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Abstract: There are several models for magnetic hysteresis. Their key purposes are to model magneti-
zation curves with a history dependence to achieve hysteresis cycles without a frequency dependence.
There are different approaches to handling history dependence. The two main categories are Duhem-
type models and Preisach-type models. Duhem models handle it via a simple directional dependence
on the flux rate, without a proper memory. While the Preisach type model handles it via memory
of the point where the direction of the flux rate is changed. The most common Duhem model is the
phenomenological Jiles–Atherton model, with examples of other models including the Coleman–
Hodgdon model and the Tellinen model. Examples of Preisach type models are the classical Preisach
model and the Prandtl–Ishlinskii model, although there are also many other models with adoptions
of a similar history dependence. Hysteresis is by definition rate-independent, and thereby not depen-
dent on the speed of the alternating flux density. An additional rate dependence is still important
and often included in many dynamic hysteresis models. The Chua model is common for modeling
non-linear dynamic magnetization curves; however, it does not define classical hysteresis. Other
similar adoptions also exist that combine hysteresis modeling with eddy current modeling, similar
to how frequency dependence is included in core loss modeling. Most models are made for scalar
values of alternating fields, but there are also several models with vector generalizations that also
consider three-dimensional directions.

Keywords: magnetic material; electrical steel models; magnetization models; hysteresis mod-
els; rate-independent model; rate-dependent model; phenomenological models; Duhem model;
Preisach model; Jiles–Atherton model; Coleman–Hodgdon model; Tellinen model; Madelung’s rules;
Congruency model

1. Introduction

Laminated magnetic cores are based on the magnetizing of alternating fields which
experience hysteresis. In this phenomenon, the magnetization is not just a function of an
applied field, but also dependent on the history of the previous states of magnetizations.
It is usually seen as loops in the magnetization curve for one cycle of the applied mag-
netic field strength. Where the trajectory of the demagnetizing is different from the one
while magnetizing.

General reviews on hysteresis models of magnetization can be read in works by
Jiles [1,2], Liorzou et al. [3], Andrei [4], Cardelli [5] and Bavendiek [6]. The works of Takach
and Lauritzen [7] and Petrun et al. [8] provide more specific information for soft magnetic
iron cores, and similarly also for hysteresis energy losses by Steentjes et al. [9].

This article is structured by first describing Duhem models, such as the Coleman–
Hodgdon model and the Jiles–Atherton model, in addition to the Tellinen model and others.
Subsequently, history-dependent models based on series of reversal points, such as the
Preisach model and the Play model, are presented. Their history dependence could be
described as a series of reversal points.

Some models are based on adopting curve shapes from the major loop for approxi-
mating reversal curves within the hysteresis area, such as models by Talukdar–Bailey and
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Tellinen, usually by downscaling the curve to fit a minor loop curve. Such models are
adopted both for Duhem type models and for Madelung’s rules with history dependence.

The last section describes models that consider rate-dependency and frequency de-
pendence, such as models linked to iron losses with eddy currents. Furthermore, the Chua
model, which is not a hysteresis model in itself, but modelling similar phenomena such as
nonlinear magnetization curves and nonlinear eddy currents, is described.

2. What Is Hysteresis?

The word hysteresis was coined by the physicist Ewing more than 100 years ago [10–12].
It was intended as a name for the phenomenon itself, so it could be discussed without focus
on the different theories about its cause [10]. The expression differentiates hysteresis from
loops that are caused by dynamic effects, such as viscosity and eddy currents.

Hysteresis has, among others, two main features; memory and branching (see Figure 1).
Even if a system does not depend on previous states and position, it has at least “local
memory” where all information is given by the present position and their directions [13].
The essence of the hysteresis is branching, describing the existence of alternative trajectories
depending on the direction of how the field alternates [14]. This is associated with rate-
independence, that it is dependent on the direction of change, but not on the rate of the
change. It is, however, hard to find a general definition for hysteresis that covers all areas.
Hysteresis is characterized by multiple stable equilibriums and dynamics faster than the
input [12]. A curve without hysteresis is on the contrary called an anhysteretis curve.

H

B

H1

B1

f(      <0)
dH

dtH

B

B1,H1

f(      >0)
dH

dt

Figure 1. Hysteresis seen in the recoil path for a generic hard magnetic material. At (B1, H1),
the magnetic field strength changes direction. The recoil path is different from the previous path,
described by the phenomenon called branching.

2.1. Rate-Independency and Rate-Dependency

Hysteresis should not be confused with loops that occur in phase-portraits of systems
with a phase shift or phase-lag between sinusoidal inputs and outputs [13], such as electrical
AC circuits with complex valued impedances. The loop in these kinds of systems are
then just a consequence of the phase angle in the dynamic system. Hysteresis, on the
contrary, is a phenomenon that would remain even without dynamic effects, that is without
time-lags and phase-shifts [15]. Hysteresis is rate-independent, while these effects are
rate-dependent [16].

Ewing [10] coined the term hysteresis phenomenon in order to move the phenomenon
away from the different physical explanations, although he still states that this “frictional
resistance” resembles the friction of solid objects, rather than the viscosity of liquids.
Because hysteresis is independent of speed, while viscosity is dependent on the speed.

Here, we can see a separation between the more friction-like part, which is rate-
independent, and the more viscosity-like part, which is rate-dependent. The viscosity in
this case is the eddy currents, and the friction is instead magnetic hysteresis. Even if these
two phenomena may be treated separately, they are often combined in several hysteresis
models. These use to be called rate-dependent hysteresis model or dynamic hysteresis
models. Rate-independent models are then referred to static hysteresis models.
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Although hysteresis models are generally rate-independent models, there are also rate-
dependent hysteresis models that also consider a frequency dependence [17,18]. As such,
these models consider both rate-independency and rate-dependence, similar to mechanical
systems that consider both friction and viscosity.

2.2. Phenomenological or Physical Models?

There is a difference between phenomenological models and physical models [19].
The differences are in whether the model only describes the curve shapes of the hysteresis
phenomenon, or if they also explain the physics behind the phenomenon. Where phe-
nomenological models are based on mathematics and curve fitting, separated from those
that actually are based on physics and physical reasoning [20]. Another way to refer to the
phenomenological models is mathematical models [21]. This is a term that can also cover
the fact that there still is a lot of mathematics developed for phenomenological models,
such as the Preisach model.

The Jiles–Atherton model, the Coleman–Hodgdon model and the Preisach model
can be seen as phenomenological in contrast to Micromagnetic models and the Stoner–
Wohlfarth model that are physical [4]. Micromagnetic modelling is instead modeling
of the domain behavior [22,23]. This is often put in contrast to Preisach models that
are based on measurements and characterization of materials, but without the link to
physics that micromagnetic bears [20,24]. The Preisach model is mostly referred to as a
phenomenological model [25–30]. However, it could also be linked to statistical mechanics
since it is based on the way of seeing it as built by several consisting parts [31], such as
models where the Preisach model is adopted with pseudo-particles based on physical
models [32].

The Jiles–Atherton model employs functions and parameters based on
physics [25,26,33–35]. However, the parameters are obtained by phenomenological meth-
ods [36–38], such that the model is considered a phenomenological model [6,36,39–42].

3. History Dependence and Independence

Another categorization is between history-dependent and -independent models [40].
Most algebraic and differential models are history-independent models, such as Duhem
models and transplantation type models. The memory in history-independent models use
to be the present position B, H and the directions. The directions are usually expressed as a
rate-independency sign(dH/dt), but can also be seen as the change relative to the previous
position sign(M−M0) or as the direction of input variable |dx|/dx. The differential models
used to be based around solving dB/dH or similar with B, H or M. The transplantation
type models are built on approximating unknown hysteresis curves from a known major
loop curve.

History-dependent models are instead often constructed as sum and integrals based
on differential distributions. These can be built on using equations between predefined
points, given by a history of reversal points. One such model is the Preisach model.

Some differential models are based on modelling hysteresis by viscosity or eddy
currents, i.e., by solving dB/dt. They are then not proper hysteresis models, since the loop
is caused by a phase lag rather than a proper hysteresis. One advantage may instead be the
inclusion of rate-dependency, which means that they are frequency dependent.

3.1. History Dependency

History dependency means that the hysteresis models are not just dependent on the
present input, but are also dependent on the history. This means that it is not a simple
function of the input variable [17,18]. It can be expressed as:

B(H) = B(H(t), History) (1)
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The history dependence could be expressed as [43,44]:

B(H) = B(H(t), Hg) (2)

With the history Hg = {H(tw)} depending on the previous time tw < t [43–45]. Con-
sidering all previous time since the initial time t0, starting from initial magnetization B(0).

The time variable is usually not important in this context of history dependence. This
means that the history dependence is instead appearing through the present state of the
magnetization. Either by the present state of the output variable (i.e., B), or by a distribution
of several underlying components as in the Preisach model.

3.2. History Independency

While history-dependent models depend on all previous positions of the system, other
types of hysteresis models could be history independent. The name might suggest that
they lack memory, but as with all hysteresis models the models still have a dependency
previous path [46]. The memory is just constructed in more simple way, often referred
to as the “local memory approach” [13,47]. History-dependent models are then referred
to as a “non local” [13] or “global memory approach” [47]. History independence has a
simplified memory reduced to the information through the present position (B, H) and the
speed rate dH/dt. An important category among these are the rate-independent models
that are called Duhem models [45]. With the history Ht expressed only by the local history,
from the position B(t) and the direction sign(dH(t)/dt), as in:

B(H) = B(H(t), B(t), sign
(

dH(t)
dt

)
) (3)

This limited dependence on the past have consequences for the trajectory. In Duhem
models there is a phenomenon called “drifting” that presents a problem when modelling
asymmetric minor loops. The lack of return point memory results in unrestricted trajectories
for periodic input signals. The advantage of history dependency is then that they give
minor loops that do not drift away for each repeated loop. Because the previous trajectories
are not saved, all curves point towards the major loop [40].

History-independent models always have drifting for non-concentric asymmetric
loops, while most history-dependent models do not have this problem. Still, an incor-
rect construction of a history-dependent model can still lead to drifting, such as history-
dependent models that lack a proper return point memory, so that it fails to generate closed
minor loops (further explained in later sections).

Drifting was analyzed in hysteresis models by Krasnoselskii and Pokrovskii [48] via a
concept called “vibro-correctness”, detailing that a small variation in the input cycling only
will cause small variations in the output cycling.

3.3. Other Types of History Dependency

There are also some models that have special history dependencies that may not easily
be placed in any category. These are models that neither store the complete history nor just
limit the history to the present position.

One such model is the model by de Almeida [49], which also depends on the last
reversal point (Hr, Br). The model creates an arctan-function between the reversal point and
the saturation point [49]. A similar process is employed in the model by Hauser [50–52].

An alternative would be to instead store the last reversal point for return point memory,
to give closed minor loops. However, the return point memory of Madelung’s rules is not
always desired, because it is not an entirely correct model of actual trajectories.

Alternative methods that include accommodation were developed in several
studies [53–56].
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4. Algebraic, Differential and Integral Models

One way of categorizing is based on distinguishing whether they are algebraic equa-
tions, differential equations or integral equations [57–59]. Some examples of differential
models include the Jiles–Atherton model and Coleman–Hodgdon model, which are ex-
pressed as differential equations. Furthermore, an example of an integral model is the
Preisach model, which usually is based on solving an integral expression.

These categories may at first seem to be clear to separate, but could result in unclear
distinctions between the categories. An algebraic equation could be a solution to a dif-
ferential equation, and algebraic equations could be expressed as differential equations.
Differential equations are usually solved with integrals and integral equations could be
based on distributions in a differential form.

Some phenomenological models (such as the Talukdar–Bailey model) are based on
scaled curve shapes. These could either be expressed by an algebraic expression or as a
differential equation. The Preisach model is solved based on an integral, but could integrate
a differential expression.

5. Duhem Models

A common term for several differential equation models is to refer to them as “Duhem
model”, based on the models that are used by Duhem [60–64], mostly used for hysteresis
in mechanical deformation of materials. However, this is also applied to magnetism.
Duhem [60] links hysteresis to irreversible energy losses in contrast to reversible energy
that is stored as thermodynamic potential.

The models are usually expressed in the form of a differential equation. Where a
useful criteria for such a model is that the loop should be obtainable for any initial point,
any amplitude and any oscillatory change in H [65].

The models create a directional dependence, so that there are different functions
depending on the direction, as seen in Figure 2.

H

B

H

B

(a) (b)

Figure 2. (a) Generic Duhem model, illustrating the two categories of curves: ascending and de-
scending. (b) A cyclic trajectory is based on the two sets of curves, and will create a hysteresis
loop.

All Duhem models are rate-independent models, meaning that they depend on the
direction of the input, but not the rate of the input. This is expressed by the dependency
on sign(dH/dt) for dB/dH. Furthermore, for Duhem models the function dB/dH is rate-
independent. This can be seen by separating it in products:

dB
dt

=
dB
dH

dH
dt

(4)

There are, however, writers who describe them as rate-dependent models, because
dB/dt is dependent on dH/dt [59]. This is not the common way of seeing rate-dependency,
because rate-independency use to be defined based on the definition of dB/dH. Rate-
dependency is different in such a way that the size of the hysteresis loop will depend on
the input speed dB/dH. In Duhem models, there is no dependence on the rate of the speed
for a hysteresis loop.
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The derivative dB/dH corresponds to the permeability, which is never negative for
ferromagnetic and ferrimagnetic materials. So, an increasing H gives an increasing B, and
a decreasing H gives decreasing B [16,48,57].

5.1. Increasing and Decreasing Curves

These can be categorized into two families of curves, depending on the directions, as
either increasing or decreasing. It is conveniently expressed as a differential Equation [16,45]:

dB
dH

= f (B, H, sign
(

dH
dt

)
) (5)

The main feature of Duhem models is that there are two groups of functions depending
on the direction, and that the slope and trajectory depends on the position (B, H) [16]

dB
dH

=

{
fd(B, H) if dH/dt < 0
fi(B, H) if dH/dt > 0

(6)

It can also be written as increasing curves and decreasing curves

B =

{
Fd(B, H) if dH/dt < 0
Fi(B, H) if dH/dt > 0

(7)

There are then two different curve paths of B depending on the direction of the change
in H. Suitably implemented with a symmetry of the curves given by [65]

fi(B, H) = fd(−B,−H) (8)

So that a hysteresis cycle acts symmetrically between increasing and decreasing curves.

5.2. Classical Approach to Duhem Models

The classical Duhem models are written with two separate terms, one reversible and
the other irreversible. For mechanical systems, the slope is separated as two different types
of stiffnesses. That is as one reversible elastic stiffness, and one irreversible hysteresis
stiffness [17,18]. For magnetism, it separates between an ideal soft magnetic permeability,
and hysteresis properties. With one contribution from reversible magnetization and de-
magnetization, and another from irreversible demagnetization and magnetization. That is
on the form:

dB
dH

= frev(H)± firr(H, B) (9)

The function frev represents the ideal soft magnetic materials which would be without
coercive magnetic properties. The function firr is introduced to represent materials with
coercivity and remanence, which introduces the function of hysteresis.

Duhem [60] also introduces two criteria for the functions, first of symmetry in re-
versible component, as in:

frev(−B, T) = frev(B, T) (10)

Furthermore, another type of symmetry for the irreversible part:

firr(−B,−H, T) = − firr(B, H, T) (11)

5.3. Anhysteresis Curve and Limiting Boundaries

The increasing and decreasing curves (Fi and Fd) are limited by an upper and lower
bound Cu and Cl , as illustrated in Figure 3. Such that the upper and the lower limiting
curves are the outermost curves [17,18,58]. These boundaries are then located at the greatest
hysteresis width. In the case of magnetism, it is related to the major loop curves, which is
the greatest possible hysteresis loop.
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H

(b)(a) (c)

Cu
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Cu

Cl
Fd

Fi
Fd

Fi

Figure 3. (a) Upper limiting boundary. (b) Lower limiting boundary. (c) Major loop curves.

One interesting curve in Duhem models is the Anhysteresis function, which is used to
set the shape of the magnetization curve when hysteresis is excluded. A similar function
was discussed by Duhem, but they referred to as a curve of “natural states” [60]. The
boundaries Cu and Cl can be expressed related to the anhysterestic curve Ca, based on a
hysteresis difference Ch (as seen in Figure 4). Similar to the structure of separating the
function into a hysteresic part and anhysteretic part, as in models studied by Sequenz [66],
Rivas [67] and Battistelli [68]. Then, with:

B(H) =

{
Cu = Ca + Ch if dH/dt < 0
Cl = Ca − Ch if dH/dt > 0

(12)

where the anhysteretic Ca and hysteretic Ch are given by the major loop by two functions as{
Ca = (Cu + Cl)/2
Ch = (Cu − Cl)/2

(13)

Decreasing
curve

Increasing
curve

Cl(H)

Ca

H

B

Cu(H)

Ca

H

B

Anhysteresis curve

(b)(a)

Ch

Ch

Figure 4. (a) Anhysteresis function. (b) Limits expressed by the distance to the anhysteresis curve.

5.4. Examples of Duhem Models

There are several models of magnetic hysteresis that are Duhem models, with the two
most common ones being the Coleman–Hodgdon model [69–71] and the Jiles–Atherton
model [72,73], also existing in several modified versions, and in inverse forms. An early
model is also the Cisotti model [74–76]. However, it has also been studied for magnetism
in a general way as Duhem models, without referring to any specific type [45,77–83].

It is, however, not always referred to as the Duhem model. The model by Takagi for
magnetism [65,84], or for mechanics by Babuška [85–90]. The Duhem model is sometimes
also referred to as “Madelung model” [44,48,91,92]. However, Madelung’s model does not
have the same history dependence [90,93]. Madelung’s model is more similar to Prandtl’s
model [94], but based on adoptions with magnetic functions by Gans [95].

Some Duhem models in other subjects are the Dahl model of friction [96–98], and its
modification into the LuGre model [99,100], and the similar Bouc–Wen model [89,101–103].
The model can be modified to represent different rate-independent systems [58]. Even
if it usually not used for magnetism, the Bouc–Wen model has been applied to model
magnetism by Laudani et al. [104].
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5.5. The Model in Duhem’s Work

Duhem [60] use an adoption of Clausius inequality, which could be rewritten for a
magnetic field strength, H and a flux density, B. A change in the magnetostatic energy
HdB minus a change in the Helmholz free energy F will not be equal to zero, because of
hysteresis losses. Note that Duhem writes the expression for a magnetization M(H), while
the adoption here is for the flux density B(H). However, the same method could easily be
rewritten for flux densities by adding the field together with the field H as B = µ0(M + H).
For flux density, it is expressed as (

H − dF
dB

)
dB > 0 (14)

The difference between the stored energy and the applied change in energy is modeled
by the irreversible function firr.

Duhem’s model [60] describes that a change in magnetic field strength, dH will be
dependent on changes in dB and dT, but also on the absolute value of the change in
magnetic field strength |dB|. That is:

dH =
d2F (B, T)

dB2 dB− d2F (B, T)
dBdT

dT + firr(B, H, T)|dB| (15)

It can now be considered that we obtain the special ratio of |dB|/dB as sign(dB) = ±1.
Which provides the fundament of the rate-independency, because it corresponds to sign(dB/dt)
for dt > 0. The Duhem model is then simplified as:

dH =

(
d2F
dB2 ± firr

)
dB +

d2F
dBdT

dT (16)

Which with neglected temperature dependence is

dH
dB

=
d2F
dB2 ± firr(M, H) (17)

Written instead in notation based on Maxwell relations as

dH =

(
dH
dB

)
T

dB +

(
dH
dT

)
B

dT (18)

The magnetic field strength could be seen as a combined field H = Hrev + Hirr. When
including hysteresis expressed as a sum by an irreversible part Hirr, together with the
reversible part Hrev as:

dH =

(
dHrev

dB

)
T

dB +

(
dHirr

dB

)
T
|dB|+

(
dH
dT

)
B

dT (19)

With the irreversible part as
dHirr

dB
= firr (20)

Furthermore, the reversible part as

dHrev

dB
= frev (21)

The model is further simplified if the temperature dependency is neglected [60], as in:(
dH
dB

)
T
= frev(T, M) + firr(H, B, T)

|dB|
dB

(22)
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5.6. Linked to Energy Losses

The equivalence in magnetization would be to split the magnetic energy density w
into a reversible and irreversible part, which corresponds to the stored magnetic energy wS
and the hysteresis energy losses, wL, respectively:

ˆ B2

B1
H · dB = wS + wL (23)

The approach to the energy losses in Duhem’s model is based on irreversible losses
w(B, H, T), expressed with a localization in the B, H-plane. The irreversible energy dissipa-
tion could be linked to area in the magnetizing curve (B, H-curve) [105–107]. Expressing
the iron losses for a cycle of a periodic magnetic alternation

˛
H · dB = wL (24)

By differentiating, in analogy of Duhem, we get an equation for the reluctivity as:

dH
dB

=
d2wS
dB2︸ ︷︷ ︸

frev(B)

± d2wL

dB2︸ ︷︷ ︸
firr(B,H)

(25)

The slope in expressed by the equation is on the form of a reluctivity, for the com-
bined field

H(B) = Hrev(B)± Hirr(B, H) (26)

5.7. Coenergy Expression

Equations on the form H(B) are generally seen as an “inverse” form, since the form
B(H) is the most common expression. It could then be convenient to introduce a magnetic
flux density written on the form

B(H) = Brev(H)± Birr(H, B) (27)

An adoption of the Duhem model then becomes:

dB
dH

=
dBrev

dH
± dBirr

dH
(28)

This will have a clear impact on the Duhem model, and its link to energy. It would
allow the model to represent a system of coenergies, instead of energies. This is now redone
by writing the energy density by Gibb’s free energy

dB =
d2G(H, T)

dH2 dH + firr(B, H, T)|dH| (29)

The inverse expression H(B) is now seen to have an advantage in its direct link to
the expression of the energy. However, the common use of the form B(H) is still easy to
understand, since it conveniently describes how the induced flux density B is for an applied
field strength H.

6. Coleman–Hodgdon Model

The Coleman–Hodgdon Model or Hodgdon model was developed in the 1980s for
hysteresis in soft magnetic materials [69–71,108]. They are also sometimes referred to as
synonymous to Duhem models [59,109–111].
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The model is generally written as:

dB
dt

= αc( f (H)− B)
∣∣∣∣dH

dt

∣∣∣∣+ g(H)
dH
dt

(30)

Based on the two functions f (H) and g(H), and a parameter αc which could differ
between different adoptions of the model. The anhysteretic curve f (H) describes the shape
of the hysteresis, and the reversible function g(H) describes the tendency for drifting from
the anhysteresis curve. The hysteresis is then set by the parameter αc. The complexity of
the functions f (H) and g(H) varies, depending on the model of the implementation. They
are usually chosen specifically for as material to fit experimental data. Some examples of
functions are illustrated in Figure 5 [112,113].

B

H

H

B

H

H

f(H) f(H)

g(H) g(H)

(b)(a)

Figure 5. Example of function f (H) and g(H). (a) Simple linear anhysteresis function f (H) with
saturation levels, and a function g(H); (b) S-shaped anhysteresis function f (H), and a function g(H).

Or also rewritten, so that the rate-independency can be made clearer, by canceling
dH/dt, as in:

dB
dH

= g(H) + αc( f (H)− B)sign
(

dH
dt

)
(31)

Alternatively written with a ±-sign, for the sign-function, by

dB
dH

= g(H)± αc( f (H)− B) (32)

The first term g(H) is the reversible term and could be seen as similar to the derivative
of the anhysteresis function f (H). That is

g(H) ≈ d f (H)

dH
(33)

The function g(H) also has a role to define how the slope dB/dH drifts away from the
anhysteresis function f (H), and setting the initial curve. It is then preferably lower than
d f (H)/dH, such that

g(H) <
d f (H)

dH
(34)

Otherwise, it will remain along the anhysteresis curve, and then move without
hysteresis.

The second term describes how the slope depends on the distance x to the anhysteresis,
where we can write the distance as

x = f (H)− B (35)

The slope dB/dH increases based on a parameter αc. So that an increased distance
increases the slope, by αcx. When the distance x is high enough, the slope dB/dH will
follow the slope of the anhysteresis curve and the distance will cease to increase.
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This can be expressed by the derivative of the distance

dx
dH

=
d f (H)

dH
− dB

dH
(36)

This can be expressed by two limiting curves, where the limiting curves are the
maximum distances that the hysteresis model has relative to the anhysteresis function.
With one upper boundary for the outermost decreasing curve, and one lower boundary
for the outermost increasing curve. These limits then act similar to the curves of the major
loop, which is the greatest possible hysteresis loop. With a decreasing derivative of the
distance, dx/dH, for increasing distances x relative the anhysteresis function, as shown in
Figure 6, (defined to be inside the major loop).

(a)

B

H

f(H)

x

B(H)

d       df     dB
dH     dH   dH

x=       − 

x=f(H)−B

(b)

Figure 6. (a) Illustrating a B(H)-curve in the Coleman-Hodgdon model, and its distance x to the
anhysteresis curve f (H). (b) The change in distance, dx/dH depends on the distance, x. As the
function B(H) drifts from f (H), the slope dB/dH will gradually intercept d f /dH. The gradual
interception depends on the parameter α and the distance from the anhysteretic function f (H).

The second term αcx could also be modified with other functions. Such as rewriting
the linear function αcx as any other function α(B) [114,115].

The irreversible function firr in Duhem’s model, is different from the function f in
the Coleman–Hodgdon model. The irreversible part in the case of the Coleman–Hodgdon
model is the term

dBirr
dH

= αc( f (H)− B) = αcx(B) (37)

and the reversible part is the function g(H)

dBrev

dH
= g(H) (38)

where the reversible function g(H) usually is chosen in shape that resembles the derivate
of anhysteresis function f (H).

Inverse Coleman–Hodgdon Model

The model is written for the common form of solving B(H) in the B, H-plane, but
is inverted relative the model in Duhem’s work. There is also an inverted version of the
Coleman–Hodgdon model, developed by Hodgdon [71]. It more resembles the structure
of Duhem’s model based on energies, and has then a better link to energy density and
magnetization loss modelling. The model is written as

dH
dt

= αc( f (B)− H)

∣∣∣∣dB
dt

∣∣∣∣+ g(B, dB/dt)
dB
dt

(39)

canceling dB/dt in the equation, it becomes

dH
dB

= g(B) + αc( f (B)− H)sign
(

dH
dt

)
(40)
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Furthermore, written as

dH
dB

= g(B)± αc( f (B)− H) (41)

Compared to the other model it defines another distance x, defined in the H-direction, as

x = f (B)− H (42)

7. Jiles–Atherton Model

One of the most frequently applied and cited hysteresis models is the Jiles–Atherton
model, which was developed in the 1980s [72,73]. It is constructed in a way that makes it
into a typical Duhem hysteresis model, with a reversible part that acts as an anhysteresis
curve and an irreversible part that includes the impact of hysteresis. The model is wide
spread, and is relatively simple to apply, both since it uses few parameters and does not
require any advanced history dependence.

It is mainly used for soft magnetic materials for laminated steel cores, but has also
been adopted for permanent magnet materials[116], such as NdFeB [117,118] and isotropic
NdFeB [119]. The model is used together with many different software programs for
simulation and FEM [120,121]. Furthermore, it has been included in both Comsol and
Spice [122,123], and been used with Ansys [124]. The model has also been adopted for a
relation between magnetic flux and current, to link it to circuit analysis and power system
analysis [125].

The model is constructed as a differential equation as

dM
dH

=
1

1 + c
dMirr

dH
+

c
1 + c

dMan

dH
(43)

Based on the anhysteresis function

Man = Ms(coth
(

He

a

)
−
(

a
He

)
) with He = H + αM (44)

The magnetization M in the model could then be obtained by solving the differential
equation:

dM
dH

=
1

1 + c
δd

Man −M
kδ− α(Man −M)

+
c

1 + c
dMan

dH
(45)

The Jiles–Atherton model is based on magnetization, M(H) instead of flux density,
B(H), but could be rewritten for flux density by simply considering B = µ0(M + H).

It mainly consists of five parameters, given by Table 1 [126].

Table 1. Description of parameters.

Parameter Explanation

Ms Saturation magnetization
α Effective field parameter, linked to magnetization
a Shape parameter, for anhysteretic curve
c Reversibility coefficient
k Linked to hysteresis loss

The two other parameters of the functions are δ and δd. The parameter δ = sign(dH/dt)
accounts for the directional dependency, linked to the rate-independency of Duhem models,
and δd as introduced by Deane [127] to compensate for some minor problems with an
unphysical negative permeability in the original model. There is, however, still a risk of
negative permeability, as addressed by Padilha [128].

The model is based on a clear set of parameters, compared to many other models, such
as the Coleman–Hodgdon model or the Preisach model, that does not specifically state the
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curve shape or distribution function. Still, it is not obvious how the parameters should be
found for the Jiles–Atherton model, and there are several studies that introduce methods
for parameter estimation [34,129–135]. There are methods on how to find the parameters in
the model. The work to acquire the parameters could be complicated, but since the method
is so wide spread it could be easy to find parameters based on various previous studies
based on previous measurements.

The hysteresis part of the model is based on modelling pinning of domain walls.

7.1. Phenomenological Anhysteresis Function

The model is physically based, but the physicality has been criticized. Several studies
refer to the Jiles–Atherton model as a phenomenological model [136]. Some authors have
criticized that the method is based on coenergy rather than energy, and that it does not
reproduce precise curve shapes [137]. However, another question is also how it uses
physical functions in a phenomenological application for the anhysteresis function, which
acts as the backbone of the model.

The anhysteresis function is based on the Langevin function,

L(xa) = coth(xa)−
1
xa

(46)

which was originally used for describing the physics of temperature dependence of a
magnetization. Its adoption in the Jiles–Atherton model is, on the contrary, entirely phe-
nomenological [138], where it only applies the same curve shape as the Langevin function,
but with parameters with an entirely other approach than the classical Langevin function.
Written as

xa =
He

a
(47)

It also exists adopted in other similar versions [9,139]. Since it only uses the curve of the
function, it could alternatively be improved by any other curve that could fit. One simple
alternative to the anhysteresis functionis is the similar tanh(H) function, proposed by
Takacs [138,140]. However, many other anhysteresis functions has been studied, such as the
Gaussian error function, exponential functions or functions based on square-roots [141,142].
Other modifications could instead focused on the pinning driven hysteresis, to adopt
the initial curve to resemble the Rayleigh model [143–145]. The model is quite similar
to the Coleman–Hodgdon model, and could be simplified by a similar approach to the
Coleman–Hodgdon model, as by Carpenter [146].

The parameter a usually sets the temperature dependence of the physical Langevin
function, based on the magnetic moments and the energy of heat [5,72,73]. However,
the parameter a is here only treated as a shape parameter for the curve fitting of the
anhysteresis function. Since the parameter a is phenomenological, it can be changed to
any other function based on curve fitting. An improved temperature dependence of the
function would instead be included as a temperature dependence (T) of the saturation
magnetization, that is as Ms(T) [141,147,148], or allowing the parameters to be different
depending on the temperature [147,149,150].

Another part of the anhystereisis function that is also a phenomenological adoption is
the effective field,

He = H + αM (48)

and also includes a dependence on the magnetization. The equation for the effective field
is written similar to Weiss’ molecular field αM, but without the same physical meaning.
It is here used as a parameter for curve fitting. This also opens up for adoptions of other
functions for the effective field [142]. Other approaches to improve the physicality of the
effective field have been to include for instance the impact of the demagnetizing field [151].

Nevertheless, the Langevin function has shown to be a simple and efficient way of
generating anhysteresis functions with a phenomenologically correct curve shape. Since it
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has the characteristic S-shape of a magnetization curve, that could be modified by choosing
different parameters.

7.2. Illustrating That It Is a Duhem Model

Jiles–Atherton model is defined for a magnetization M, and we can easily rewrite it
related to flux density B as

dB
dH

= µ0

(
dM
dH

+ 1
)

(49)

The hysteresis part of Jiles–Atherton model depends on the distance x = M−Man,
similar to the Coleman–Hodgdon model, but with another function for the dependence.
The irreversible term of the Duhem model (dBirr/dH = µ0dMirr/dH) is

dMirr
dH

=
1

1 + c

(
x

±k− αx

)
(50)

The reversible part is lower than the slope of the anhysteresis curve Man, since it is
decreased by the parameter c such that the reversible term (dBrev/dH = µ0(dMrev/dH + 1))
is

dMrev

dH
=

c
1 + c

dMan

dH
(51)

7.3. Anisotropic Versions of the Models

Jiles–Atherton model with adoptions for considering material anisotropy by tensor
adoption of pinning in the vector model by Bergqvist [152], followed by modifying the
hysteresis. However, also, by modifications on the anhysteresis function. This could be
done by Modified anhysteresis function, as by Ramesh et al. Including anhysteresis by
modifying the anhysteresisis curve depending on the anisotropic direction [119,153–155].
However, alternatively, by an additional term in effective field, so that is adjusting the
anisotropy of applied stress. Modifying the effective field for handling changes in the
anhysteresis function, as a way to include anisotropy by an applied stress [156–158]. It
can also be achieved by generating curves based on the uniaxial anisotropy of the Stoner–
Wohlfarth model by Dimitropoulos et al. [123].

7.4. Inverse Adoptions of the Model

When solving for the magnetic field, many systems solve H as a function of B. Since
many solvers compute B and A-vectors, and the inverse function can be more applicable,
it is then necessary to find the H-field for a found B-field [159]. There are then several
adoptions of the Jiles–Atherton model that rewrite it on the inverse form [159–161].

A first example of an inverse model was presented by Sadowski et al. [159] and
Vaseghi et al. [162]. Written as

dM
dB

=
δM(Man −M) + δck dMan

dHe

µ0(δk + (1− α)[δM(Man −M) + δck dMan
dHe

(52)

The inverse Jiles–Atherton model uses a parameter δM similar to the parameter by
Deane [127,163,164]. The equation solves M, and the value of H is thereafter solved by:

dH
dt

=
1

µ0

dB
dt
− dM

dt
(53)

An alternative, and more simple version, is done by Koltermann et al. [161], that has
been called as the “Grucad model” [165–167] . The differential equation is simplified into
reluctivity as:
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dH
dB

=
a− αMaL(λa)

µ0[a + Ma(a− α)L(λa)]
+

HhsL(λh)− Hh
δγh

(54)

7.5. Vector Adoptions of the Model

There are several vector adaptations of the Jiles–Atherton model to simulate rotational
fields and directional dependence [133,168–171].

Bergqvist developed a vector generalization of the Jiles–Atherton model [152], also
referred to as the Jiles–Bergqvist model [172]. The method writes the fields (M and H) and
the susceptibility (χ) as vectors and the constants (k and c) as tensors [152]. The approach is
explained that it could be used for any Duhem models in the same analogy [152,173], such
as the Coleman–Hodgdon model, and similarly for the inverse Jiles–Atherton model that
has been generalized on a vector form [35].

7.6. Dynamic Generalizations of the Model

The model was originally used for rate-independent, static hysteresis, but has been
generalized as a dynamic model with rate-dependency [39,174–176]. That is then equivalent
to include the impact of eddy current losses [177–179].

8. Describing Minor Loops

There are basically two types of cycling that work well with Duhem-type models.
These are concentric cycles and first-order reversal curves, which are more typical for
alternating magnetization in laminated soft magnetic steel cores. Any other minor loops,
such as recoil loops for the operation point in permanent magnets, may not properly
be represented.

8.1. Major Loop and Reversal Curves

There are many different ways of expressing the hysteresis phenomena and many of
these methods are based on the behavior of the trajectory between the full saturation in
opposite directions, giving rise to the major loop. The operation of a magnetic material that
does not reach saturation but rather alternates in a loop within the major loop is a minor
loop. Major loop exclusively refers to the cycling between saturation in opposite direction,
that is between Bs and −Bs. This defines key figures such as the coercivity Hc, and the
remanence Br. Any other curve is then a minor loop. See Figure 7.

Whenever the direction of the field strength changes, either along the major loop or in
a minor loop, the magnetization will go along a reversal curve (or transition curve) starting
from the reversal point from which the field strength changed direction. See Figure 7.

In an initial state, the magnetic material can exhibit a net magnetic moment that is
zero. If so, and a field is applied, the magnetization (or magnetic flux density) will follow
the initial curve up to the point it reaches saturation and coincides with the major loop.

B

H

Initial curve
Major loop

Nonconcentric 
asymetric 
minor loop

Hc

Bs
Br

Concentric 
symmetric 
minor loop

Reversal curve

Figure 7. Illustrating the basic nomenclature of hysteresis curves.
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8.2. Concentric Cycling

Symmetric minor loops, however, share several similarities with major loops, since
they are based on symmetrical cycling defined by the amplitude Bmax and Bmin. Sev-
eral names have been used to refer to these, such as “inner loops” [180], “pseudo major
loops” [181,182], or “zero-order reversal curves”.

Since much nomenclature used to be preserved for the major loop only, it could be
worthwhile to consider generalized terms. Following the name “pseudo major loops”, we
can find a “pseudo coercivity”, and a “pseudo remanence”, in analogy to the parameters of
a major loop [181,182]. Following the term “zero-order reversal curves”, maximum and
minimum points are “zero-order reversal point”.

Some important minor loops are based on either concentric cycling or reversal curves,
as the cycles illustrated in Figure 8. Duhem models could model both concentric symmetric
cycles and DC-biased asymmetric minor loops, as shown in Figure 9a,b. Then based on the
trajectories of the increasing curves Fi and decreasing curves Fd. There is a great risk that
the cycles result in unrestricted cycles, which results in drifting, as see in Figure 9c. This is
because the curves are set by the trajectories of the increasing and decreasing curves.

(a) (b) 

H

B

H

B

Figure 8. (a) The major loop, and First order reversal curves (FORCs). (b) Concentric symmetric
cycles, with both the major loop and minor loops) .

(a) (b) 

H

B

H

B

(c) 

H

B

Figure 9. All curves will be based on first order reversal curves and the major loops. (a) A symmetric
cycle will be based on trajectories of FORCs. (b) An asymmetric cycle could be based on the major
loop curve and a FORC. (c) Drifting occurs when the trajectory of the cycle is not closed.

8.3. Reversal Curves

Asymmetric curves can also be modeled by Duhem models, since reversal curves
are defined for any point in the hysteresis area. Still, even if asymmetric cycling could be
modeled by a Duhem model, it is mainly representing first-order reversal curves as there is
no proper return point memory in Duhem models. So, all reversal curves will lead towards
saturation, similar to first-order reversal curves.

9. Scaling Type Models
9.1. Functional Transforming

A generalized applicable model of magnetic hysteresis would be able to generate
high-order curves for any trajectory in the hysteresis area. There are several methods
based on functional transforms, that is either by shrinking of curves or by translation of
curves. Where the major loops are adjusted to generate other curves by the “template
method” [183] or “transplantation-type models”.
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First methods with shrinking or scaling are based on compression of curves along one
axis. That is to downsize the shape of the major loop curve as a way to approximate minor
loops and reversal curves. Furthermore, it could also be done to approximating high-order
curves by low-order curves. It can be used along two axes as homothetic transformation, to
approximate the relation between the initial curves and symmetric cycles of major loops.

The second method with translation of curves is handled later, since it is not a Duhem
model. It is a method based on shifting the starting point of a curve, while keeping the
same function either by horizontal or vertical shifting of congruent curve shapes, and then
applying the so called congruency property of Preisach models or Everett functions as
history-dependent versions that either are made in the framework of Madelung’s rules.

9.2. Transplantation Type Models

A hysteresis model does not only need to be defined for the major loop trajectory, it
also needs to be defined for trajectories within the hysteresis area. Otherwise, it cannot
model reversal curves. Some models are based on modelling reversal curves based on the
major loop. The method has been referred to as “transplantation-type models” [8] [9], and
includes models such as the Talukdar–Bailey model and the Tellinen model. The name
is based on the phenomenological transplantation method by Zirka and Moroz [184,185]
that models unknown reversal curves by the shape of an experimentally known major
loop curve.

Zirka and Moroz introduced a phenomenological method for hysteresis based on
reversal curves and Madelung’s rules [93]. The introduced method creates reversal curves
and minor loops based on a method they refer to as “transplanting”. The idea is that the
shape of a major loop could be fitted (“transplanted”) into the minor reversal curves based
on the phenomenological similarities of the hysteresis shapes [184]. An important extension
of the model is also the method of “similarity” [186]. This method uses low-order reversal
curves to approximate high-order reversal curves. Higher orders of reversal curves would
be expressed as inserting the first-order reversal curves on higher orders [40,186].

9.3. Functional Transform by Shrinking Curves

Function transformation by dilation is the basic idea behind the function transfor-
mation, but will here be used in the opposite way of compression for transplantation
methods. By the compression of major loop curves, first-order reversal curves can be
generated. Each curve can then be modeled by a major loop curve that is shrunken relative
the saturation point.

The curves of the major loop (Cu and Cl in Figure 10a) are downscaled to generate
reversal curves for all locations in the hysteresis area ( Fi and Fd in Figure 10b,c). A trajectory
of a hysteresis is then modeled based on the curves, as in Figure 11.

H

B

H

B

H

B

(a) (b) (c)

Cu

Cl

Figure 10. (a) The curves of the major loop. (b) Generating a set of increasing curves. (c) Generating
a set of decreasing curves .
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H

B

H

B

Downsized
curves

Major loop
curve

Major loop
curve

FORC

(a) (b)

Figure 11. (a) The model generates reversal curves based on downscaled major loop curves. (b) Ex-
ample showing a hysteresis loop based on the major loop curve and a FORC .

9.4. Scaling Models as Duhem Models

Many of the scaling models are referred to as Duhem models [60], such as the Potter–
Schmulian model, the Thompson model and the Talukdar–Bailey model [79,81]. All models
that are referred to as Duhem models may not resemble the equation from Duhem. The
classical Duhem models are written with two separate terms, one reversible and another
irreversible, on the form:

dB
dH

= frev(H, B)± firr(H, B) (55)

While the method of scaling uses the curve shape of the major loop for approximating
a reversal curve slope. That is on the form:

dB
dH

=

{
k(H, B)ρu(H) sign(dB/dt) < 0
k(H, B)ρl(H) sign(dB/dt) > 0

(56)

On the contrary, the scaling models are written as a single term, as a product of
two functions, and may then seem different from the classical Duhem model. They
are still defining two groups of increasing and decreasing curves. Where the functions
ρu = dCu/dH or ρl = dCl/dH are the slopes of the upper and lower of two major loop
curves Cu or Cl , and the function k is a shrinking scale parameter.

Still, all transplantation models are not Duhem models. There are also some other
methods that need some simple historic memory of one or several reversal points.

9.5. Scaling Curve Models

A common approach to model transplantation is instead to use the major loop curve
and adjust the size into an appropriate reversal curve. A reversal curve B(H) is in these
models [187,188] given by a decreased curve given by 0 < k < 1, where k = 1 would be for
a major loop curve C (as either Cl or Cu). The downscaling of the major loop is given as

Bs − B(H) = k(Bs − C(H)) (57)

An example of such a transformed curve is seen in Figure 12. Showing how the major
loop curve C becomes downscaled to form a reversal curve B(H), based on the distance
to the saturation level Bs. So that the distance dk is seen as fraction of the distance for the
major loop curve, as dk = kd.
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B

H

=Cl(H)B(H)

Bs

d

B

H

dk
B(H)

Bs

d

x

B

H

B(H)

Bs

dx

Cl(H)

Cl(H)

(a) (b) (c)

Cu(H)

−Bs

dk

Figure 12. (a) Major loop curve. (b,c) Examples of reversal curves in the model. The curves are
downscaled by the factor k, based on k = dK/d.

The method of creating reversal curves by scaling has been applied to several types
of curve shapes. One noticeable example is the method with tanh-functions by Potter
and Schmulian [188,189], which also exist based on arctan-functions, by Potter [190] and
other [185,191], and rewritten for polynomials by Ossart and Meunier [187,192]. Another
example of downscaling the major loop is by Teape [193], based on exponential functions.

Exponential functions can also be used in another adoption as Gaussian distributions
for the permeability, such as the model by Thompson [194,195]. The permeability is
then defined by a Gaussian distribution which could be adjusted for minor loops. The
corresponding curve shapes in the B, H-plane will be Gaussian error-functions.

Other equations that could be used is the Frölich equation by Wong [196] and by
Chan [197], or hyperbolic functions as studied by Dick and Watson [183].

9.6. Talukdar–Bailey Model

The simplest method to find transition curves is by reshaping the major loop and
applying the curve shape on all trajectories. In doing so, all curves can be modeled
in the so called Talukdar–Bailey model by a rescaled major-loop curve [198], also later
studies [199–203].

The reversal curve is expressed from the major loop, on the inverse form H(B) (see
Figure 13). It is then modified for generating reversal curves based on a distance x = B− C.
So that the major loop curve H(B) = C(B) gets translated by the distance x as

H(B) = C(B− x) (58)

where the distance at the reversal point (Brev,Hrev) is

xr = Brev − C (59)

H

B

Cl(B)
Cu(B)

H

B

Cl(B)

x H

B

x

x
−Bs

x

Brev

H=Cl(B−x)

Cl(B)

H=Cl(B−x)

(c)(b)(a)

Figure 13. (a) Major loop curves, expressed on the inverse form H(B). (b) Translated curve, by a
constant shift. (c) Translated curve, shifted by a linear function x(B) .

A constant distance would give a shift of the whole curve C, as shown in Figure 13b.
The distance is instead defined as a linear function, so that the reversal curve goes towards
the major loop when it goes towards the saturation point, as shown in Figure 13c. With the
hysteresis expressed by x as a function, so that x decreases to 0 as B goes to the saturation
point Bs, from the reversal point Brev, Hrev.

x(B) = xr
B− Bs

Brev − Bs
(60)
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x(B) = xr
Bs − B

Bs − Brev
(61)

The distance is here set to follow a linear function towards the saturation point, where
it reaches the major loop curve. However, the distance x does not necessarily have to follow
a linear function. Other functions are studied (x = f (B)) by Guerra Mota [204] and Faiz
and Saffari [202,203].

Since the inverse form H(B) could be incontinent, it could be good to also express it
by the classical form B(H) with the major loop curve B = C(H). By writing the major loop
subtracted (or added) by the distance (see Figure 14), that is as

B(H) = C(H)− x(B) (62)

With the distance x defined as a linear function x(B), as in the inverse case.
Several methods are directly based on the Talukdar–Bailey model. Examples of these

are a method using rational fractions based on Rivas [67] by Mukherjee et al. [205] and
Hypergeometric function by Herceg [206,207]. A similar method was also proposed by
Zeinali et al. [208].

H

B B

x

xH

B

Cu(H)

Cl(H)

Cu(H)

x(B)

−Bs
−Bs

⇒

(a) (b) (c)

B=Cu(H)−x(B)

Brev Brev

Figure 14. (a) Major loop curves. (b) The curve shifted a distance set by the linear function x(B).
(c) The linear function x(B) decreases towards the saturation point Bs.

9.7. Rewriting as Differential Equations

The Talukdar–Bailey model has also been studied written as a differential equation.
This has been performed in different ways [201,205,209].

The downscaled curves, based on a major loop curve C(H) (see Figure 15) can be
written in differential form, as [205]:

dB
dH

= k
d

dH
C(H) (63)

This can be derived from the distance x between a reversal curve and the major loop.
That is

x = B− C = xr
Bs − B

Bs − Brev
(64)

Which also could be written as

B− C = xr
Bs

Bs − Brev
− xr

B
Bs − Brev

(65)

Differentiate the expression with respect to H [205]

dB
dH
− dC

dH
= 0− xr

Bs − Brev

dB
dH

(66)

Rearrange as
dB
dH

(
1 +

xr

Bs − Brev

)
=

dC
dH

(67)
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Furthermore, rewrite to

dB
dH

(
Bs − Brev + xr

Bs − Brev

)
=

dC
dH

(68)

We can now write an expression for dB/dH [205] as

dB
dH

=

(
Bs − Brev

Bs − Brev + xr

)
dC
dH

(69)

Which is on the form
dB
dH

= k
dC
dH

(70)

So that the derivative of the major loop (Figure 15c) is decreased with the shrinking
coefficient k as

k =
Bs − Brev

Bs − Brev + xr
=

Bs − Brev

Bs − C(Hrev)
(71)

This illustrates the fuzzy borderline between algebraic models and differential models,
when the same model could be described both as an algebraic model and a differential
model. The models may either be expressed as differential equation, but can also be written
as algebraic functions.

x(B)

Bs

Brev

Brev

x(B)

H

 dCu 
dH

H

BB

x

x
Cl(H)
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k
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Cu(H)

Figure 15. (a) Example of two reversal curves in the Talukdar–Bailey model. (b) The linear functions
x(B) used for the two reversal curves. (c) The two curves could instead be generated by downscaling
the major loop curve by the factor k.

From another approach, we could write the downsized major loop curve by the
distance shift, by writing

k
dC
dH

=
dC
dH
− dx

dH
(72)

Then with the hysteresis distance written with a constant parameter k and the curve
C(H) by

dx
dH

=
dC
dH

(1− k) (73)

Which can be shown by writing it as

dC
dH
− dx

dH
=

dC
dH
− dC

dH
(1− k) = k

dC
dH

(74)

9.8. Problems with Curves Leaving the Hysteresis Area

Reversal curves obtained by a simple shrinking of major loops may create undesired
trajectories. One such example is that a reversal curve could leave the hysteresis area,
where a reversal curve exceeds the major loop curves. This means that the trajectory goes
outside the major loop as illustrated in Figure 16. Such errors have been seen for reversal
curves generated from the Talukdar–Bailey model [203,210].

This kind of problem could be handled by restraining the reversal curves so they are
limited to the proper hysteresis area, via limiting the curve within the major loop [210].
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x B(H)

Bs Reveral curve 
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major loop curve

B

H

Cl(H)
Cu(H)
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Reversal curve 
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major loop curve

(a) (b)

Cl(H)
Cu(H)

B(H)

Figure 16. The method of scaled curves could give undesired trajectories that excides the major
loop curves. (a) Example with a reversal curve within the major loop curves. (b) Example of a
reversal curve that goes beyond the major loop curve, and leaves the hysteresis area.

Other similar models can otherwise better avoid this error, such as the Tellinen model.
It is limited defined based on both major loop curves, and ensures that the curve remains
between the major loop curves.

9.9. Tellinen Model

The Tellinen model is a differential equation where the permeability dB/dH is scaled
depending on the distance from the major loop curve, by expressing the slope ρ as a reduced
permeability of the major loop ρh = dC(H)/dH [211–213]. That is

dB
dH

= ρ = kρh (75)

Furthermore, written as
dB
dH

= k
d

dH
C(H) (76)

With two sets of function, for decreasing and increasing curves

dB
dH

=

{
fd(B, H) = kd

dCu
dH if dH/dt < 0

fi(B, H) = ki
dCl
dH if dH/dt > 0

(77)

The curve is based on the derivative of the major loop curve, but decreased with a factor
k, as in Figure 17. Based on the relative distance between the two major loop curves. With
the scaling function k(M, H) < 1, to decrease the major loop slope ρh = dC(H)/dH by:

k =

kd(B, H) = B−Cl(H)
Ci(H)−Cl(H)

if dH/dt < 0

ki(B, H) = Cu(H)−B
Cu(H)−Cl(H)

if dH/dt > 0
(78)

The permeability is scaled through the portion between the major loop curves, unlike
the Talukdar–Bailey model that scales it relative the saturation. Tellinen based the approach
on the theory that the amount of Barkhausen jumps are proportional to the remaining
vertical portion of the magnetic flux density until the major loop Cl(H) or Cu(H).

B

H

Cl(H)x

B(H)

Bs

d

H

 dCu 
dH

(b)

 dCl 
dH  dCl 

dHk
Cu(H)

(a)

B

H

Cl(H)

B(H)Cu(H)

(c)

Figure 17. Tellinen model is based on decreasing the derivative. (a) One reversal curve based on
distances d and x. (b) Decreased derivative by factor k. (c) Set of increasing reversal curves.
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The approaches for scaling curves in the Tellinen model are compared to the approach
by the Talukdar–Bailey model in Figure 18. Showing the two different approaches to define
the scaling parameter k based on the distance towards saturation Bs or towards the other
major loop.

B

H

Cl(H)

Cu(H)
x

B(H)

Bs

d1

B

H

x

B(H)

Bs

d2

Cl(H)

Cu(H)

(a) (b)

Figure 18. Two different types of scaling: (a) The Talukdar–Bailey model, (b) The Tellinen model.

The Tellinen model has also been modified in several studies, such as by Kuhn [214] and
by Li et al. [215]. It also resembles some other models, such as the models by Ray [201,216],
Bastos et al. [217] and Zirka and Moroz [184]. The model by Ray [216] employs a weighting
function W, and is written on the form:

dB
dH

=


dCl
dH + k 1

W

(
dCu
dH −

dCl
dH

)
dCu
dH − k 1

W

(
dCu
dH −

dCl
dH

) (79)

9.10. Flatley–Henretty Model

Another differential equation based model is the Flatley–Henretty model [218], de-
scribing how the recoil paths approach the major loop curve Cl(H) or Cu(H) as:

dB
dH

=

{
k(w)

dCu(Hp)
dH

k(w)
dCl(Hp)

dH

(80)

A difference to the previous models is that the slope of the major loop is based in the
height of the flux density B, instead of the position H. The slope of the major loop dC/dH
is taken at a point Hp at the major loop curve, as C(Hp). With the position Hp located at
the height of the present position B, H. This is illustrated in Figure 19.

Hp−H
B

Hw

H Hp

B

H

Cl(Hp)

B(H)

Cu(H)
Cu(H) Cl(H)

k(w)

w=
2Hc

1

0
w

k

w

(a) (b) (c)

Figure 19. The Flatley–Henretty model rescales the recoil paths based on the major loops. Unlike the
Talukdar–Bailey model, the rescaled path is based on the horizontal magnetic field strength distance,
w, from the major loop. (a) The distance w is based on the position H and the position Hp at the major
loop. (b) The curve B(H) goes towards the major loop. (c) The curve B(H) is based on the major
loop, and downscaled based on a function k(w), dependent on the distance w.

Another difference is the distance to the major loop, since the distance is based on
the distance in the H-direction, instead of the B-direction. The function k(w) is based on a
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fractional loop width w, based on a distance to the major loop (with the loop width 2Hc).
Given by

w =
H − Hp(B)

2Hc
(81)

where k is low when the distance to the major loop is high, and k = 1 at the major loop
curve (at H = Hp). The original Flatley–Henretty model uses arctan-functions to model the
major loop, but the model has also been applied with tanh-functions by Meszaros [219].

9.11. Other Transplantation Models

There are some transplantation models that are a bit different from the previous ones,
such as the model from O’Kelly et al. [220] and Zirka et al. [47]. The difference is partly due
to the addition of the terms, but also because of the inverse formulation:

H = HML(B)± Hhyst(B) (82)

where HML(B) = Hanh(B) + Hh(B) is the major loop, and Hhyst(B) is the distance to the
major loop.

In the model by O’Kelly et al. [220], the trajectory is defined by an exponentially
decreasing distance towards the major loop, that is:

H = Hk(B)±W(B)︸ ︷︷ ︸
major loop

∓ 2W(B)e−(Brev−B)/T(Brev)︸ ︷︷ ︸
distance

(83)

where the major loop is expressed by an anhystersis function Hk(B) and a hysteresis width
function W(B). The distance to the major loop follows a modified exponential curve
from the reversal point Brev (at the major loop) where the function T plays a role as a
time constant.

Another similar method was presented by Zirka et al. [47,221], the “history-independent
hysteresis method” (HIDM). The magnetic field strength H(B) is expressed as a distance ∆H
from the major loop Ha(B) [8,9], given as

H(B) = Ha(B)− ∆H (84)

The distance ∆H is expressed as a function of the ratio distance x = ∆B/∆Brev, and
consists of two terms

∆H(x) = ∆Hrev(1− b)xe−a(1−x) + δ∆Houtbxc (85)

where ∆Hrev is the distance to the major loop at the reversal point, and ∆Hout the width of
the major loop at the position. Furthermore, using β = ∆Brev/∆Bout,

10. Curve Shapes of Magnetization

There exist several different equations that can be used to model magnetization curves.
These include exponential functions, polynomials, trigonometric functions and sigmoid-
shaped curves. Some have been developed specifically for magnetizations, others also exist
for other applications.

10.1. Functions and Curve Fitting

The most simple models of magnetization are based on linear functions with a relative
permeability µr and a remanent magnetization Mr, or remanent magnetic flux density
Br. B = µ0µr H + Br. With the remanent value as the magnetization at zero magnetic
field strength.

In FEM-solvers, the hard magnetic materials of the permanent magnets are often
modelled using relatively simple models on a linear form. The magnetic flux density, B,
is commonly expressed as a function of the magnetic field strength, H. In soft magnetic
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materials, more advanced non-linear models are often needed to describe the full behavior
of the magnetizing curve (BH-curve).

Magnetization is, generally speaking, not a linear function, even if it is assumed so
in the simplest equations for some materials. The permeability of a magnetic material
could be non-linear and most of the models could be seen as different types of regional
linearization. Similar to the linear curves, other curve fitting methods can be used for
B = f (H). Many different functions have been tried with curve fitting, see for example
Trutt et al. [222], Fischer and Moser [223] and Boening [224] who had written overviews of
several methods that they compare several functions for magnetization of soft magnetic
materials (iron in lamination). Another shorter comparison was proposed by Dadic [225].

A generalization of the linear models would be to have them as piecewise linear
functions [226], with different slopes in different regions [227,228], and basing the curves
on the maximum fields[229], or applying hyperbolic functions [183].

10.2. Frölich Equation

Most of the early permanent magnetic materials had very non-linear shapes in the
magnetizing and demagnetizing curves. One such simple nonlinear equation is the simple
Frölich Equation [230] or Frölich–Kennelly Equation [231–234] (Figure 20):

B =
H

a + bH
with 1/µ = a′ + b′H (86)
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Figure 20. An example of Frölich equation. With the example shown as a function of the absolute
value |H|, to show the full anhysteresis curve. The curve shape depends on the parameters, here
showing a = 1 and b = 0.5.

It is a classical simple model for the shape of the magnetization, often used for magnetic
iron cores [196,197,225,228,235–240]. It also uses the same shape as Lamont Equation [233],
given by

µ = c(Bs − B) (87)

These models resemble anhysteresis curves, but have been modified for hysteresis by
shifting it to the second quadrant. Both adopted for Lamont’s Equation [241,242], and for
Frölich Equation [243,244]. Frölich equation shifted by a coercive field Hc is then

B =
H − Hc

a + b(H − Hc)
(88)

Later functions that share some resemblance are models based on rational fraction.
With a generalized method describe how the permeability decreases when the B-field
reaches saturation [222] based on a division of a polynomial

B =
1

1 + b1H + b2H2 (89)

10.3. Law of Approach to Saturation

One common approach to represent the curve shape of a magnetization curve is by
the “law of approach to saturation” (see Figure 21). Where the curve is based on a series of
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fractions H1/n. It exists in various adoptions in different studies [245–248], both based on
analytical approaches and on phenomenological approaches.

H

M

H

M

H

M
Ms

(a) (b) (c)

Ca

Figure 21. (a) The law of approach to saturation describes the curve near magnetic saturation Ms .
(b) It is useful for modelling curves in high magnetizations, M. (c) There are also adoptions with
empirical functions, used for anhysteresis curves (then representing both high and low fields).

The model is based on a simplified series expansion near the saturation Ms [249,250],
based on the material anisotropy and rotation of magnetic moments towards alignment
with the applied field. With another equation as

M(H) = Ms

(
1− b

H2

)
(90)

The model is then intended for high fields, near the saturation level, and not for
low demagnetized fields. However, there are also several empirical adoptions that re-
semble the classical law of approach to saturation, which add further terms, such as by
Kaufmann [251,252] and Polley [253]. Kaufmann’s adoption is on the form

M(H) = Ms

(
1− a

H
− b

H2

)
+ χH (91)

With the addition on the experimental term −a/H, that gives a better agreement for a
whole curve span, and allows more general curve fitting, so that it could be adopted as an
anhysteresis function.

Yet another version of the equation with more general terms tries to link the model to
physics is by Brown [254,255], also then adding further terms with other exponents.

10.4. Rayleigh’s Law and Polynomial Models

For low flux densities, it is useful to apply the so called Rayleighäs law [256] (Figure 22).
This model by Rayleigh [256] is based on a quadratic dependence (i.e., B = f (H2))

B = a1H + a2H2 (92)

that has been seen to resemble the magnetization curves at low magnetic fields [257,258],
even if the quadratic dependence has been criticized in other studies when a linear relation
has been found to be better [259,260].

H

B

H

B

H

B

(a) (b) (c)

a1H+a2H
2

Figure 22. (a) Curved shape of Rayleigh model. (b) Hysteresis loop by Rayleigh model. (c) The
model is mostly useful for the low flux densities B (i.e. in the Rayleigh region).
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Several studies have linked the Rayleigh model to a physical model of pinning of
domain wall motions [257,261–268]. Thus, the Rayleigh model could be linked to the
Preisach model, if it is seen to represent the impact of random pinning [269,270].

Reluctances could also be modeled by similar polynomials [271], and it has also been
applied for hard magnetic materials [268]. A general expression for any curve could be

B = a0 + a1H + a2H2 (93)

There are also generalizations to the model. Either by treating the function as a poly-
nomial, and adding further terms of higher order or by treating having another exponent
than n = 2, adopting it for any other exponentiation.

The model by Rayleigh was later generalized by applying polynomials in general for
the magnetizing curves, as done by Peterson [272]. Some functions can be hard to link to
physicality, but could instead be motivated by curve fitting. If phenomenological curve
fitting is used, rather than physical reasoning, other polynomials could be used as well.
Polynomial curve fitting has been applied to soft magnetic materials [273,274], and shifted
to the second quadrant by a constant for hard magnetic materials [192,275]. The method
was applied by Ossart and Meunier for different kinds of magnetizations curves [187,276],
and for the Preisach model [277–279], on the general form as

B = a0 + a1H + a2H2 + ... + anHn (94)

One method is to use polynomial equations, where it can also be combined with a
method where Hc is either added or subtracted, making it possible to model increasing
loops [280]. In the studies by Santesmases [281], there is a clear distinction between the odd-
order terms and the even-order terms of the polynomials, to separate if they are used for
an even or an odd function. Other polynomial models are presented by de Leon et al. [282],
and also by Greene [283] and Prusty [284].

Another generalization to the Rayleigh model is to adopt other exponents than two.
That is similar to Rayleigh model, B = aH2, but written with Hn generalized for any
value of n (Figure 23a). So that an expression could be written as a single exponential
term [222,225]:

B = aHn (95)

Models similar to this, with non-integer power functions have been modeled and
analyzed by Rohan et al. [285] [286]. Mayergoyz used an n-root approximation [287,288],
which then instead writes it as (n > 1, Figure 23b):

B = aH1/n (96)

(a) (b)

Hn
H1/n

B B

H H

Figure 23. (a) Model with exponent n (in Hn). (b) Model with exponent 1/n (in H1/n).

Since the Rayleigh law is adopted for low fields, and fraction models are better for
high fields, there are approaches to combine these. So that the Rayleigh law and the rational
fraction model is combined into one joint model. This approach could be seen in Figure 24.
The numerator models low magnetic field strengths, and the denominator models high
magnetic field strengths [67]. That is

B =
a0 + a1H + a2H2

1 + b1H + b2H2 (97)
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A further extended analogy of this can be produced using a more generalized polyno-
mial fraction with curve fitting [289]. That is

B =
a0 + a1H + a2H2 + ... + anHn

1 + b1H + b2H2 + ... + bn Hn (98)

The combined curve is most useful for initial curves, when the curve actually follows
both types of trajectories (see Figure 24). Since full hysteresis curves are not as well
described as this kind of combination. It may also not be useful for most anhysteresis
functions.

(a) (b) (c)

B

H

B

H

B

H

Low fields High fields Combined

Figure 24. (a) Model for low fields. (b) Model for high fields. (c) Combined model (describing an
initial curve).

10.5. Exponential Functions

The exponential function can also be used as an alternative to obtain more rounded
knees compared to piecewise linear models. It would then be expressed as [290,291]:

B = Br + µ0µr H − Cek1(k2+H) (99)

The exponential function has also been studied by Trutt et al. [222], but then together
with many other functions. Some examples of studies with models using exponential
functions are by Mazgaj et al. [292], Gonda et al. [293], Sigut et al. [294] and Sequenz [66].
An inverted shape expressed by reluctivity as H(B) was studied by Brauer [295].

A simple adoption of exponential functions is by Koepsel [66] as

B = He−(a+bH) (100)

Two variants of these models are by El-Sherbiny [296]:

B = k0 + k1e−c1 H (101)

and MacFayden [222,297]:
B = k1(1− e−c1 H) (102)

These have been modified by Teape to [193]:

B =
k1(1− e−c1 H)

(1− e−c2 H)
(103)

Trutt et al. [222] also have a function on the form

B = eH/(a+bH) (104)

With an exponential resembling the Frölich equation. However, the expression could
also be written in the form of the other types of exponential functions.

Another approach to the exponential function is used by Thompson [194], that bases
it on a statistical method where reversal curves are constructed by using the normal
distribution. The curve shape would then instead be based on the Gaussian error function.
Furthermore, it can be used for the Preisach model by Coulson et al. [298].
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Exponential functions are also indirectly included in many models that are based on
solving differential equations.

10.6. Phenomenological Sigmoid Functions

There are several models that use Sigmoid functions for the shape of the magnetization
curves. Some examples are illustrated in Figure 25, showing the Langevin function (L(xa)),
the tanh-function and the arctan-function.

-10 -8 -6 -4 -2 0 2 4 6 8 10
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-0.5
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0.5
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tanh(xa)

(2/ )arctan(xa)
L(xa)=coth(xa)−1/xa

Ms

-Ms

xa

M

Figure 25. Sigmoid functions can be used to approximate the behavior of soft magnetic materials.
Illustrating hyperbolic tangent function (tanh, blue), inverse tangent function (arctan, orange) and
Langevin function (L(xa), yellow).

Several models are based on the physical Brillouin function, but adopted phenomeno-
logically for its useful curve shape. With the Brillouin function given by

MJ(xa) = Ms

2J + 1
2J

coth(
2J + 1

2J
xa)︸ ︷︷ ︸

C1 coth(C1xa)

− 1
2J

coth(
1
2J

xa)︸ ︷︷ ︸
C2 coth(C2xa)

 (105)

with J = 1/2 we would get the tanh-function [138,299], which is the case for iron. That is a

MJ(xa) = Ms tanh(cxa) (106)

The Langevin function is another version of the function, it is actually older than
the Brillouin function, but acts as a special case for J = ∞ [138]. It is the case when not
considering quantum mechanics. So J = ∞ gives

MJ(xa) = MsL(xa) = Ms

(
coth(xa)−

1
x

)
(107)

A physical approach to the Langevin function is based on the energy of contained
heat with Boltzmann’s constant and the temperature kBT, versus the energy of aligning
magnetic moments to the effective field µ0mHe. That is

M(xa) = MsL(xa) with xa =
µ0mHe

kBT
(108)

Such that an increased heat decreases the alignment and an increased effective field
increases the alignment. The alignment of domain formations in a magnetization curve is
different. However, the Langevin function could be used as a phenomenological tool since
it has the desired curve shape.

The adoption in for magnetization curves in soft magnetic materials is different, but
has been used through the times [300] based on its curve shape, in phenomenological
models by the Jiles–Atherton model [72,73], and others [301–306]. The phenomenological
approach by the Jiles–Atherton model uses it as a tool for curve fitting with

M(xa) = MsL(xa) with xa =
He

a
=

H + αM
a

(109)
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The approach could similarly be used with the tanh function [233], as in studies by
Takacs et al. [138,213,307] and others studies [308,309]. These are using the tanh function
for curve fitting with the equation written as

B(H) = a tanh(H) + cH (110)

The model has also been adopted in several phenomenological models of hystere-
sis [84,304,310–313], in a similar way as the Langevin function. It has also been applied
to model lamination steel [188,189,314–316], and has been generalized with exponential
functions [317].

The curves produce a similar shape as the magnetization curve of iron, but lack
the hysteresis phenomenon, and is then anhysteretic. To include hysteresis, the curve is
used by shifting the curve by Hc [218,314]. One important feature is that the curves are
limited between a maximum and a minimum, which resembles the curves between the
two opposing saturation points. This could also be a drawback, because these functions
never actually reach these extrema, and the curves could only reach saturation at infinity.
Including coercivity, it is written as [311,313]:

B(H) = a tanh(H + Hc) (111)

Another generalized alternative to tanh is the Hypergeometric functions studied by
Herceg [206,207].

An alternative is the inverse tangent function (i.e., arctan or tan−1), which also has a
sigmoid shape. It was first used by Karlqvist [318], and later in other works [84,222,225,319,320],
where it describes the magnetizing curve shape. It has been used in models by Flatley and
Henretty [218], de Almeida [49], Potter [190] and Milovanovic et al. [185].

B(H) = a
2
π

arctan(bH) + cH (112)

Arctan could be seen as a more simple approximation to the Langevin function [321].
However, the tanh-function could be motivated as a simpler alternative, because it saturates
at ±1, instead of at π/2. This is solved for arctan by a factor of 2/π. A broader view of phe-
nomenological sigmoid functions opens up for more functions with the same curve shape.
An overview of some different Sigmoid functions has been studied [142,322,323], with
more types, such as logistic function [322] and functions based on exponential functions or
square-roots [142].

10.7. Statistical Distributions

There are several methods that uses curve shapes based on statistical distributions [324].
One approach is based on the arctan-function [173], and could be considered an approxi-
mation of the Langevin function [49]. The arctan function could be related to a statistical
approach by Cauchy–Lorenzian distribution [325–331]. There are many statistical func-
tions that are sigmoid shaped. From another approach it is possible to use statistical
distributions such as the Gaussian error function [14,81,142,332,333] and the log-normal
distribution [310,326,334–336]. With many different, yet similar functions, several functions
could be seen as approximations of each other while using curve fitting.

10.8. Fourier Series Models

Rayleigh rewrote their early second-order polynomial hysteresis model by trigono-
metric functions to describe the periodic trajectory. Fourier methods could in a similar way
describe the periodic behavior of a loop. It has been seen that specific phenomenon could
be identified in the frequency domain that is hard to notice in the time domain [337]

A method based on series of trigonometric functions would result in Lissajous’ curve
models of the hysteresis loops. Such a model has already been studied by Thompson [338].
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One method by Udpa [339,340] described the B, H-plane as a complex plane by:

U(l) = H(l) + jB(l) (113)

Some other studies with Fourier series and harmonic analysis of BH-loops are by
Davis [341], Willcock [342,343], Josephs et al. [344], Yamada [345,346], Rupanagunta [347]
and Abuelmanatti [348].

Another method was introduced by Goev [349], where the angle θ is defined by the
magnetic field strength from a cos(H/Hm). The magnetization could then be described by:

M = Ms

k

∑
n=1

(αn cos(nθ) + βn cos(nθ)) (114)

Another way is instead to do the opposite, which is to define the magnetization based
on an angle, as in

M = Ms cos θ′ (115)

This makes sense if we consider that the magnetization curve is related to the rotation
of magnetic moments in the material. The angle θ′ is then an average magnetization angle of
the distribution of magnetizations. This angle can then be described by a Fourier series by:

H = Hmax

k

∑
n=1

(αn cos(nθ′) + βn cos(nθ′)) (116)

Takacs has also studied Fourier series representation of hysteresis curves [350], also
using studies with Laplace transform [351].

11. History Dependent Models

History-independent models have a general problem of “drifting”. Asymmetric
cycling will give successive shifts in the magnitude, such that B increases or decreases
without restriction for each cycle. The values will then “drift”, which makes reversal curve
and minor loops incorrectly modeled.

All curves are defined with trajectories that are leading towards the saturation points.
The model is better for first-order reversal curves and symmetric concentric minor loops.

The alternative is then to have a history dependence that avoids this. This could be
achieved using models that consider Madelung’s rules.

11.1. Madelung’s Phenomenological Model of Hysteresis and Reversal Curves

Some early phenomenological studies of the hysteresis pattern of the B, H-curve for
ferromagnetism were conducted by Madelung. Madelung’s work dates back to 1905 but has,
since then, been cited by several more modern researchers such as Zirka and Moroz [184],
Kuhnen [352], Harrison [353], Pierce et al. [354], Astorino et al. [355], Farrokh [356] and
Cao et al. [357]. They are described by Brokate and Sprekels in [358] related to the play and
stop model of hysteresis, and it can be noted that Prandtl [359] constructed the stop model
of frictional hysteresis based on the rules.

The phenomenological behavior can be summarized by the following rules created by
Madelung (Figure 26) [93]:

1. Each curve C1, which runs inside the hysteresis area, is clearly defined by the reversal
point P1, from which it emerges.

2. If one makes any point of this curve itself to a new reversal point P2, the curve C2
defined by P2 leads back again to the starting point P1 of the curve C1.

3. If the magnetization curve C3 originating in P3 to P2 continues beyond P2, it continues
as a continuation of the curve C1 on which had originally arrived at P2, as if the cycle
P2-P3-P2 had not been present.
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The second rule is often called “return-point memory” and the third is often called
“wiping out property” [353]. The essence of Madelung’s rules is that each curve can be
defined by three parts: the order of the reversal curve, the reversal point (i.e., the point from
which it is leaving) and the return point (i.e., the point it is going towards). Furthermore,
stating that the return point will be the previous-to-last reversal point.

H

B B B

H H

(b) Return point memory (c) Wiping out memory(a) Definied reversial curves

Madelung rule 1 Madelung rule 2 Madelung rule 3

P1 C1
P1 C1

P2

P3

P2

C1

C2

C3

Figure 26. Madelung’s rules for history-dependent hysteresis. The trajectory is defined by the history
of reversal points. (a) A first order reversal curve is defined for each point along the major loop.
(b) Each curve goes back to the previous-to-last reversal point. (c) When a cycle is closed, the trajectory
follows the curve before the cycle.

The original formulation of the rules is written using the first, second and the third
reversal curves specifically. However, the rules are easily generalized for any higher order
of reversal curve, by focusing on the main system that Madelung entails. They can be
rewritten for improvements of the formulation of the text, to formally generalize the original
text [353]. To stress that the rules can be applied to any order of reversal curves, one way is
to simply drop the word “First order” in the first rule, and then generalizing the approach
for any reversal point [40].

11.2. Other Forms of Madelung’s Rules

There are other writers that also have made their modifications or contribution to the
rules. For instance, some sources add their own fourth rule to the original three. Zirka and
Moroz add one rule pointing out that reversal points going from the initial curve do not
go back to 0 (as the second rule might imply), these curves instead travel to the opposite
symmetric side (from (B, H) to (−B,−H)) [184]. Kuhnen adds a rule to remind that any
point has several crossing trajectories, to point out the need for the memory of the present
order of the reversal curve [352].

Madelung also introduced a method for modeling reversal curves, which also could
be seen as a fourth rule [40]. Madelung [94] also calls their remark, the “fourth rule”, that
the curves are “congruent” [94]. It is a strategy of modelling reversal curves based on
congruency. Where high order reversal curves are based on the curve originating from the
same ordinate [93].

The Madelung rules are however not exact rules, it is rather an approximation or a
model. The second rule could be wrong because it could be seen as something more of an
approximation. For some curves, it just goes back to approximately that same point as the
previous-to-last reversal point, and not the exact point. It has also been noted that repeated
loops go towards a stable loop with the number of repeated loops, in a phenomenon called
accommodation. The first rule could also be wrong due to impact of neglected phenomena,
such as rate-dependency as eddy currents.

Note that Madelung’s rules are made for rate-independent systems. A rate-independent
system is dependent on the direction of the speed, but it is not dependent on the rate of
the speed. That is that the model does not depend on rate of the velocity, or in the case of
magnetism, the time-derivative of the magnetic field dH/dt. The dependency is then only
related to the direction of the speed.
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11.3. History by Reversal Points

An important observation shown in Madelung’s model is the dependency on previous
reversal points. For a rate-independent system, the function will only depend on the past
reversal points. The global memory could then be expressed by the simpler form:

B(H) = B(H(t), Hr) (117)

With the global memory replaced by a simplified stack Hr consisting of past reversal
points, Hr = {H0, H1, H2, ..., Hn}. Following Madelung and Everett, the numbering is
usually expressed starting at the major loop with the saturation Hmax or Hmin as the
first point.

There is a certain nomenclature assigned to the curves, as seen in Figure 27, following
Enderby [360] and Everett [361]. The numbering starts from the major loop, which is the
loop between positive and negative saturation. The first inner curve from the first reversal
point is called “first-order reversal curve” (FORC). It is then followed by the “second-order
reversal curve” (SORC) from a second reversal point, and also the “third-order reversal
curve” (TORC) in the same way, and so on [362]. Each order of reversal curve will be
expressed as an “n-order reversal curve” (n-ORC), starting from the n:th reversal point (Pn).
The curves of the major loop will in this analogy be the “zeroth order” reversal curves [362],
but it is not a commonly used name.

Ci: Initial curve

C0: Major loop (ʺ0-orcʺ)

C1: FORC

C2: SORC

C3: TORC

P4

P2

P3

B

H

P0

P1

Numbering of reversial curvesC0

C1

C2 CiC3

Cn: n-ORC

Figure 27. Numbering of reversal curves based on reversal points.

It could be expressed by Enderby’s notation [360], that also considers the direction.
Where the upper positions in the stack are upper reversal points, and lower positions are
lower reversal points [221]. Starting from a positive saturation it is:

B(H) = B
(

Hmax H2 Hn
H1 H3 H

)
(118)

If it starts from negative saturation Hmin it is:

B(H) = B
(

H1 H3 H
Hmin H2 Hn

)
(119)

12. Preisach Type Models

Two common history-dependent hysteresis models are the Preisach model [14,358,363–368],
or the Play model [48,369–373]. These models are constructed by adding together several
non-physical components called “hysterons” that together act like the overall hysteresis
curve. Each hysteron can be referred to as a “particle” in the model, but they lack physical
counterparts [81]. These “pseudo-particles” could be referred to as operators, and each
model is created by a great number of independent operators that are combined with an
integral or a sum to create a joint hysteresis output.
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The different models have different types of operators acting as hysterons, but they
share the common structure of being built by sums or integrals. The Preisach model is built
by the Preisach hysteron, as illustrated in Figure 28, where each hysteron is a relay that
switches between two states.

A Preisach model is created as a sum of relays Ri, each with a weight wi. That is as

B(H) =
n

∑
i=1

wiRi(α, β) (120)

It is usually adopted in an integral from, where the operators γ(H) are defined by a
weight distribution function p. that is

B =

¨
p(α, β)γ(H)dαdβ (121)

The Play model and Stop model are built by the play operator and stop opera-
tor, respectively, as illustrated in Figure 29. They are sometimes called the “Prandtl–
Ishlinskii model” [27,374,375], which is used to refer to both stop models and play mod-
els [83,352,376], named after Prandtl and Ishlinskii [48,359] who contributed to the devel-
opment of the Stop model.

β α β α β=α

B B B

H HH

Ri(H) Ri(H) Ri(H)

Figure 28. Examples of Preisach relay hysterons. Each relay only have two states, and the point
where it switches between the two state depends on the present state.

A Play model is written as a sum of play operators Pi, each with a weight wi.

B(H) =
n

∑
i=1

wiPi(B) (122)

It can also be adopted in an integral form, based on an integral

B(H) =

ˆ B

0
g(r)dr (123)

The Preisach model together with the play and stop models are all referred to as
“Preisach type models” [358], since they share several similarities. The play model could
also be seen as a type of Preisach model, and can as such be expressed in the frame work of
the Preisach model [90,377–381].

B

H

(b) Stop hysteron

B

H

(a) Play hysteron

Figure 29. (a) Example of a Play operator. Acting like a backlash element. (b) Example of a Stop
operator. Acting like a linear function between a maximum and minimum value .
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The Preisach model, the play model and the model are all built by sums or integrals
of hysteresis operators (hysterons) [358]. They could then also be named as “integral
models” [57], “operator-based models” [59] or “population models” [45].

Integral model is a name that refers to the fact that the models are constructed as an
integral equation of several hysteresis operators. The drawback with this name is that all
of the models are not built by integrals, there are numerous models that use summation
instead. So, it is not entirely accurate. Whether it is built by integrals or summation, they
are built by operators, so a more accurate name is then to call them operator models. These
models then cover both integrals and summations, but could also be misunderstood as
covering single operator models.

A less common way of categorizing the models is carried out by Hornung [45] who
refers to the models as population models. The name covers both summation and integral
equations, because in both cases they are based on a population of several contributions.
The expression “population model” is then also put in contrast to the category “spatial
models” that also considers the spatial relations between the contributions [45]. The
physical geometrical placement of the magnetic domains is often neglected in most models.

There are also other classifications within the operator models. Two ways of classifying
these models are to differ between scalar and vector models or between static and dynamic
models [14,370]. The most common models use scalar and static models, where dynamic
or vector features are used as added features for introducing generalization. Vector models
are a 3D-adaption of the models [172], and dynamic models means that the models are
rate-dependent. Vector models are not only limited to alternating fields, but also rotating
fields, that consider three dimensional phenomena, both with switching rotation, coherent
rotations and domain wall motions. Some comparisons of several vector Preisach-type
models are given by Appino et al. [172] and Nierla et al. [382]

12.1. Congruency and Wiping Out Properties

Two important properties of the history dependency of the Preisach model are the
wiping out property (or deletion property) and the congruency property [77,288,361]. These
features set the limits of the model and can mean that it is not accurately modelling all the
curve shapes of a real magnetic material.

The congruency property (see Figure 30) means that the Preisach models of the same
interval of H gives loops with similar shape and change in magnetization ∆B, regardless
of the magnitude of the flux density B [288,383], as seen in Figure 30. The loops are just
translated with an ordinate-shift. This property is however not physical, real minor loops
of hysteresis show non-congruency [384].

B

H

H1 H2

Figure 30. Congruency of loops for cycles within the same interval. The curves will look the same for
cycles between H1 and H2, with the same change in B ( same ∆B).

When a curve continues beyond a return point, and a minor loop is closed, the curve
will act as though the inner minor loop does not exist. This means that the curve will follow
the trajectory of the curve before entering the internal minor loop.

The wiping out property is analogous to Madelung’s rules, especially rule 2. This
property is usually desired because it prevents a function from drifting. Drifting could
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be an undesired property that makes a model change trajectory and move away in the
B, H-plane, resulting in an uncontrolled successive displacement.

A closed loop, cycled between the two points Ba and Bb could be written as

˛
dH
dB

dB =

ˆ Bb

Ba

dH
dB

dB +

ˆ Ba

Bb

dH
dB

dB = 0 (124)

Such that there is no change in H(B) for the cycle. Furthermore, the loop is closed
when B cycles between Ba and Ba.

12.2. Congruency by Everett Functions

A consequence of the congruency property is that all curves will be congruent to a
FORC. This could be useful while creating a Preisach model, because all curves could
then be based on these congruent FORCs. A similar method to this was introduced by
Everett [361,385], where the data of the Preisach model are stored as a set of FORCs. This is
often called Everett map, Everett function or Everett distribution [328,386].

The Everett function defines how the magnetization changes relative to the last reversal
point. That is, it defines B and M directly, while the Preisach model calculates B through
integration of the permeability distribution as p(α, β) [387]. A Everett function expresses
the change in B to a point H from a previous point Hrev, that is

B(H) = E(Hrev, H) (125)

The initial curve is slightly different, since it defines the initial curve from the initial
point, and defined by a special separate initial function [386,388] as

B(H) = E0(H) (126)

The advantage of this method is then the simplicity, because it is straightforward
without the need for a distribution of Preisach hysterons. A descending major loop in
Enderby’s notation is given in [360,389]:

B(H) = B
(

Hmax
H

)
(127)

The corresponding expression in Everett functions (E(Hs, H)) is then a point E0(Hmax)
combined with a curve E(Hmax, H), as:

B(H) = E0(Hmax) + E(Hmax, H) (128)

A FORC from that major loop curve is expressed in Enderby’s notation is:

B(H) = B
(

Hmax H
H1

)
(129)

A reversal curve is then constructed by the points E0(Hmax) and E(Hmax, H1), and the
curve E(H1, H) [390]. That is:

B(H) = E0(Hmax) + E(Hmax, H1) + E(H1, H) (130)

All higher order reversal curves are then constructed as a sum of Everett functions.
Each reversal curve will be represented by a FORC, following the congruency prop-
erty [386,391–393].

Following Everett’s notation, all reversal curves obtain a notation starting at the
major loop, but it is also possible to apply the method for initial curves, as shown by del
Vecchio [386] and Atherton [394]. A notable difference is that an initial curve is half the size
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of a symmetrical loop. This could be based on the fact that the initial triangles have half the
size as the triangles of full loops.

Based on Everett’s approach, experimental data of FORCs could be used directly with
the congruency property with empirical curves [14,395]. However, an uncritical application
of the H-congruency to experimental data could create drifting with minor loops without
return-point memory, resulting in unclosed loops [40]. The reason is that the congruency is
not a property in the empirical data from materials, and the data must be changed into a
proper Preisach model in order to ensure return point memory.

Many history-dependent models can be expressed in the framework of the Preisach
model and Everett functions. The models can then conveniently be used with a congruency
property by Everett [77] and similar methods [40]. Curves are then expressed based on the
reversal point H that it is emanating from.

Several studies use the reversal curve as the basis for construction of the model [388,396–399].
Based on the Preisach model and Everett functions, the studies of FORCs have evolved into
their own field of study from characterizing magnetic materials [277,400–403]. FORCs are
used for obtaining Preisach models [208,404].

12.3. Congruency of Prandtl–Ishlinskii Models

Prandtl–Ishlinskii models are similar to the Preisach model, but instead use the play
and stop hysterons. The most common versions are Play models and stop models.

The models can be described by the framework of the Preisach model, and can as such
be seen as special cases of the Preisach model [352,379,390,405,406]. The congruency in a
Play model or a Stop model is much stricter than Preisach models since all reversal curves
are congruent [390]. Thus, all reversal curves have the same curve shape, independently of
the location of the starting reversal point.

12.4. Models Considering Accommodation

Ideal closed loops may not be a strict truth for real repetitive trajectories. Real loops
may not have the exact return point memory and just almost create a closed loop. There
could also be some drifting for repeated magnetizing in the first quadrant. This small
drifting for cycled input use to be called “reptation” (fr. creeping) and the non-closing
loops use to be called “bascule” (fr. tilting or flip-flop) [407–410]. These are just deviations
from the overall behavior of closing loops, and repeated cycles go towards being closed in
a phenomenon called “accommodation” [411]. Accommodation cannot be modeled by the
Preisach model [411].

The return point memory of Madelung’s rules is not always desired, because it is not
an entirely correct model of actual trajectories. Existing alternative methods that include
accommodation have been developed in several studies [53–56].

Another interesting history dependency is in the model by Hauser [50–52]. Where a
reversal variable is introduced to scale the curves K, the variable is updated for each point
M based on the distance to the previous reversal point M0 and the previous value of K0.
The model exists in several versions [50–52,412].

12.5. Avoiding Congruency Properties

The Preisach model could also give incorrect initial curves, since the Preisach model is
usually based on FORCs and not on the initial curve [413].

Generally speaking, the congruency may serve as limitation of the model because all
curves will be congruent to FORCs. Higher orders of reversal curves, such as measured
SORCs, are usually not considered, and cannot be directly included in the Preisach model.
There are some attempts with models that in different ways try to include a representation
of SORCs [336,396,404,414,415].
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12.6. Methods to Change the Congruency

It is often desirable to avoid the congruency property, and account for non-congruency
or accommodation. Even if it cannot be removed, it is desirable to make it less strict.
Some of the ways to avoid congruency include actually just changing the properties of the
congruency. The Classic Preisach model could in this context be called “H-congruency” in
contrast to other types of congruency [40]), where the vertical congruency gives all curves
cycled within the same intervals of H congruent. This congruency could be desired as a
part of the model, but it could be desired to avoid it. Many ways to avoid it are instead
ways of changing the properties of the congruency, based on the direction of the congruency
property in directions as He-, M- or B- congruency. There are several ways to modify the
congruency [14], here are some notable approaches:

1. Moving model: The moving model by Della Torre [55,416,417] has a skewed linear
congruency by He = H + αM [78,79,418]. It has the input of the Preisach model
depending on the current magnetization M, (as in the effective field He = H + αM)
which changes the description of minor loops for different magnitudes of magnetiza-
tion M. Since the effective field is phenomenological, it is possible to generalize with
other functions He = f (M).

2. Nonlinear model: Similar to the moving Preisach model with an input-dependent
measure, the difference is that the distribution function of the Preisach model µ(α, β, X)
is changed depending on an input X, such as the magnetization M Input dependent
Preisach [14,419] or the speed dH/dt [420–422].

3. Product model: The Preisach model is multiplied with another function. The function
can then change the magnitude depending on the magnetization [423,424], such as the
Langevin function [394] or the Rayleighs model [425].

4. Restricted model: The Preisach model depends on past extreme values of M [426].
The method is thereby dependent on past reversal points, and not just the last rever-
sal point.

5. Domain wall motion model: Using both a differential equation and the Preisach distri-
bution, the curve is found by solving a differential equation M(x) that is dependent
on a variable x for the “wall placement”, with x(H) calculated through the Preisach
model [427,428].

6. Inverse model: An inverse Preisach model is expressed as H(B) or M(B) [429,430]. In
this case, the congruency is then changed, so that it will be congruent for intervals
of B, rather than H [379]. Because the inverse Preisach model has another congru-
ency than a common Preisach model [379], the Prandtl–Ishlinskii model can be an
alternative since that model could be written with an inverse model with the same
congruency [379,406].

In a non-congruent model, each curve will depend on both B and H of the reversal
point. This cannot be described by a Preisach model, except if the Preisach distribution is
modified to be dependent on the position (B, H).

12.7. Inverse Models

It is of interest to have the Preisach model on the inverse shape of H(B) [429,430]. Even
if magnetic hysteresis usually is seen as B(H), it could be easier to implement the inverse
expression with H(B). This is because inverse models are better when solving the magnetic
vector potential A [431] (i.e., B = ∇× A), as most FEM-calculations do. These inverse
models will have a B-congruency, instead of the H-congruency of the classical models. In
this way, it is horizontally congruent for intervals of B instead of H. This does not have
to be a problem. One advocate of the B-congruency was actually Madelung [93] who
proposed a method based on this congruency, with high-order reversal curves (n-ORCs)
approximated by FORCs in the same interval of B [40].
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13. Scaling Models with History Dependence
13.1. Models Based on Reversal Curves

There are history-dependent hysteresis models that are not of the constructed by
hysterons as a Preisach type model, such as models by Harrison [353,432] and models by
Zirka and Moroz [184,186]. These instead consider the global memory, directly based on
Madelung’s rules, for models based on algebraic or differential equations.

The general idea is illustrated in Figure 31. A FORC is defined between reversal
point P1 and reversal point P2 (Figure 31a). A history-independent model would assume
that the second-order reversal curve goes towards the saturation point Bs, like a FORC,
instead of back to P1 (Figure 31b). A history-dependent model instead generates a proper
second-order reversal curve that goes back to the point P1 from P2 (Figure 31c).

B

H

BsB

H

Cl(H)

Bs

FORC

P1P2P1P2

B

H

Bs

SORC
P1P2

Cl(H) Cl(H)

(a) (b) (c)

Figure 31. (a) Example based on a FORC from point P1 to P2. (b) Case of a Duhem model: A
SORC would not be properly represented in the model. The curve would act like a FORC and go
towards the saturation point Bs, instead of towards P1. (c) Case with scaling adjusted for return point
memory: An improved history dependence would instead have a proper SORC that goes towards
the previous-to-last reversal point P1.

13.2. Scaling Models Considering History of Reversal Points

The method of scaling can be adopted for history dependence aswell. The approach is
basically to scale the curves between the reversal point and the return point, so that the
curve goes from the last to the pervious to last reversal point.

Many transplantation-type models have modifications to include an improved history
dependence, such as the transplantation model by Zirka et al. [184]. The history depen-
dence could be introduced by storing previous reversal points, just like the method by
Madelung. The history of reversal points will allow for a progression towards lower-order
reversal curves.

A major loop curve in the transplantation model is adjusted to fit between a starting
point and an end point. From the last reversal point Pn, going to the previous-to-last
reversal point Pn−1, Zirka et al. write it as:

H =

{
Cu − k(Cu − Cl) if dH/dt < 0
Cl + k(Cu − Cl) if dH/dt > 0

(131)

where the scaling factor accounts for the downscaled distance in both directions (in H and
B). The factor k can be found by measurements, but also approximated by:

k =
Bs − Brev

2Bs

Hs − Hrev

2Hs
(132)

where Bs, Hs is the saturation point, and Brev, Hrev is the reversal point. This expresses then
a case for a FORC, but the model is generalized for high-order reversal curves as well.

Even if many transplantation-type models are history independent they could be
used as history-dependent models. The Talukdar–Bailey model [198] could be adopted
for history dependence as studied by the method of Frame et al. [210] and Guerra and
Mota [204]. This has been studied for hyperbolic functions by Dick and Watson [183] and
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Roshen [243,244], for tanh-function of the Potter–Schmulian model by Nishimoto [433] and
for polynomials of the Ossart–Meunier model by Cortial [434].

Another method that defines the slopes for dB/dH, was studied by Lee et al. [435]
which then are definitions of the permeability. The curve is then solved as a differential
equation between point Pn for a trajectory towards Pn−1. Similar methods with other
approaches have been presented by Mousavi et al. [209] and Morita et al. [436].

Madelung [94] also developed a history-dependent model similar to scaling models.
With the curved shape based on the slope of the Langevin function, but scaled to fit reversal
curves, with the adoption of the Langevin function based on studies by Gans [95,437]. The
model shares several similarities with play models, but with a difference in the definition
for the initial curves.

There are also other methods to scale the curves. In an approach by Takahashi
et al. [181,438,439], the minor loops are modeled by scaling the major loop in a method
analogous to Steinmetz hysteresis model. However, then also for applications of scaling
the size of the hysteresis area for prediction of iron losses.

13.3. Preisach Models Generated by Scaled Major Loop Curves

A Preisach model could be based on scaling the major loop into FORCs. The FORCs
are then used by the congruency property to model any higher orders of reversal curves
(n-ORC). Such a method based on scaling Major loops in to FORCs was presented by
Mousavi et al. [209].

However, there are two problems with such a model:
First, there is a risk that the FORCs leave the hysteresis area. If the FORCs are simple

downscaled curves of the major loop, they could cross the major loop. In such a case, it is
not possible to generate a Preisach distribution. The model by Mousavi and Engdahl [209]
generates FORCs that are analogous to the FORCs of the Talukdar–Bailey model. As such,
the two models will then share the same problem of reversal curves that leave the proper
hysteresis area [203,210]. An alternative model that could avoid that problem would be to
use another type of shrinking coefficient, such as one similar to the Tellinen model.

Secondly, if the FORCs are not made into a proper Preisach distribution, the congru-
ency property could also result in drifting [40]. Because in such a case there is no Preisach
plane and then with distribution that ensures that the congruency property. Congruency
property is not a physical property, it is just a consequence of the construction of the
Preisach model. Because of this, measured physical reversal curves may not be congruent.
The measured data have to be constructed into a proper Preisach model before the congru-
ency property can be applied correctly [40]. Correctly measured FORCs could also result in
a Preisach model that has reversal curves that leave the hysteresis area [440]. This is the
case if there are negative weight distributions in the Preisach distributions [440].

13.4. Jiles–Atherton Models with History Dependence

An alternative to return point memory is to adjust the limits of the hysteresis area. The
problem with history-independent models is generally that the curves always go towards
the major loop, similar to FORCs. By restricting the area of the loop, the reversal curve will
go towards another return point. It is implemented as adjustment to the anhysteretic curve
for the limited area.

The Jiles–Atherton model can then be changed to create non-centered loops [441]. This
then specifically addresses the problem whereby the Jiles–Atherton model does not give
correct minor loops. The model rescales the size of the model to yield smaller loops while
operating in a reversal curve by Jiles [442] and Carpenter et al. [443]. These approaches
are based on modifying the anhysteresis loop and the reversible part. Another approach
is instead to modify the dissipative part, which is the irreversible part of the equation,
as studied by Leite et al. [444]. Other approaches are to generate minor loops by scaling
in Jiles–Atherton Model [445], or to adopt a Preisach model based on curves from the
Jiles–Atherton model, as by Pasquale et al. [446,447].
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13.5. Coleman–Hodgdon Models with History Dependence

Adoptions of the Coleman–Hodgdon models for history dependence have been stud-
ied by Gentili and Giorgi [43,44]. This method could then be applied to other similar
Duhem models such as the Jiles–Atherton model.

13.6. Comparing Scaling of a Reversal Curves with Congruency of Reversal Curves

The approaches of congruency and of scaling have two fundamentally different ap-
proaches to minor loops, since congruency applies the same curve shape, while scaling
transforms the shape.

They can still be combined if scaling is used for generating FORCS, while congruency
is used for all other curves.

13.7. Other Similar Models

One other history-dependent model is Harrison’s positive feedback model [303,304,432],
who writes M, H-plane on the inverse form as H(M), written as a sum of several terms.
Among these terms is an inverse tanh-shaped function and an inverse Langevin-shaped
function. The hysteresis is defined as a bimodality of a fold catastrophe, where the curve
gives two solutions. The approach is well developed for curves in one dimension, including
minor loops and reversal curves. However, the approach is not made for three dimensions,
and is thereby limited for modelling scalar values of alternating fields. Harrison’s model
has been generalized together with Zirka and Moroz [47,221] as a phenomenological model
of hysteresis curves. Furthermore, applied for modelling recoil loops in demagnetization
curves of hard magnetic ferrites by Egorov et al. [362]. However, it has been addressed that
inner loops and initial curves are hard to reproduce with this model [355]. Furthermore,
generalized functions have thereby been proposed that handle the curve shapes in more
detail [355].

14. Comparing History Dependence

The Preisach-type models are dependent on the global memory, but the hysterons
that these models are built by are just dependent on the local memory. The strength of the
Preisach-type models is then that it combines the advantages of Duhem models and the
Hysterons, respectively. They experience branching for all the hysteresis areas, just like
Duhem models. Furthermore, they create bound trajectories without drifting for a repeated
input, just like the hysterons.

14.1. Comparison Duhem Models and the Preisach Type Models

History-independent models, such as Duhem models are very different from the
Preisach type models, and they made for different applications. The most common Duhem
models are the Jiles–Atherton model which has been compared to the Preisach model in
several studies [26,126,448]. Even if a comparison between Coleman–Hodgdon model and
Preisach model also exists [4,108,276].

The drifting phenomenon [40] may generally be a reason why Duhem models are
rejected in favor of the Preisach model for history-dependent systems. The drifting in
Duhem model is often considered to be bad for models, because cycled-input values could
give unbounded trajectories.

14.2. Hysterons and Prehysterons

Hysterons are a common name for several hysteresis operators, and work as a common
name of the relay in the Preisach model and the play and stop operators in the Prandtl–
Ishlinskii model. In the work by Krasnosel’skii and Pokrovskii [48], a hysteron is defined to
have no branching within the hysteresis area. The branching is only defined on the contour
of the hysteresis area. The branching within the hysteresis area in the Preisach-type models
are created by the combination of the hysterons, some hysterons within a model experience
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branching, while the others do not. The hysteresis that reaches the surface could branch,
while the one in the hysteresis area remains without.

Hysteresis operators that instead do allow branching within the hysteresis area are
referred to as “Prehysterons” by Krasnosel’skii and Pokrovskii [48]. These models are what
often used to be called Duhem models [90]. A hysteron is reversible inside the limiting
cycle loop, but irreversible on the surface limit of the cycle loop [78], as seen in Figure 32.
While a Duhem model is irreversible within the whole area.

It would not become a Preisach-type model as it would have been built by a sum of
prehysterons instead of hysterons. Such a model has been studied by Takagi [65], where
Takagi also considers that the drifting could be seen as motivated [65]. However, the result
tends to increase and decrease for repeated cycles [84]. Such a model will drift since all
operators experience branching within the whole hysteresis area.

BB

HH

(a)Nonlinear hysteron (b) Duhem model
Risk of DriftingNot drifting

Figure 32. Comparison between a Hysteron and a Duhem model (or “Prehysteron”). (a) A hysteron
model avoids the risk of drifting. (b) A Duhem model results in a risk of drifting curves.

14.3. Other Names for Types of History Dependency

Note that each separate hysteron could also be considered as a history-independent
model, similar to the prehysterons and the Duhem models, since its memory could be
reduced to the present state and direction, just like the “local memory” approach of Duhem
models. The history dependence of a hysteron-based method is instead a consequence
of the combined contribution of several hysterons. A combined name for both Duhem
models and Hysterons is introduced by Hornung as “Memory models” [45], which could
be seen as a counterpart of the more frequently used term history independence. A model
consisting of several pseudo-particles or hysterons would be a “population model” [45].

15. Phasor model with Complex Permeability

There are several models that formulate the B(H)-relation based on phasor values,
such that both B̄ and H̄ are phasors. The hysteresis phenomenon could then be handled
by a complex valued permeability as µ̄ = µ′ + jµ′′ [449–452]. The method has also earlier
been applied by Arkadiew [453] and Feldtkeller [454].

It must be used with periodic signals, preferably with a phasor representation H̄ for
the H-field input. A linear system will then have a sinusoidal B-field, based on the principle
“sinus in, sinus, out”, represented by the phasor B̄.

B̄ = µ̄H̄ = |µ|ejδ H̄ = (µ′ + jµ′′)H̄ (133)

In this kind of model we assume that both B and H are sine waves, as in Figure 33,
both phase-shifted relative each other by the angle δ.

The phase angle δ in the model becomes similar to a load angle, because an increased
imaginary part is related to an increased power load. The load angle is in this case constant
for all frequencies [455].

Complex permeability could also be related to complex inductances and complex
reluctances in circuit analysis [456]. This gives a relation to circuit theory to hysteresis
modelling.
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Figure 33. (a) Phasor model of B(H) with complex permeability. (b) The hysteresis loop is modelled
like an ellipse, without the characteristic branching, but still frequency independent. (c) The hysteresis
loop in the model is equivalent to a phase shift δ between B and H.

15.1. Including Eddy Currents

Consider induced classical eddy currents by the differential equation:

H = kgσ
dB
dt

(134)

By using phasor values, and by treating the derivative as d/dt = jω we get

H̄ = kgσjωB̄ (135)

Which then models cyclic loops in a linear differential system. Furthermore, assume
no proper static hysteresis and only dissipative dynamic phenomenon.

This could be combined with an expression of complex reluctivity (similar to a complex
permeability) as

H̄ = (ν′ + jν′′)B̄ (136)

Which combined gives

H̄ = ν′ B̄ + jν′′ B̄ + jωB̄kgσ (137)

Which is a structure resembling loss separation. With hysteresis described by jν′′ B̄
and eddy current by jν′′ B̄.

The relation between B and H is shown in Figure 34, illustrating various models. A
callsic, scalar, linear and real µ is shown in Figure 34a. Hysteresis by a complex permeability
is shown in Figure 34b, and and cycles caused by eddy currents in Figure 34c.

B

H

B

H

f3
f2

f1

B

H

(a) (b) (c)

Bmax

Hmax

Bmax

Hmax

Figure 34. (a) Illustrating a permeability µ without imaginary part for a linear relation of B(H).
(b) Illustrating a relation of B(H) from a complex permeability. The complex permeability is different
from other hysteresis models since it gives an elliptic loop instead of branching, but the model is still
frequency independent. (c) A complex permeability model of eddy currents is instead frequency
dependent.
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15.2. Written as Functions

Similarly, we could write the hysteresis loop of period functions

H = νB + kgσ
dB
dt

(138)

Note the resemblance to circuit theory and that it follows the same structure as a
common electric lumped circuit model

I =
1
L

φ +
1
R

dφ

dt
(139)

It could be shown that the model for H gives a loop in the H, B-plane if we have a
sinusoidal flux density B = Bm cos ωt, expressing the time derivative dB/dt as a function
of B [281]. That is:

dB
dt

= ω
√

B2
m − B2 (140)

A phase-portrait in the BH-plane could be generated for a cyclic input, as in:

H =
1
µ

B + ω
√

B2
m − B2 (141)

where the width of the ellipse shape dependent on the angular speed ω.

16. Dynamic Models

Hysteresis in magnetism is a phenomenon that is seen to be independent of the
frequency. However, in many applications, it could be necessary to combine a frequency
dependence together with a model of hysteresis.

The frequency dependency of relaxation is not a proper hysteresis. As such, it is rather
modelling hysteresis as eddy currents.

Hysteresis phenomenon is different from the phenomenon of relaxation in damping
and viscosity, where the loop is created by a phase lag in a linear system of differential
equations rather than a non-linear system [77].

A notable feature of rate-independent models is that there are sharp edges at the
reversal points in the loop [457]. Relaxation phenomenon instead has ellipse loops.

Different frequencies give different hysteresis, as seen in Figure 35. This then includes
the impact of induced eddy currents within the material.

f2

B

H

f1

B

H

f1<f2<f3<f4

f4

B

H

f3

B

H

Figure 35. Example illustrating magnetizing loops for frequencies f1 < f2 < f3 < f4, at the same
interval of H. Higher frequencies result in wider loops, with a more ellipse shaped cycle.

17. Chua Model

A common model for nonlinear magnetization was proposed by Chua and Stromsmoe [458].
The Chua or Chua–Stromsmoe model [7,458] is instead expressed for dB/dt written as:

dB
dt

= g(H − f (B)) (142)
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Which is based on an anhystersis function for a nonlinear H(B)-relation, given by
H = f (B) and nonlinear eddy currents given by H = g−1(dB/dt). It could more clearly be
seen by writing the equation as

H = f (B) + g−1
(

dB
dt

)
(143)

It uses the so-called restoring function f as anhysteresis curve, and the dissipation
function g to express the dynamic dependency. The input H is compared to the anhysteresis
function f−1(H), and then built on the distance to the anhysteresis function Hd = H− f (B).
The time derivative dB/dt is then defined as a function g(Hd) from the distance. The value
of the time derivative dB/dt is always positive on one side of the anhysteresis curve, and
always negative on the other side. An example of an induced loop is shown together with
the anhysteresis function f (H) in Figure 36, together with the nonlinear expression for
induced eddy currents g(Hd).

B

H

f −1(H)

Hd

Hd=H−f(B)

g(Hd)

B(H)

dB
dt

B(H)

Hd

(a) (b)

Figure 36. The Chua, or Chua–Stromsmoe model. (a) The loop is expressed by the combination
of an dynamic part Hd and an anhysteretic function f−1(H). (b) The dynamic part Hd is nonlinear
(described by g(Hd)), similar to excess eddy current losses.

There are also several similar models, based on a similar combination of nonlinear
functions, to adjust the elliptic loop of relaxation damping. This has been done in several
other studies [80,459,460], where an elliptical loop is combined with a non-linear anhysteric
function [461]. For instance, it can be based on the Frölich equation, as done by Tuohy [238],
or by using a exponent function f (x) = x + axn, as done by Nakamura [462].

The model is later generalized in the Chua–Bass model [463,464], which includes two
more functions for modelling the frequency and flux density dependency:

dB
dt

= w
(

dH
dt

)
h(B)g(H − f (B)) (144)

The Chua model has also been studied by Saito [465–469] who wrote it in an inverse
form:

H =
B
µ
+

1
f

dB
dt

(145)

where f = f (B, dB/dt, dH/dt). It is done with a some modifications, so it could be seen as
a separate model [7].

Other modifications of the Chua model have been presented by Kawashima [470]
and by Malczyk [471]. The latter adopted the Jiles–Atherton into the framework of Chua
model [471].

Model with Canceled Frequency Dependence

The relaxation model is frequency dependent, but could easily be modified to remove
the frequency dependency. This has been done in a model by Santesmases [281,472–474].
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The loop becomes independent of the frequency if we instead derive the flux density by
the angle θ = ωt, that is

dB
dθ

=
dB
dt

1
ω

(146)

The frequency dependency will then be cancelled out by a division of the time deriva-
tive with the angular frequency. The introduced model as the shape:

H = fo(B) + fe(B)
dB
dθ

(147)

This could be rewritten while considering both of the previously stated equations

H = fo(B) + fe(B)
1
ω

dB
dt

(148)

In this way, the speed-dependent (last term) part will be without rate-dependency.
This expression could be simplified while considering

√
B2

m − B2.
The anhysteresis function fo is an even function, and expressed as odd-order polyno-

mial terms. The dynamic part fe is an odd function, expressed as even order polynomial
terms.

18. Dynamic Hysteresis Models
18.1. Addition of Models

One way of combining static hysteresis with a dynamic model is to write it as a
sum. Most conveniently expressed by the inverse expressions H(B), instead of B(H). The
magnetic field H is seen as a sum of a static hysteresis Hh and a dynamic part Hd, as:

H = Hh + Hd(dB/dt) (149)

It could be rewritten for dB/dt. By introducing an inverse function f−1
dyn for Hd =

f (B) it then becomes:
dB
dt

= f−1
dyn(H − Hh) (150)

where it is seen that the dynamic model depends on the distance between the magnetic
field H and the static hysteresis model Hs.

A similar approach for dynamic adoption of hysteresis models was proposed by
Carpenter et al. [475], with a linear dynamic part as (dB/dt)/R.

18.2. Nitzan Model

The model by Chua is built on a model by Nitzan [476], which expresses that the time
derivative of the flux density is proportional to the magnetic field relative a threshold field:

dB
dt

= f (B) · (H − H0) (151)

The model is proportional to the distance to H0. Note that the function resembles the
resistance in ohms law with dB/dt similar to a voltage, and H resembling a current. The
threshold field H0 could be seen as corresponding to the coercivity Hc.

The model could be improved by replacing H0 with a static hysteresis model Hsh.
These models are modeling the hysteresis loop as a “magnetic viscosity” [477–479]. Note
that this “magnetic viscosity” should however not been confused with the magnetic viscos-
ity in the meaning of time-delayed magnetic changes [480]. That is then time-dependent
magnetic after effects [407,410,481].
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18.3. Hysteresis Model with Frequency Dependency

Proper hysteresis models usually lack a frequency dependency, but can easily be
adjusted to do so. The combination could follow the same analogy as separation of iron
losses into hysteresis losses and eddy current losses. This has been studied by Tellinen [211],
Chevalier [482], Steentjes et al. [483], Zirka et al. [484], and is:

H = Hsh(B) + Hd

(
dB
dt

)
(152)

Such a combined model is illustrated in Figure 37, showing the hysteresis curve, and
the additional dynamic part.

B

H

Hd

f −1(H)

Hd=H−f(B)

g(Hd)

B(H)

dB

dt

B(H)

Hysteresis

Hd

(a) (b)

Figure 37. A frequency-dependent model could be combined with a hysteresis model. (a) The model
combines the dynamic part Hd with a hysteresis model f−1(H). (b) The dynamic part could be a
non-linear function g(Hd) .

Where the first term models the static hysteresis and the second term models the
frequency dependence. Note that the static hysteresis Hsh replaces the anhysteresis function
f (B) in the inverse Chua model. If the Chua model would have a proper static hysteresis,
it would be:

dB
dt

= f−1
d (H − Hsh(B)) (153)

Note that the equation has been rewritten for dB/dt, by rewriting the function Hd =
f (dB/dt) as an inverse function H−1

d = f−1
d .

The equation based on loss separation of iron losses could be extended to include
excess iron losses, as done in studies by Steentjes et al. [483], Zirka et al. [484] and Hamze-
hbahmani [485]. That is:

H = Hsh(B) + He

(
dB
dt

)
+ Hanδ

∣∣∣∣dB
dt

∣∣∣∣α (154)

The frequency dependency could alternatively be expressed by other functions, such
as f k by Chan [197], or c0 + c1 f + cn

√
f by Bertotti [486]. If linked to the iron loss model

by Bertotti, as:

Hd(
dB
dt

) = Hcl,eddy(
dB
dt

) + Hexc(

√
dB
dt

) (155)

In hard magnetic materials, the situation is very different from soft magnetic materials.
Rare earth metals such as SmCo and NdFeB may be electrically conductive, but the magnetic
field is usually not alternating inside a PM to the extent that the eddy currents have to be
considered. The case is even clearer for ferrites, which have a relatively low conductivity,
so they have almost no induced eddy currents. The iron losses in ferrites are then mainly
composed of hysteresis losses. There has, however, been studies of considering eddy
currents in PMs [487].
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18.4. Duhem Model with a Dynamic Model

With the history dependency describes as a rate-independent system:

H = Hanh(B) + Hhyst(B, sign(
dB
dt

)) + Hd(
dB
dt

) (156)

It becomes a combined Duhem–Chua model. Duhem models use only the first and
the second term. Chua models use only the first and the third term.

19. Dynamic Models and Preisach Models

The hysteresis loop is frequency dependent, and a Preisach model could consider that
the coercivity increases for higher frequencies or higher magnitudes of flux density derivate
(dB/dt).

Dynamic Preisach Model with Frequency-Dependent Hysteron

In the previous methods the static hysteresis and the dynamic part has been treated as
separate models. An alternative way is instead to include the dynamic dependency within
the hysteron itself. A dynamic Preisach model could be made by having hysteresis width
of the hysteron to increase for an increasing frequency [488], as seen in Figure 38.

This rate-dependency is generally a dependency on the input speed rate dH/dt, but
can also be seen as a dependency on the frequency f . A hysteresis loop could in this sense
be seen as frequency dependent, since the loop will increase at higher frequencies due to
the eddy currents. This is similar to models of power losses in magnetic materials, such as
models of iron losses. These losses are a result of the hysteresis loop, and are often modeled
based on Steinmetz [489–491] or Bertotti [486]. Since the size of the hysteresis loops depend
on the frequency, the losses are frequency dependent. Bertotti’s model [486] on how the
magnetic power losses depend on the frequency, f , is:

wloss ∝ C0 + C1 f + C2
√

f (157)

A dynamic Preisach model can then be constructed by letting the width of the hysteron
be dependent on the frequency as in Bertotti’s model of iron losses [488]. As illustrated in
Figure 38. A dynamic Preisach hysteron will have switching points that depend on the
frequency.

B

H

B

H

(a) (b)

Figure 38. Examples of speed-dependent hysterons. The width of the loop will increase for higher
frequencies. (a) Example of frequency dependent Preisach hysteron (relay). (b) Example of frequency
dependent play hysteron.

Another way is to base the model on the alternative Play model that uses the KP-
hysterons, as studied by Cannas et al. [492]. These could be adopted with a rate-dependency
in the same way as a dynamic Preisach hysteron, as seen in Figure 38.

Models with dynamic hysterons will consequently have a changing Preisach distribu-
tion p(α, β, dH/dt). This uses an input-dependent Preisach model [419], where the input
is a speed- or frequency-dependency [420] because the thresholds will have a changed
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position α, β in the Preisach plane when the loop increases for higher speeds. Such a model
has been studied by Mayergoyz [419,420] and Ben Mrad et al. [421,422], that is:

M =

ˆ
α

ˆ
β

p
(

α, β,
dH
dt

)
γ(H)dαdβ (158)

Note that this means that the wider hysteresis loop is caused by a changed location of
the hysteresis threshold in the Preisach model. That would be equivalent to a changed po-
sition of the knee of a square-shaped hysteresis loop, in a way that the speed (or frequency)
would change the location of the knee.

20. Transfer Function of Linear Model

In a linear model, the system would be described by

kgσ
d
dt

B(t) + νB(t) = H(t) (159)

In such a case, the transfer function would become:

B(s)/H(s) = G(s) =
1

σs + ν
(160)

where B(s) and H(s) are Laplace transforms of B(t) and H(t), respectively.

20.1. Hysteresis Model Series Connected with Dynamic Model

Another approach could be built signal block diagrams for the rate-independent and
rate-dependent models. The two parts are combined in a cascade connection, either in a
Hammerstein model or a Wiener model. Hammerstein models occur when a non-linear
block is connected before the linear block, and Wiener models detail the opposite [493,494].
The nonlinear block in this sense is the static hysteresis model, and the linear block is the
dynamic model. This can be seen in Figure 39.

Non-linear
(Hysteresis)

Non-linear
(Hysteresis)

Linear
(Dynamic)

Linear
(Dynamic)

Wiener block

Hammerstein block

(a)

(b)

Figure 39. (a) A Hammerstein model is when the nonlinear part is before the linear part. (b) A
Wiener model is the opposite, with a nonlinear part after a linear part.

A system can be described by the following equation, where the dynamic part Hdyn =
kgσdB/dt is linear and the hysteresis part Hhyst = fhyst(B, H) is non-linear:

kgσ
d
dt

B(t) = H(t)− Hhyst(B, H) (161)

The linear part would be described by a transfer function as:

B(s)/H∆(s) = G(s) =
1
σs

(162)

Then, describing the system for H∆(t) = H(t)− Hhyst(B, H).
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Because the model is constructed in several steps, it can be designed with a neural
network methodology. Such studies have been presented by Hsu et al. [495], and via using
the Prandtl–Ishlinskii model by Gu et al. [496] and Zhang et al. [246,497].

20.2. Addition of Preisach Model and Dynamic Model

The Preisach model can be combined with dynamic effects [482,498]. It can be done as
an addition of two functions of dB/dt and B. The magnetic field is then a combination of
two parts (with the inverse Preisach model on the form H(B)):

H = Hhyst(B, History) + Hd(dB/dt) (163)

That is
H = fh(B) + fd(dB/dt) (164)

It can be rewritten as a differential equation as:

dB
dt

= f−1
d (H − fh(B)) (165)

21. Conclusions

There is a vast number of models for magnetic hysteresis, with different approaches to
handle and model frequency independency or history dependency. Some of the common
approaches include the Preisach model and Jiles–Atherton model.

Most models are either a special case of the Duhem model and or the Preisach model,
both of which include history dependence in different ways. Duhem models handle it via
simple directional dependence on the flux rate, without a proper memory. While Preisach-
type models handle it via memory of the reversal points where the direction of the flux rate
is changed.

The most common Duhem model is the phenomenological Jiles–Atherton model, but
other examples include the Coleman–Hodgdon model, the Talukdar–Bailey model and the
Tellinen model.

The strength of Duhem models lies in their simplicity. They can generate hysteresis
loops for periodic signals of different magnitudes, and generate first-order reversal curves
(FORCs), while avoiding the need for an algorithm that would require one to save previous
reversal points since the memory is limited to the present point in the BH-plane. The
drawback of Duhem models is that they have a very limited history dependence, since they
lack “return point memory” and thereby drift for repeated asymmetric cycling.

The other type of history dependence saves the history of previous states as a series
of reversal points. That is, every point where the curve changes direction. Examples
of such models are Preisach models and the Prandtl–Ishlinskii model (play models and
stop models).

Preisach models can be modeled based on the history of reversal points, and based
on so called Everett functions. This is in accordance with Madelung’s rules. This idea has
also been applied to other models as a way to implement a history dependence. All curves
are congruent to the curve shape of a reversal curve. It could also be seen as an advantage,
since it ensures closed loops and avoids drifting trajectories for repeated cycling.

Some models generate reversal curves and minor loops based on the major loop.
Models of scaling curves employ a different approach than models based on congruency.
Congruency models tend to retain the shape of the curve, while models based on scaling
instead shrink them via downscaling.

Most models are created for scalar values of alternating fields; however, there are also
several models with vector generalizations that also consider three-dimensional directions.
Duhem models could be easier to generalize in vector models (as 3D-adoptions). The
concepts used for history dependence of Preisach models are based on reversal curves,
which are harder to generalize into 3D.
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Hysteresis is by definition considered rate-independent, and thereby not dependent on
the speed of the alternating flux density. An additional rate-dependence is still important
and often included in many dynamic hysteresis models, so that the model also adds a
frequency dependence.

One common model for dynamic hysteresis modelling is the Chua model. This is not
a hysteresis model since it does not account for rate-independence, but rather a model of
two other related phenomena, that is nonlinear permeability and nonlinear excess eddy
currents. In the meaning that proper hysteresis phenomena consider rate-independency,
such that there are hysteresis loops even for extremely low frequencies.

Other similar adoptions also exist that combine hysteresis modelling with eddy current
modelling, similar to how frequency dependence is included in core loss modelling. The
models are often related to the iron loss model and can be constructed in similar manner as
loss separation with an anhysteresis function, hysteresis function and dynamic function.
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