents a parameter vector: [outside
temperature, outside humidity, solar radiation, fan speed]. In this way, a total of 135 samples
are evenly selected, as shown in Figure 7.
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Figure 6. Meteorological data of the greenhouse: outdoor relative humidity (upper), air temperature
(middle) and solar radiation (bottom) from 0:00 of 1 May to 23:00 of 30 June 2021.

Figure 7. The 135 evenly selected sample-point locations in the four environmental parameters’ space.

According to the selected parameter vector and other related boundary conditions,
the corresponding 135 steady simulations of the greenhouse climate are performed during
the offline stage. For POD order reduction, the temperature field, containing 8146 grids
in the horizontal section 0.25 m above the ground, is extracted after each simulation.
It represents the temperatures around the crop canopy, i.e., XT(i, k) in the crop growth
equation (Equation (6)). The total of 135 temperature-field snapshots are straightened to
form the temperature field variation matrix of the crop canopy, i.e., matrix A in Equation (5),
whose dimensions are 8146× 135. According to the POD snapshot method mentioned in
Section 2.1, the original eigenvalue problem is transformed into the eigenvalue problem of
matrix AT A, whose dimensions are 135× 135. By solving Equation (5), the eigenvalues
λ and eigenvectors Φk (POD modes) are solved. Thus, the temperature field’s variation
(described by 135 snapshots) is transformed into a parameter subspace that can be described
by the linear combination of POD modes and their coefficients. To ensure the obtained POD
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model contains more than 99% of the information of the original model, the first six energetic
POD modes are retained [16]. Thus, when the actual weather condition is known (outside
temperature, humidity and solar radiation), and the candidate control variables (fan speed
and sunshade rate) from the optimal control iteration are set, the greenhouse climate
response can be quickly solved by the interpolation of model coefficients within their
distributions. Corresponding to the ranges of the four above variables, the distributions of
the two most-principal mode coefficients are shown in Figure 8 as an example.

(a) Solar radiation values: 0 (left), 300 (middle) and 600 (right).

(b) Solar radiation values: 0 (left), 300 (middle) and 600 (right).

Figure 8. The first two principal mode coefficient distributions corresponding to four variables:
(a) the 1st mode coefficient’s distribution; (b) the 2nd mode coefficient’s distribution.

To verify the accuracy of the quickly obtained greenhouse climate response, experi-
mental data from May 2017 [23] is compared with the temperature distribution from the
POD model. The results show that the POD accuracy of the steady-state temperature field
is consistent with that of experimental values, and the difference in temperature is no more
than 0.8 ◦C. More-detailed model validation can be found in our previous report [23]. Us-
ing the offline–online strategy, this method can obtain high-resolution greenhouse climate
information quickly, which is the basis of the high-precision climate control described in
the following section.

4. Optimal Control Results
4.1. Optimal Control Setting

For the purpose of optimal control with high spatial resolution, the reduced CFD
model of the greenhouse climate and the simplified crop growth model are integrated as
described in Section 2. From the engineering sense, the external meteorological data are
assumed to come from short-term predictions (hourly). The finite-horizon optimal control
strategy is applied for the optimal control of the greenhouse climate. The rolling-control
horizon is set to one hour accordingly, and the whole planting cycle is set to 8 weeks.
According to the actual planting conditions of the greenhouse, the control variables are
set as ceiling shading rate and fan speed with equality constraints. The control target
contains the maximum of dry weight increase and energy efficiency that is formulated in
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Equation (7). Because of the complexity of the mixed model, the stochastic optimization
algorithm—the PSO algorithm—is used for optimal control variable searching in each
control horizon. Considering the convergence efficiency, the particle number is set to 100
and the iteration number is set to 5. Although some parameters have been mentioned
above, we summarize them together in Table 3.

Table 3. Main parameter settings for optimal control.

Parameter Value or Range

Control variable 1 fan speed (0–4 ms−1)
Control variable 2 sunshade rate

External meteorological data air temperature, relative humidity and solar radiation
(East China from 1 May to 30 June 2021)

Control time horizon 8 weeks
Time step hourly

Control target dry weight increase and energy efficiency
Optimization algorithm PSO algorithm

Particle number 100
Iteration number 5

Number of POD modes 6

4.2. Results and Analysis

By using the mixed greenhouse model and parameter settings mentioned above,
the proposed optimal control is conducted. To show the convergence efficiency of the
PSO algorithm, a typical searching procedure for optimal control variables is recorded in
Figure 9. It is seen that after five iterations, most of the particle swarm can converge to the
optimal location successfully according to the fitness function.

Figure 9. Schematic of particle swarm searching process: Data1 represent the original distribution of
the particle swarm, and Data2 represent the distribution after five iterations.

After the whole planting cycle of 8 weeks, the crop dry matter weight per square
meter is derived and is shown in Figure 10a. From the figure, it is seen that due to the
spatial inhomogeneity of greenhouse environmental parameters, the spatial distribution of
the crop yield is different. By combining the POD-based reduced dimension greenhouse
climate model with the crop growth model, the crop growth trend at each grid can be
observed and controlled. In other words, the proposed method provides the ability to
precisely manage the lettuce growth of the crop area in both temporal and spatial domains.
From the result of the dry matter weight distribution, the crop weights near the wet curtain
side are better than those near the other side. The two corner areas near the north wall
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have the lowest crop yield. The poor temperature regulation effect in these two zones may
be the main reason. The corresponding control sequences of fan speed and sunshade rate
during the whole planting cycle are recorded in Figure 11a and Figure 12, respectively.

(a) Crop yields under proposed optimal control strategy.

(b) Crop yields under switch control strategy.

Figure 10. Spatial distributions of crop yields under different control strategies: (a) proposed optimal
control and (b) switch control.

To validate the effect of the proposed control strategy, another simple control scheme
is also implemented for comparison. It belongs to a kind of switch control: that is, when the
outdoor temperature is higher than 30 ◦C, the fan speed is set to 4 m/s, and when the solar
radiation is higher than 600 Wm−2, the shading rate is set to 30%. Figure 10b shows the
crop dry matter weight per square meter under this switch control strategy. Compared with
Figure 10a, it is obviously seen that crop yield under optimal control is much better than
crop yield under switch control. The average weight of dry matter under optimal control is
0.43 kg/ m2, which is better than that under switch control (0.3 kg/ m2). Compared with
the switch control method, the gross profit of the proposed method is increased by 42.75%.
See Table 4 for a specific quantitative comparison.
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(a) Control sequence of fan speed for maximum J.
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(b) Control sequence of fan speed for maximum Xd.

Figure 11. Optimal control sequences of fan speed for different objective functions: (a) maximum J
and (b) maximum Xd.

By using the switch control strategy, the reliability of the proposed mixed greenhouse
model for lettuce growth trend simulation is also verified. The lettuce growth model of this
paper refers to Henten’s four-state-variable model with crop dry matter as the main state
variable. For this reason, the four-state-variable model [7] is constructed as a benchmark
model. Using the same switch control strategy and collected external meteorological data,
the dry matter growth curves under the two lettuce growth models are obtained and are
shown in Figure 13. It can be seen from the figure that the crop growth curves under the
two models are generally consistent.

The features of the control sequences under different optimization objectives are also
investigated. We change the objective function from maximum J to maximum Xd and apply
the same optimal control strategy again for comparison. From Figure 11, it is found that
the fan-speed sequences under the two objectives are obviously different because the target
of energy efficiency affects the usage of fans. The crop yield and fan energy consumption
are both considered simultaneously in the objective function J. Especially in the early
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stage of crop growth, the fan-speed sequence under maximum J is much lower than that
under maximum Xd. Table 4 specifies the gross profits under the two different objective
functions. From the table, the proposed optimal control strategy with the objective of
maximum J has a gross profit of RMB 12,688.17. Although the total sales of lettuce is
slightly lower, the energy-saving use of fans makes the overall economic return better than
that under maximum Xd (RMB 12,678.56). Under optimal control with maximum Xd, the
energy cost is RMB 92.57. Under optimal control with maximum J, the energy cost is RMB
79.80. The price of electricity is fixed, and the usage of energy is directly proportional to
the energy cost: (79.80–92.57)/92.57≈−13.8%; about 13.8% of the electric energy is saved.
It is also noted that since only fan energy consumption is considered in maximum J, the
cost of energy consumption is disproportionately small compared with crop sales. (From
Figure 14a, it is found that the crop yield curves under the two objectives are very close.) If
necessary, the term of energy consumption in the objective J can be given a greater weight
in the optimization process, so as to effectively strengthen the energy-saving effect. In
Figure 14b, we simulate the crop yield curves under three soaring electricity prices. Table 4
also specifies their energy costs and economic benefits.

Table 4. Effects of different control strategies on crop growth, energy consumption and
economic benefits.

Strategy
Dry

Weight,
Wet

Weight,
Selling
Price,

Energy
Cost,

Gross
Profit,

kg/m2 kg/m2 RMB RMB RMB

Switch control 0.30 6.23 8898.55 10.38 8888.17
Optimal control
(maximum Xd) ≈0.43 ≈8.94 12,771.13 92.57 12,678.56
Optimal control

(maximum J) ≈ 0.43 ≈ 8.94 12,767.97 79.80 12,688.17
Optimal control
(maximum J, 5×
electricity price) ≈ 0.42 ≈ 8.80 12,568.04 79.80 12,405.41
Optimal control

(maximum J, 10×
electricity price) ≈ 0.41 ≈ 8.57 12,251.78 188.48 12,063.30
Optimal control

(maximum J, 50×
electricity price) ≈ 0.38 ≈ 7.91 11,297.56 180.25 11,117.32
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Figure 12. Optimal control sequence of sunshade rate for maximum J.
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Figure 13. Simulated curves of crop dry weight per unit using the same switch control strategy and
external meteorological data: Curve 1 represents the result of the proposed model, and Curve 2 represents
the result of the four-state-variable model from [7].
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Figure 14. Simulated curves of crop dry weight per unit using different control strategies and
energy costs: (a) simulated curves representing different control strategies and (b) simulated curves
representing different electricity prices. (a) Simulated curves of crop dry weight per unit using
three control strategies: Curve 1 represents the result of switch control, Curve 2 represents the result
of optimal control with maximum Xd, and Curve 3 represents the result of optimal control with
maximum J. (b) Simulated curves of unit crop dry weight per unit using four electricity prices: Curve
1 represents current electricity price, Curve 2 represents 5× current price, Curve 3 represents 10×
current price, and Curve 4 represents 50× current price.

Overall, by the proposed control method, the spatial distribution of crop yield can be
estimated with high resolution, and the greenhouse climate field can be optimally controlled
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accordingly. From the results of different control strategies, switch-control-based simple climate
management has the worst economic return for crop harvest. The maximum Xd-based climate
optimal control has the highest crop yields. Considering energy consumption, the proposed
maximum J-based climate control strategy is the best climate management solution in this
study. By replacing CFD simulation with a real sensor matrix, this control method has the
potential for engineering practice.

4.3. Assumptions and Limitations

Actually, the processes of greenhouse climate variation and crop growth are very
complicated in real situations. To design the proposed optimal control strategy with low
computation cost and high spacial resolution, the greenhouse crop model is simplified to
some extent and has several assumptions as follows:

∗ In the CFD simulations of the greenhouse climate, the temperatures of each wall
and the land are considered homogeneous and constant. Considering the planting
conditions of East China in summer, the concentration of carbon dioxide is simplified
to a constant.

∗ The timescales of greenhouse environmental variation and crop growth are unified at
an hourly scale. Smaller-timescale changes are ignored.

∗ Since the performance criteria are set hourly, the results of the proposed optimal
control strategy are not the ideal global optimal solutions.

5. Conclusions

In this paper, an optimal control scheme for greenhouse climate management is
designed. POD technology combined with CFD simulation helps achieve greenhouse
climate response with high spatial resolution. A modified crop growth model is used to
simulate the increase in dry weight that is mainly affected by ambient air temperature
and solar radiation. With the performance criterion J of maximizing crop production
and energy efficiency, the optimal control variables of greenhouse shading rate and fan
speed are derived. The results indicate the proposed method’s low computation cost
and high spacial resolution. Compared with the traditional switch control method, crop
dry weight per square meter is increased from 0.30 kgm−2 to 0.43 kgm−2, the total profit
is increased from RMB 8888.17 to RMB 12,688.17, and the gross profit of this method is
increased by 42.75%. In the comparison of two optimal control schemes with different
performance criteria, the proposed strategy with objective maximum J saves 13.8% energy
usage compared with the same control strategy with objective of maximum Xd. This method
considers spatial distributions of environmental factors in the greenhouse; thus, it can help
realize the optimal climate control for multi-crop planting in different zones with high
accuracy and spatial resolution. By replacing CFD simulation with a real sensor matrix
and also using the offline–online strategy, this control method is expected to be applied to
engineering practice in the future.
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Nomenclature

POD Proper orthogonal decomposition
CFD Computational fluid dynamics

CFD-POD method
Rapid reconstruction of greenhouse climate environment based on CFD and
POD feature extraction

PSO Particle swarm optimization
DO model Discrete ordinates model
Cαβ Yield factor
Cco2,1,Cco2,2 ,Cco2,3 Temperature influence on gross canopy photosynthesis
Cpl,d Effective canopy surface
Crad,phot Light-use efficiency
Cresp Respiration rate expressed in terms of the amount of respired dry matter
CΓ Carbon dioxide compensation point
ϕphot Gross canopy photosynthesis rate
Vrad Solar radiation in the greenhouse
Xc Carbon dioxide concentration
XT Temperature
XT Crop dry weight
Pr Rated power of the fan
N f an Number of fans
S f an Rated air supply capacity of the fan
Sgh Area of the crop area
Cprice,1 Price of lettuce in the wholesale market
Cprice,2 Price of electricity
Cλ,1 Ratio of wet weight to dry weight of lettuce
Cλ,2 Ratio of root dry weight of lettuce to total dry weight
Φ Converted economic benefit of crops

L
Economic cost of electrical energy consumed by the greenhouse
fan wet curtain system

References
1. Lin, D.; Zhang, L.; Xia, X. Hierarchical model predictive control of Venlo-type greenhouse climate for improving energy efficiency

and reducing operating cost. J. Clean. Prod. 2020, 264, 121513. [CrossRef]
2. Dhiman, M.; Sethi, V.; Singh, B.; Sharma, A. CFD analysis of greenhouse heating using flue gas and hot water heat sink pipe

networks. Comput. Electron. Agric. 2019, 163, 104853. [CrossRef]
3. Van Straten, G.; Van Henten, E. Optimal greenhouse cultivation control: Survey and perspectives. IFAC Proc. Vol. 2010, 43, 18–33.

[CrossRef]
4. Jin, C.; Mao, H.; Chen, Y.; Shi, Q.; Wang, Q.; Ma, G.; Liu, Y. Engineering-oriented dynamic optimal control of a greenhouse

environment using an improved genetic algorithm with engineering constraint rules. Comput. Electron. Agric. 2020, 177, 105698.
[CrossRef]

5. González, R.; Rodriguez, F.; Guzmán, J.L.; Berenguel, M. Robust constrained economic receding horizon control applied to the
two time-scale dynamics problem of a greenhouse. Optim. Control. Appl. Methods 2014, 35, 435–453. [CrossRef]

6. Van Hanten, E. Optimal control of greenhouse climate. Math. Control. Appl. Agric. Hortic. 1991, 24 , 27–32. [CrossRef]
7. Henten, E.J.V. Greenhouse Climate Management: An Optimal Control Approach; Wageningen University and Research: Wageningen,

The Netherlands, 1994.
8. Xu, D.; Du, S.; van Willigenburg, G. Adaptive two time-scale receding horizon optimal control for greenhouse lettuce cultivation.

Comput. Electron. Agric. 2018, 146, 93–103. [CrossRef]
9. Van Henten, E.; Bontsema, J. Time-scale decomposition of an optimal control problem in greenhouse climate management.

Control. Eng. Pract. 2009, 17, 88–96. [CrossRef]
10. Piscia, D.; Muñoz, P.; Panadès, C.; Montero, J. A method of coupling CFD and energy balance simulations to study humidity

control in unheated greenhouses. Comput. Electron. Agric. 2015, 115, 129–141. [CrossRef]
11. Xu, D.; Du, S.; Van Willigenburg, G. Double closed-loop optimal control of greenhouse cultivation. Control. Eng. Pract. 2019,

85, 90–99. [CrossRef]
12. Santolini, E.; Pulvirenti, B.; Benni, S.; Barbaresi, L.; Torreggiani, D.; Tassinari, P. Numerical study of wind-driven natural

ventilation in a greenhouse with screens. Comput. Electron. Agric. 2018, 149, 41–53. [CrossRef]

http://doi.org/10.1016/j.jclepro.2020.121513
http://dx.doi.org/10.1016/j.compag.2019.104853
http://dx.doi.org/10.3182/20101206-3-JP-3009.00004
http://dx.doi.org/10.1016/j.compag.2020.105698
http://dx.doi.org/10.1002/oca.2080
http://dx.doi.org/10.1016/B978-0-08-041273-3.50010-0
http://dx.doi.org/10.1016/j.compag.2018.02.001
http://dx.doi.org/10.1016/j.conengprac.2008.05.008
http://dx.doi.org/10.1016/j.compag.2015.05.005
http://dx.doi.org/10.1016/j.conengprac.2019.01.010
http://dx.doi.org/10.1016/j.compag.2017.09.027


Energies 2023, 16, 3925 19 of 19

13. Zhang, Y.; Yasutake, D.; Hidaka, K.; Kitano, M.; Okayasu, T. CFD analysis for evaluating and optimizing spatial distribution
of CO2 concentration in a strawberry greenhouse under different CO2 enrichment methods. Comput. Electron. Agric. 2020,
179, 105811. [CrossRef]

14. Kim, K.; Yoon, J.Y.; Kwon, H.J.; Han, J.H.; Son, J.E.; Nam, S.W.; Giacomelli, G.A.; Lee, I.B. 3-D CFD analysis of relative humidity
distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers. Biosyst. Eng. 2008, 100, 245–255. [CrossRef]

15. Katzin, D.; van Henten, E.J.; van Mourik, S. Process-based greenhouse climate models: Genealogy, current status, and future
directions. Agric. Syst. 2022, 198, 103388. [CrossRef]

16. Sempey, A.; Inard, C.; Ghiaus, C.; Allery, C. A state space model for real-time control of the temperature in indoor space-principle,
calibration and results. Int. J. Vent. 2008, 6, 327–336.

17. Li, K.; Xue, W.; Xu, C.; Su, H. Optimization of ventilation system operation in office environment using POD model reduction
and genetic algorithm. Energy Build. 2013, 67, 34–43. [CrossRef]

18. Tan, B.T. Proper Orthogonal Decomposition Extensions and Their Applications in Steady Aerodynamics. Master of Engineering
in High Performance Computation for Engineered Systems (HPCES). Master’s Thesis, Singapore-MIT Alliance, Singapore, 2003.

19. Tallet, A.; Allery, C.; Allard, F. POD approach to determine in real-time the temperature distribution in a cavity. Build. Environ.
2015, 93, 34–49. [CrossRef]

20. Lieu, T.; Farhat, C.; Lesoinne, M. Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput. Methods
Appl. Mech. Eng. 2006, 195, 5730–5742. [CrossRef]

21. Wang, X.; Zhao, J.; Wang, F.; Song, B.; Zhang, Q. Air supply parameter optimization of a custom nonuniform temperature field
based on the POD method. Build. Environ. 2021, 206, 108328. [CrossRef]

22. Munar, E.; Bojaca, C.; Baeza, E. Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural
production in a tropical mountain climate. Biosyst. Eng. 2019, 188, 288–304.

23. Li, K.; Sha, Z.; Xue, W.; Chen, X.; Mao, H.; Tan, G. A fast modeling and optimization scheme for greenhouse environmental
system using proper orthogonal decomposition and multi-objective genetic algorithm. Comput. Electron. Agric. 2020, 168, 105096.
[CrossRef]

24. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci. 2016, 374, 20150202. [CrossRef] [PubMed]

25. Li, K.; Xue, W.; Mao, H.; Chen, X.; Jiang, H.; Tan, G. Optimizing the 3D distributed climate inside greenhouses using multi-
objective optimization algorithms and computer fluid dynamics. Energies 2019, 12, 2873. [CrossRef]

26. Xu, D.; Ahmed, H.A.; Tong, Y.; Yang, Q.; Willigenburg, L.V. Optimal control as a tool to investigate the profitability of a Chinese
plant factory—Lettuce production system. Biosyst. Eng. 2021, 208, 319–332. [CrossRef]

27. Xu, K. Fan Manual; China Machine Press: Beijing, China, 2011.
28. Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-organizing hierarchical particle swarm optimizer with time-varying

acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [CrossRef]
29. Engelbrecht, A.P. Particle swarm optimization with crossover: A review and empirical analysis. Artif. Intell. Rev. Int. Sci. Eng. J.

2016, 45, 131–165. [CrossRef]
30. Song, C.Y.; Jiang, M.C.; Shi, H.J.; Jiang, Y.Q.; Jiang, J.Q.; Bao, D.X. Particle Swarm Optimization Algorithm and Its Application. J.

Inn. Mong. Univ. Natl. (Nat. Sci.) 2006, 29, 2531–2561.
31. Tang, J.; Liu, G.; Pan, Q. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Prob-

lems:Applications and Trends. IEEE/CAA J. Autom. Sin. 2021, 8, 17.
32. Kittas, C.; Bartzanas, T. Greenhouse microclimate and dehumidification effectiveness under different ventilator configurations.

Build. Environ. 2007, 42, 3774–3784. [CrossRef]
33. Fidaros, D.K.; Baxevanou, C.A.; Bartzanas, T. Numerical simulation of thermal behavior of a ventilated arc greenhouse during a

solar day. Renew. Energy 2010, 35, 960–1481. [CrossRef]
34. Wen, Z.; Shi, L.; Ren, Y. FLUENT Fluid Mechanics Calculation Application Textbook; Tsinghua University Press: Beijing, China, 2009.
35. Al-Said, F.; Hadley, P.; Pearson, S.; Khan, M.M.; Iqbal, Q. Effect of high temperature and exposure duration on stem elongation of

iceberg lettuce. Pak. J. Agric. Sci. 2018, 55.
36. Zhou, J.; Li, P.; Wang, J.; Fu, W. Growth, photosynthesis, and nutrient uptake at different light intensities and temperatures in

lettuce. HortScience 2019, 54, 1925–1933. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compag.2020.105811
http://dx.doi.org/10.1016/j.biosystemseng.2008.03.006
http://dx.doi.org/10.1016/j.agsy.2022.103388
http://dx.doi.org/10.1016/j.enbuild.2013.07.075
http://dx.doi.org/10.1016/j.buildenv.2015.07.007
http://dx.doi.org/10.1016/j.cma.2005.08.026
http://dx.doi.org/10.1016/j.buildenv.2021.108328
http://dx.doi.org/10.1016/j.compag.2019.105096
http://dx.doi.org/10.1098/rsta.2015.0202
http://www.ncbi.nlm.nih.gov/pubmed/26953178
http://dx.doi.org/10.3390/en12152873
http://dx.doi.org/10.1016/j.biosystemseng.2021.05.014
http://dx.doi.org/10.1109/TEVC.2004.826071
http://dx.doi.org/10.1007/s10462-015-9445-7
http://dx.doi.org/10.1016/j.buildenv.2006.06.020
http://dx.doi.org/10.1016/j.renene.2009.11.013
http://dx.doi.org/10.21273/HORTSCI14161-19

	Introduction
	Method
	Reduced-Dimensional Modeling of Greenhouse Climate
	Principles of POD Method 
	Reduced-Dimensional Modeling of Greenhouse Climate

	Greenhouse Crop Growth Modeling
	The Optimal Control Scheme
	Statement of the Climate-Optimal Control Problem
	PSO Optimization Algorithm
	Overall Optimal Control Framework Based on Offline–Online Strategy


	Construction of Greenhouse Climate Model
	CFD Modeling
	Reduced Model for Greenhouse Climate Variation

	Optimal Control Results
	Optimal Control Setting
	Results and Analysis
	Assumptions and Limitations

	Conclusions
	References

