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Abstract: The reasonable allocation of the battery energy storage system (BESS) in the distribution
networks is an effective method that contributes to the renewable energy sources (RESs) connected to
the power grid. However, the site and capacity of BESS optimized by the traditional genetic algorithm
is usually inaccurate. In this paper, a power grid node load, which includes the daily load of wind
power and solar energy, was studied. Aiming to minimize the average daily distribution networks
loss with the power grid node load connected with RESs, a site selection and capacity setting model
of BESS was built. To solve this model, a modified simulated annealing genetic algorithm was
developed. In the developed method, the crossover probability and the mutation probability were
modified by a double-threshold mutation probability control, which helped this genetic method to
avoid trapping in local optima. Moreover, the cooling mechanism of simulated annealing method
was presented to accelerate the convergence speed of the improved genetic algorithm. The simulation
results showed that the convergence speed using the developed method can be accelerated in different
number BESSs and the convergence time was shortened into 35 iteration times in view of networks
loss, which reduced the convergence time by about 30 percent. Finally, the required number of battery
system in BESS was further built according to the real batteries grouping design and the required
capacity of BESS attained using the developed method.

Keywords: battery energy storage system; site selection and capacity setting; genetic algorithm;
simulated annealing algorithm

1. Introduction

Compared to traditional fossil fuel energy, renewable energy sources (RESs) such as
wind power and solar energy with the advantages of being less pollution were widely
used in the practical application [1,2]. However, it might present challenges when the
RESs are connected into the power grid with their timing characteristics [3,4]. Due to its
advantages of high energy density and regulation accuracy, the battery energy storage
system (BESS) can quickly realize the time-shifting of energy and resolve the power grid
operation problems arising from the timing characteristics of RESs. It is an effective method
to overcome the power grid connection problems arising from the RESs by BESS [5,6].

At present, many of efforts were made to research on how to realize the RESs grid-
connection to the distribution networks using BESS and its site selection and capacity
setting model. A three-layer optimal scheduling model of BESS is developed to determine
the power scheduling scheme when the peaking economic benefit of thermal power plants
is maximized [7]. In view of the stochastic volatility of wind power, a two-layer optimal
configuration model for BESS is established to achieve a configuration scheme with minimal
investing costs [8]. The ref. [9] developed a system cost model considering the cost of
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deviating the power delivered to the grid and the cost of battery to determine the required
battery. The ref. [10] presented an efficient cost reliability optimization model for optimal
siting and sizing of BESS in the presence of responsible load management. The ref. [11]
presented a mixed-integer non-linear programming model for solving the problem of
optimal location, selection, and operation of BESSs and RESs in distribution system. The
ref. [12] proposed an optimal planning of lithium ion BESS for microgrid application by
considering the battery capacity degradation to minimize the sum of operating costs and
energy storage costs.

These above-mentioned models of site selection and capacity setting of BESS, which
are presented to minimize the BESS investment cost or maximize economic efficiency,
are limited due to without considering on the distribution networks loss. Moreover, it
is a hybrid non-linear planning problem to build a site selection and capacity setting
model for BESS [13]. Many intelligent algorithms, such as genetic algorithms [14,15]
and particle swarm algorithms [16], were widely used to solve BESS site selection and
capacity setting model due to their advantages of global optimization and robustness. The
ref. [17] developed a quantitative gravity inverse variable particle swarm algorithm to
solve the capacity configuration scheme for a community hybrid BESS composed of retired
power batteries and super capacitors. The ref. [18] presented a dimensional gravity center
reverse mutation particle swarm algorithm to optimize configuration capacity of a hybrid
energy storage system. The ref. [19] used a genetic algorithm to solve the multi-objective
optimization for hybrid high energy and high power BESS to improve battery cycle life.
Compared to traditional mathematical optimization algorithms, such as linear and non-
linear planning methods [20,21], the above intelligent algorithms can solve the optimal
configuration model of BESS. However, intelligent algorithms themselves have drawbacks,
such as genetic algorithms with their fixed crossover and variance probabilities, which
limit the scope of the algorithm’s search for optimality, and the set of solutions obtained is
usually not optimal, which leads directly to falling into a local optimum.

In this paper, a method based on simulated annealing genetic algorithm is developed
to effectively attain site selection and capacity of BESS in distribution networks with RESs.
The innovation of the developed method includes:

1. Developing a model, which includes constraints of BESS and minimizes the average
daily distribution networks loss with a power grid node load;

2. To solve this model, a simulated annealing genetic algorithm, which consists of cooling
mechanism of simulated annealing and double-threshold mutation probability control,
is presented to accelerate the convergence speed and avoid trapping in local optima;

3. Based on the real grouping design of batteries and the optimal capacity of BESS
attained by the developed method, the required number of battery system in BESS is
attained to save the cost of BESS.

The rest of this paper is organized as follows: Section 2 presents the site selection
and capacity setting model of BESS, Section 3 develops the simulated annealing genetic
algorithm and solving the model by this algorithm, Section 4 discusses the simulation
results used to verify the effectiveness and adaptive ability of the developed algorithm,
and finally, Section 5 provides conclusions.

2. Siting Selection and Capacity Setting Model of BESS
2.1. Objective Function

In order to minimize the distribution networks loss, the average daily loss of the
distribution networks with power grid node load should be minimized by an optimal
configuration of BESS. The BESS, which is located at a node of the branch in the distribution
networks, consists of three main parts: power conversion system, battery system, and
battery management system. The battery system is composed of thousands of batteries
which are connected in parallel and/or series to meet the capacity requirement of the BESS.
The BESS is usually used to smooth the output power of RESs. To maintain the safety
operation of the BESS, the state parameters of BESS, such as SOC and output power and
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voltage, should be controlled to constraint values. The power grid node load includes the
daily load of wind power and solar energy and the typical daily distribution networks load:

f = minPL = min(
T

∑
t=1

N

∑
a=1

I2
a Za)/T(a = 1, 2, 3 . . . N) (1)

where PL is the distribution networks loss, T is the time period, N is the total number of
branches, Ia is the current of branch a, and Za is the impedance of branch a.

2.2. Constraint Condition

(1) Constraints of the node voltages in the distribution networks:{
UaL < Ua < UaH a = 1, 2, 3 . . . n

UaH ≤ UbH
(2)

where Ua is a node voltage, UaH and UaL are the upper and lower limit of a node voltage in
the distribution networks, respectively. UbH is the upper limit of BESS operating voltage,
and n is the total number of distribution networks nodes.

(2) Constraints of branch currents and phase angles:

Ia ≤ IaH , a = 1, 2, 3 . . . N (3)

θL ≤ θa ≤ θH , a = 1, 2, 3 . . . N (4)

where IaH is the upper limit of a branch current Ia, θH and θL are the upper and lower limits
of phase angle θa.

(3) Constraints of power flow of the distribution networks:
PaD − PaC = Ua

n
∑

b=1
Ub(Gab cos θab + Bab cos θab)

QaD − QaC = Ua
n
∑

b=1
Ub(Gab cos θab − Bab cos θab)

(5)

where PaD and QaD are the active and reactive power outputs of power injection nodes,
respectively. PaC and QaC are the active and reactive power loads at node a, respectively.
Ua and Ub are the voltage amplitudes of node a and b, respectively. Gab and Bab are the real
and imaginary parts of the node admittance matrix, respectively. θab is the voltage phase
angle difference between node a and node b.

(4) Constraints of output power and state of charge (SOC) of BESS:

PC ≤ PB ≤ PH (6)

SOCL ≤ SOC ≤ SOCH (7)

where PB represents the output power of BESS, PB > 0 means discharge, PB < 0 means charge;
SOCL represents minimum SOC when BESS is discharged, SOCH represents maximum SOC
when BESS is charged. PH indicates the maximum discharge power of BESS. PC indicates
the maximum charging power of BESS.

(5) Constraint of energy balance of BESS:∫ T

0
PB(a)dt = 0 (8)

(6) Constraint of power balance of the distribution networks:

P =
n

∑
a=1

Pe,a −
ng

∑
g=1

PD,g −
nk

∑
k=1

PB,k (9)
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where P represents the power injected into the grid, Pe,a represents the load power of the
ath node, PD,g represents the output power of the gth Wind or Sloar, ng represents the total
number of Wind or Sloar connections, PB,k represents the output power of the kth BESS
unit. nk represents the total number of BESS.

3. Modified Simulated Annealing Genetic Algorithm

The traditional genetic algorithm is usually limited by its disadvantages [22]. For
example, due to its fixed step size, the convergence speed of this algorithm is too slow to
save time. Moreover, it is easy for the algorithm to fall into local optimum because of its
fixed crossover and mutation probabilities. In this paper, a modified simulated annealing
genetic algorithm based on adaptive mechanism is presented:

1. A iterative temperature module based on cooling mechanism of modified simulated
annealing is used to accelerate the convergence speed of the genetic algorithm;

2. To avoid trapping in local optimal solutions, the crossover probability and the mu-
tation probability are modified randomly based on adaptive crossover probability,
and adaptive double-threshold variation probability control. The control is present
by the adaptive theory and the internal energy calculation formula of the simulated
annealing algorithm.

3.1. The Simulated Annealing Cooling Mechanism

For the traditional genetic algorithm, its iteration step is fixed. In this paper, the
iterations condition of the genetic algorithm was replaced by the current iteration tempera-
ture (Wr) based on the simulated annealing cooling mechanism. When the iteration step
was changed by the simulated annealing cooling mechanism, the convergence speed of
the genetic algorithm was accelerated. The simulated annealing cooling mechanism was
realized as follows: Firstly, the initial temperature and the cooling rate and the maximum
number of iterations were set, respectively. The initial temperature was used as the initial
condition for the iteration process of the genetic algorithm. Secondly, the initial temperature
decreased at the cooling rate in the iteration process, which changed the iteration step of
the genetic algorithm. Finally, the iteration process of the genetic algorithm ended when
the number of iterations reached the maximum number of iterations.

W0 = −q∆F/InQ0
∆F = Fm − Fl
Wr = W0 ∗ RTe

(10)

where W0 is the initial temperature of the iteration, q is the initial temperature coefficient,
Q0 is a constant, and ∆F is the fitness error; Fm and Fl are the maximum and minimum
fitness values of the population individuals, respectively, Te is the generations number of
the current iteration, and R (0 < R < 1) is the cooling rate.

3.2. The Adaptive Crossover Probability and Adaptive Double-Threshold Variation
Probability Control

The traditional genetic algorithm is easy to fall into the local optimal solutions because
its crossover and variation probabilities are fixed, which limits the algorithm to find the
optimal solution. In this paper, the adaptive crossover probability Pc and mutation proba-
bility Pm were modified by the adaptive mechanism. The Pc and Pm can be automatically
adjusted according to the change of individual fitness value of the population.

Pc =

{
Pc1 − (Pc1−Pc2)(F−Fa)

Fm−Fa
, F ≥ Fa

Pc1, F < Fa
(11)

Pm =

{
Pm1 −

(Pm1−Pm2)(Fa−Fj)
Fa−Fm

, Fj ≥ Fa

Pm1, Fj < Fa
(12)
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where F is the individual with the greater fitness of the two current crossover individuals,
Fa is the average fitness of the population individuals, Fj is the fitness of the current
individual requiring variation, Pc1 and Pc2 are the maximum and minimum crossover
probability, respectively, Pm1 and Pm2 are the maximum and minimum mutation probability,
respectively, and Pc1, Pc2, Pm1, and Pm2 are all constants.

To expand the search range of the genetic algorithm for the optimal solution, a double-
threshold mutation probability control based on the Pm and the simulated annealing
mutation probability Ps is presented. The Ps was calculated using the simulated anneal-
ing internal energy theory expressed in Equation (13). The double threshold mutation
probability control was realized as follows: Firstly, a real number G (0 ≤ G ≤ 1) was
randomly generated during variation operation of the genetic algorithm. Secondly, the
G was compared with the mutation probability Ps and Pm, respectively, if the G was both
smaller than the Ps and the Pm, the mutation operation of the genetic algorithm was carried
out. Otherwise, the mutation operation of the genetic algorithm was not implemented. In
the traditional genetic algorithm, the mutation operation was executed only when the G is
smaller than the Pm. {

Ps = e−
∆Fm
Wr

∆Fm = Fm − Fj
(13)

where ∆Fm is the individual fitness error.

3.3. Solving the Siting Selection and Capacity Setting Model Using the Developed Method

To solve the siting selection and capacity setting model, a chromosome (Xn, Yn, Zn)
was generated, where Xn, Yn and Zn denote location and capacity and output power of the
nth BESS in one cycle, respectively. Using the Newton–Lavson power flow method, the
distribution networks loss in the siting selection and capacity setting model was calculated.
Figure 1 shows the flow diagram of solving the siting selection and capacity setting model
using the developed method.
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1. The system parameters are initialized, including binary code of the location, capacity
and output power of BESS;

2. The power flow calculation based on the chromosome (Xn, Yn, Zn) is carried out to
obtain the distribution networks loss by the Newton–Lavson power flow method.
Then, the distribution networks loss is inverted as the initial population;

3. The initial population sorting operation is carried out to attain Fm, Fl, Fa;
4. Initial temperature is calculated and the iteration temperature of the simulated anneal-

ing is used to accelerate the convergence speed of the genetic algorithm. The adaptive
crossover probability and the double-threshold mutation probability control are used
to accelerate the convergence speed;

5. The selection operation is carried out, and the adaptive crossover operation and the
double-threshold mutation operation are performed to generate new populations;

6. Determines whether the iteration is completed. If the maximum generation number is
reached, the site and capacity of BESS is attained; otherwise, go back to step (2).

4. Simulation Results and Analysis

In order to verify the effectiveness and robustness of the developed method, a dis-
tribution networks system including IEEE33 nodes was studied. An amount of 400 kW
solar energy and 300 kW wind power were connected at node 10 and node 18, respectively.
The output power of wind power and solar energy and equivalent daily load are shown in
Figure 2, respectively. The system simulation parameters are listed in Table 1. In this paper,
only the active power of wind power and photovoltaic power generation were considered
according to the real application.
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Table 1. System simulation parameters.

Type of
Algorithm Parameter Name Parameter Size Parameter Name Parameter Size

Genetic Algorithm

Population size 30 Pc 0.6
Pm 0.01 Protection rate Pp 0.1

Elimination rate Po 0.1 Baseline power Sb 10 MVA

Base voltage Vb 12.66 kV Maximum number
of generations 50

The developed
method

Pc1 0.8 Pc2 0.6
Pm1 0.2 Pm2 0.1
P0 0.6 R 0.995
B0 0.6 q 100
T 24

4.1. Convergence Speed Analysis of the Proposed Method with Different Numbers of BESSs

To verify if the developed method can accelerate the convergence speed and shorten
the convergence time compared to the traditional genetic algorithm, the average daily distri-
bution networks losses were analyzed when different numbers of BESSs were connected to
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the system nodes. Figure 3 shows average daily distribution networks losses with different
number of BESSs. Figure 3a,b shows the variation of the daily distribution networks loss
attained by the traditional genetic algorithm and the developed method, respectively.
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As shown in Figure 3, the networks losses generated by the developed algorithm were
always lower than those networks losses generated by the traditional genetic algorithm.
For example, when one, two, and three BESSs were connected to the system nodes, the
average daily minimum networks losses using the traditional genetic algorithm were
173.72 kW, 173.17 kW, and 172.86 kW, respectively. However, the average daily minimum
networks losses using the developed method were 171.8 kW, 170.77 kW, and 169.9 kW,
respectively. The reason why the networks losses using the developed method were lower
was that the developed algorithm can effectively expand the population research range by
the adaptive mechanism and the double-threshold mutation probability control. It helps
the developed method void falling into the local optimal solutions. On the other hand, it is
clearly illustrated that the developed method can effectively accelerate the convergence
speed and can shorten the convergence time. As shown in Figure 3a, the networks losses
using the traditional genetic algorithm were in a state of flux or even variously divergent
in 50 iterations. This was because the traditional genetic algorithm with a fixed iteration
step should run its iterative process from 1 to the maximum number of iterations each
time. To solve complex problems, such as obtaining this minimum networks losses, the
traditional genetic algorithm will waste a lot of time to find the optimum due to its fixed
iteration step. However, it can been from Figure 3b that all of the networks losses using the
developed method can converge in 35 iterations, which reduces the convergence time by
about 30 percent comparing to the traditional genetic algorithm. The developed method
based on the improved cooling mechanism can adjust its iteration step to accelerate the
convergence speed according to the adaptive change degree of the algorithm population.
To sum up, the developed algorithm can effectively modify the convergence speed to
shorten the convergence time in 30%. Meanwhile, it can be seen from Figure 3b that when
three BESSs were connected the system nodes, the average daily distribution networks loss
was at its minimum. In this case, the site and capacity of the BESS were attained with the
capacity of 162 kWh, 200 kWh, and 179 kWh at node 18, node 12, and node 17, respectively.

Figures 4 and 5 show the variations of output power and SOC of BESS, respectively,
when three BESSs were connected to the system nodes. The output power was positive
power when BESS is discharging, and the output power was negative power when BESS
was charging. As seen from these figures, at around 12:00 and 21:00, the loads demanded
power in the distribution networks are higher, respectively. To keep the power balance
of the distribute networks, each BESS discharged and supplied power to the distribution
networks, and the SOC of each BESS was greatly reduced. In other times, due to the loads
demand power in the distribution networks being lower, the BESSs were charged and the
SOC of each BESS increased.
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4.2. Robustness of the Proposed Method with Different Crossover Probabilities and
Variance Probabilities

To further verify the robustness of the developed method, the variations of the dis-
tribution networks losses were studied when the crossover probability Pc and mutation
probability Pm were randomly modified with three BESSs connected the system nodes. The
crossover and mutation probabilities were selected in three cases: In case 1, the crossover
probabilities were kept constant and the mutation probabilities Pm were randomly selected
as 0.02, 0.04, 0.06, and 0.07, respectively; in case 2, the mutation probabilities were kept
constant and the crossover probabilities Pc were randomly selected as 0.3, 0.4, 0.7, and
0.8, respectively; in case 3, the crossover and mutation probabilities (Pc, Pm) were changed
simultaneously and selected as (0.4, 0.08), (0.5, 0.02), (0.7, 0.05), and (0.9, 0.07), respectively.

Figure 6 shows the average daily distribution networks losses when the crossover
probability and the mutation probability were modified, respectively. Figure 6a–c shows the
average daily distribution networks losses obtained by the conventional genetic algorithm
with different mutation probabilities (Case 1), different crossover probabilities (Case 2), and
different mutation probabilities and crossover probabilities, respectively (Case 3). As shown
in Figure 6a,b, when the mutation probabilities and crossover probabilities were changed
in different value, respectively, the average daily distribution networks losses based on the
traditional genetic algorithm fluctuate greatly and still do not converge in 50 iterations. It
means that the convergence performance of the networks losses based on the traditional
genetic algorithm were very poor. Moreover, it can be seen from Figure 6c that, when
the mutation probabilities and crossover probabilities were changed simultaneously, the
variation trend of the networks losses were haphazard and did not go into a stepwise
decline or even divergence in 50 iterations. It was further proved that the networks losses
based on the traditional genetic algorithm change drastically or even fall into divergence
due to its fixed crossover and variation probabilities. Figure 6d shows the average daily
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distribution networks losses using the developed algorithm with different probabilities
(Case 3). It is illustrated that the developed method can effectively control the convergence
speed of the networks loss and the networks loss converged to a constant value (0.17 MW)
in around 35 generations.
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Table 2 shows the average daily distribution networks losses of the system when the
crossover and mutation probabilities were varied individually. Table 3 shows the average
daily distribution networks losses when the crossover and mutation probabilities were
modified together. The minimum average daily distribution networks losses using the
developed method were always lower (169.9 kW) than the minimum one using the conven-
tional genetic algorithm (173.06 kW). It means that the adaptive capability of the developed
method was strong when the crossover and mutation probabilities were changed randomly.

Table 2. Average daily networks losses with different crossover probabilities and mutation probabili-
ties separately.

Pc
Genetic

Algorithm/MW Pm
Genetic

Algorithm/MW
Developed

Algorithm/MW

0.3 0.17292 0.02 0.17322

0.1699
0.4 0.17329 0.04 0.17317
0.7 0.17289 0.06 0.1731
0.8 0.1731 0.07 0.17306
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Table 3. Average daily networks losses with different crossover probabilities and mutation probabili-
ties together.

Pc Pm Genetic Algorithm/MW Developed
Algorithm/MW

0.4 0.08 0.17302

0.1699
0.5 0.02 0.17327
0.7 0.05 0.17329
0.9 0.07 0.17312

4.3. Comparison of the Developed Method and the Simulated Annealing

To further verify the effectiveness of the developed method, a comparison of the
developed method and the simulated annealing was conducted. As shown in Figure 7, the
networks losses generated by the developed algorithm were always lower than those losses
generated by the simulated annealing. For example, when one, two, and three BESSs were
connected to the system nodes, the minimum networks losses using the developed method
were 171.8 kW, 170.77 kW, and 169.9 kW, respectively. However, the minimum networks
losses using the traditional genetic algorithm were 173.55 kW, 173.41 kW, and 173.32 kW,
respectively. Moreover, it was clearly shown that the developed method can effectively
accelerate the convergence speed and reduce the convergence time. Figure 7a shows that
all of the networks losses using the developed method can converge before 35 iterations.
However, as shown in Figure 7b, the networks losses based on the simulated annealing
converged in about 60 iterations.
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4.4. Batteries Capacity Configuration Optimization of BESS

Using the developed algorithm, the optimal siting and capacity of BESS in the distri-
bution networks can be attained. However, the grouping design and investment cost of the
batteries should also be considered to further optimize the capacity of the battery system in
BESS. From the above simulation results, it can be seen that the average daily distribution
networks loss will be minimum when a BESS with optimized capacity (162 kWh, 200 kWh,
179 kWh) of batteries connected at nodes (18, 12, 17). In actual battery grouping design, a
lithium iron phosphate battery with rated capacity of 200 Ah and a rated voltage of 3.2 V
was selected to build a battery system (BS). The battery system was composed of many of
battery clusters connected in parallel and the battery clusters were made up of many of
battery modules in series, the battery modules consist of a lot of batteries. Considering
the investment cost of batteries, the capacity configuration of the battery system in BESS
connected to each node in the distribution can be designed as follows: one battery system
with rated capacity of 192 kWh was composed of three battery clusters in parallel, one
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battery cluster consisted of five battery modules in series, one battery module consisted of
twenty battery cells in series. Two battery systems will be connected to BESS. Table 4 lists
the capacity configuration options of batteries.

Table 4. Capacity configuration options of batteries.

Node Locations Required
Capacity/kWh

BS Rated
Capacity/kWh

Required Number
of BS

18 162 192 1
12 200 192 1
17 179 192 1

5. Conclusions

In this paper, a site selection and capacity sitting model of battery energy storage
system (BESS) was established to minimize the average daily distribution networks loss
with renewable energy sources. Due to considering many of operation constraints of BESS,
such as the limit of operating voltage and output power and state of charge, the presented
model is not only helpful to optimize the site selection and capacity sitting of BESS but to
ensure the safe and reliable operation of BESS. To solve this model, a modified simulated
annealing genetic algorithm, which was based on a cooling mechanism of simulated anneal-
ing and double-threshold mutation probability control, was presented. The effectiveness
and adaptive ability of the presented algorithm was verified in distribution networks with
the IEEE 33 node.

Compared to the traditional genetic algorithm, which has a fixed iteration step, the
presented algorithm based on the cooling mechanism of simulated annealing can effectively
accelerate the convergence speed and shorten the convergence time. In particular, the
networks losses based on the developed method converged in 35 iterations when different
numbers of BESSs were connected to the system nodes. On the contrary, the networks
losses based on the traditional genetic algorithm tended to diverge.

With the help of the adaptive mechanism and the double-threshold mutation probabil-
ity control, the developed method can not only avoid local optimal solutions, but exhibited
higher robustness when the crossover probabilities and the mutation probabilities were
modified randomly. In particular, when three BESSs were connected to system nodes, the
average daily networks loss obtained by the developed algorithm (170 kW) was smaller
than that of the traditional genetic algorithm (173 kW).

In a further study, an accurate battery model considering the state of health and depth
of discharge of the battery will be established. Additionally, in the meantime, the economic
benefits of the installing BESS should be inserted to the objective functions to construct a
multi-objective BESS siting and capacity model. It will be of greater significance to guide
the construction of the BESS in practical projects.
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