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Abstract: Carbon emissions are rapidly increasing with continuing global economic development,
necessitating an urgent energy revolution. Often, when calculating carbon footprint, analysts have
failed to account for changes in capital stock and the impact of indirect emissions caused by the
consumption of imported products. Furthermore, the homogenization of industrial and resident
sectors has reduced our understanding of the specific driving forces behind carbon emissions. To
avoid such locational and temporal biases, this study employs a dynamic input–output model to
re-estimate the carbon footprint of only residents. We deconstruct residential emissions into different
consumption categories and conduct a comparative analysis between developed and developing
countries from across the world. To this end, data from 44 global economies were obtained from
the World Input–Output Database for the period from 2000 to 2014. For developing countries, food
consumption had the highest share of embodied carbon emissions, maintaining a share of over 20%,
whereas in developed countries, housing consumption had the highest share, remaining at over 30%.
In most countries, the consumption level and emission intensity effects were the most important
drivers of carbon emission increases and carbon emission decreases, respectively. However, the
contributions of the two varied considerably in different countries, with the maximum impact of the
emission intensity effect on the carbon footprint of a single category reaching 854.31% in the US and
99.34% in China. These findings will help countries tailor their emission reduction policies to local
conditions and emphasize that emission reductions should start by reducing the emission intensity
and consumption structure of the corresponding sectors.

Keywords: household consumption expenditure; household carbon footprint; input–output model;
LMDI method

1. Introduction

Rapid industrial development and the massive use of fossil fuels have caused serious
environmental problems. Climate change, characterized by global warming, may lead to
a series of natural disasters such as melting glaciers, spread of diseases, rising sea levels,
and the emergence of extreme weather. From 1965 to 2020, the world’s primary energy
consumption increased from 155.22 EJ to 556.63 EJ, and carbon emissions increased from
11.673 billion tons to 42.084 billion tons, both of which are increases of more than 250%.
Therefore, a revolution of energy and actions to reduce world carbon emissions are urgent.
In 2016, an international treaty known as the Paris Agreement set a target to maintain
the global temperature rise within 2 ◦C, calling on the world to work together to reduce
and control greenhouse gas emissions. Currently, more than 100 countries have made
carbon neutral commitments, and some countries (e.g., Bhutan and Suriname) have already
achieved their carbon neutral targets.

In some European counties, the direct carbon emissions caused by residential energy
consumption have surpassed those of industries [1]. Likewise, residential energy con-
sumption has become the second largest source of CO2 emissions in China [2]. Further,
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household consumption is a significant component of final demand and a source of embod-
ied carbon emissions. Population growth, improvements in living standards, and lifestyle
changes can directly or indirectly affect a country’s efforts to reduce carbon emissions. By
conducting carbon footprint assessments based on household consumption and analyzing
the associated emission characteristics and driving factors, policymakers can target and
implement effective carbon reduction policies to encourage residents to adopt sustainable
practices and facilitate the transition towards a low-carbon economy.

The existing literature tends to focus on a particular country or region [3–5], neglecting
comparisons between different countries. Some researchers have found that developed
and developing countries have different trends in carbon emissions [6], and that devel-
oped countries generally perform better in terms of low-carbon economic efficiency [7].
However, amongst developing countries, different energy consumption structures, indus-
trial development levels, and residential living habits lead to different changes in carbon
emissions [8]. Therefore, the study analyzes the major global economies by including them
in a unified framework and comparing their similarities and differences. Accounting for
and characterizing the embodied carbon emissions of residents in global, developed, and
developing countries can help define carbon emission responsibilities more accurately,
identify carbon emission characteristics, and allow to formulate carbon reduction policies.

The study differs from previous work in the following ways. First, we extend the
boundary of dynamic carbon footprint accounting to the residential sector to solve the mis-
estimation caused by the neglect of capital stock changes in traditional models, taking both
the geographical bias caused by international trade and the temporal bias caused by capital
changes into account. Second, unlike prior studies, we conduct an analysis of dynamic
changes in the global carbon emissions of different countries. Third, industrial sectors are
combined by consumption, which not only avoids the loss of segmentation characteristics
caused by an excessive combination of industrial sectors but also makes industrial clas-
sification more consistent with residents’ consumption characteristics. Thus, the carbon
footprint characteristics and driving factors obtained in this study are more targeted.

This study demonstrates the similarities and differences between developed and
developing countries in terms of the characteristics and driving forces of embodied carbon
emissions from household consumption. The remainder of this paper is organized as
follows. Section 2 presents a detailed literature review, including the literature related
to carbon emission accounting and Logarithmic Mean Divisia Index (LMDI) analysis.
Section 3 clarifies the main data sources and price adjustment methods as well as the carbon
footprint accounting and LMDI decomposition models. Section 4 presents the carbon
footprint of residents in each country and its characteristics and drivers of change and
explores the impact of each consumption type on residents’ carbon emissions. Section 5
compares the differences in carbon emission characteristics and drivers between developed
and developing countries and makes policy recommendations. Finally, Section 6 presents
our conclusions.

2. Literature Review

“Carbon footprint” refers to the accumulated carbon dioxide emissions generated from
different production processes [9]. Carbon footprints can be broadly measured by either
“direct carbon emissions”, which is the amount of carbon emissions from direct energy use
in activities, or “indirect carbon emissions”, which is the amount of carbon emissions from
energy consumption during production [9,10]. Data on direct carbon emissions are highly
applicable and easily available on many databases and statistical reports [11]. However,
this method has obvious disadvantages. On the one hand, the accounting results are
largely influenced by emission factors [12,13] and are subject to large uncertainties. On
the other hand, direct carbon accounting only considers the production process but not
the consumption process, ignoring the possibility of transferring high-emitting industries
abroad, which may lead to “carbon leakage” [14]. The implied emissions for residential
consumption are much higher than the direct emissions [15]. Existing research has shown
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that the embodied carbon emissions from the residential sector in the US account for 77% of
total emissions [16]. In China, indirect energy consumption from residential consumption
is 1.35 times higher than direct energy consumption [17]. Currently, an increasing number
of studies are focusing on the total direct or indirect carbon emissions during the product
life cycle.

Several methods exist to account for carbon footprint, including input–output analysis
(IOA) [18–20] and life cycle assessment (LCA) [21–23] as well as the consumer lifestyle
approach (CLA) [9,24,25]. Of these, IOA provides a standard analytical process and can be
easily combined with other methods, and therefore, it is the most commonly used [15]. It is
also often necessary to combine IOA when using LCA and CLA methods.

The multi-regional input–output (MRIO) approach distinguishes the sources of im-
ports in the intermediate flow matrix from those in the final demand matrix, which can
make a more accurate distinction between inbound and outbound emissions. In terms of
practical applications, [18] used a quasi-multi-regional input–output model (QMRIO) to
account for the residential carbon footprint of UK and found that household CO2 emissions
in 2004 were 15% higher than those in 1990. Ref. [3] calculated the residential carbon
footprint of Estonia, Latvia, and Lithuania from 1995 to 2011 and found that most of their
indirect emissions were associated with Russia and China. Ref. [5] distinguished the con-
cept of “production-side carbon emissions” and “consumption-side carbon emissions” and
found that China’s production-side carbon emissions were significantly higher than its
consumption-side emissions.

All the above studies account for the residential carbon footprint from a static per-
spective. However, static input–output models ignore the dynamic changes in capital
formation, making it difficult to accurately describe capital changes and economic devel-
opment. Dynamic input–output models can distinguish between capital formation and
capital use over time; thus, they can reflect the impact of capital changes more realistically.
Ref. [26] developed an input–output model of dynamic capital stock that combines national
accounting, dynamic material flow analysis, dynamic input–output analysis, and inventory
models in a life cycle assessment. Moreover, [10] incorporated capital changes into the
accounting system by applying the dynamic input–output model to carbon emissions. It
estimated carbon emission intensity more accurately and modified the deviation between
current and future emissions.

Thus, here, we construct a dynamic input–output model for embodied carbon emis-
sions following [10] approach. Specifically, we incorporate dynamic changes in capital
stock into traditional models and solve the problem of misestimation caused by neglecting
capital stock changes.

Some studies have conducted decomposition analyses after accounting for the carbon
footprint to clarify the characteristics of residents’ carbon footprints and their synergistic
relationship with other economic factors. Decomposition analysis takes various forms,
such as factor decomposition and structural decomposition. The underlying principle is to
decompose a variable into multiple factors to identify the main drivers of the change.

Economic development and environmental energy factors are the two driving factors
of residents’ carbon footprint [4,27]. Some studies have also taken inter-regional trade [5],
economic transformation, and demographic structure into account [28,29]. Among these
factors, economic development tends to increase carbon emissions, whereas energy and
carbon emission intensities tend to decrease [4,30,31]. Furthermore, urbanization affects
resident carbon emissions [32,33], and there are some differences between urban and rural
residents in terms of carbon emissions [34].

From a comparative perspective between countries, [35] used structural decomposition
to examine the main forces driving the energy footprints of Denmark, the United Kingdom,
France, and the US. The result showed that the footprint is largely influenced by declining
energy intensity and increasing per capita consumption, and the trade sourcing effect
has become increasingly important since 1995. Ref. [36] examined six factors of carbon
emissions and showed that although emissions in the new European Union countries
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decreased overall, it was not enough to offset the increase from their increased demand.
Ref. [37] divided the driving factors of air pollutants into economic activity, economic
structure, distribution structure, and emission intensity and studied these factors in China,
India, the US, and Japan. This study showed that the distribution structure is a key
factor in increasing air pollutants in Japan and China but also plays a key role in reducing
emissions in the US and India. However, few studies have explored the differences between
developed and developing countries and how carbon footprints are determined by different
consumption categories.

3. Methods and Data
3.1. Data Sources

The global input–output tables used in this study were derived from the World Input–
Output Database (WIOD) [38] released in 2016. The tables cover the years 2000–2014 and
include 43 major economies as well as a “Rest of the World” (RoW) category, with each
economy comprising 56 industrial sectors. It is important to note that the data for China
and Taiwan in the WIOD are presented separately, but for the purposes of this paper,
they are combined into a single category referred to as “China”. Carbon emissions data
were sourced from the Environmental Accounts (EA) of the WIOD (2016 edition), which
contain information on carbon emissions and energy use by country and sector from 2000
to 2016. To calculate the total embodied carbon emissions from residential consumption, we
used population data from the Organization for Economic Co-operation and Development
(OECD) database to examine carbon emissions from residential consumption per capita.

The WIOD (2016 edition) offers input–output tables of current prices denoted in
millions of USD for the years 2000–2014 and input–output tables of previous years’ prices
for the years 2001–2014. However, it does not provide input–output tables at constant prices,
which requires adjusting for the effects of price changes on the input–output structure. This
study used 2000 as the base year and adjusted for inflation using exchange rate data from
2000 to 2014 and price indices by sector from the Socio-Economic Accounts (SEA) (2016
edition) to obtain input–output tables at comparable prices to the base year. Data such as
depreciation and fixed capital stock, which are not included in the input–output tables,
were also adjusted using the same method to ensure that the data used are valued in USD
at the 2000 exchange rate and price level.

3.2. Methods
3.2.1. Embodied Carbon Emission Accounting

The Multiple Regional Input–Output Model (MRIO) incorporates not only the input–
output relationships within a given region but also the intermediate and final demand
flows between regions. This enables the model to capture technological and production
linkages between regions. Table 1 shows a summary table of MRIO.

Table 1. Summary table of MRIO.

Intermediate Demand Final Demand

TotalRegion r Region s
Region r Region s

Industry 1 Industry 2 Industry 1 Industry 2

Intermediate
input

Region r
Industry 1 z11

rr z12
rr z11

rs z12
rs f 1

rr f 1
rs y1

r

Industry 2 z21
rr z22

rr z21
rs z22

rs f 2
rr f 2

rs y2
r

Region s
Industry 1 z11

sr z12
sr z11

ss z12
ss f 1

sr f 1
ss y1

s

Industry 2 z21
sr z22

sr z21
ss z22

ss f 2
sr f 2

ss y2
s

Primary input v1
r v2

r v1
s v2

s

Total x1
r x2

r x1
s x2

s
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Using the MRIO model to calculate the embodied carbon emissions in the output, the
calculation formula is as follows:

CF = F(I − A)−1Y (1)

where CF represents the embodied carbon emissions in the output, Y represents the total
output, and F represents the direct carbon emission intensity—that is, the ratio of direct
carbon emissions in production to total output. E = F(I − A)−1 represents the embodied
carbon emission intensity, where (I − A)−1 is the Leontief inverse matrix.

For households, the embodied carbon emissions from consumption, CF_HH, were
calculated as follows:

CF_HH = F(I − A)−1C (2)

where C represents household consumption expenditure.
The MRIO model does not account for changes in capital stock or variations in the

carbon emission intensity of capital across countries. To address this limitation, [10]
proposed assumptions about the dynamic relationships of capital stock. Specifically, they
assumed that (1) the embodied carbon emission intensity of depreciation in period t is
equal to the embodied carbon emission intensity of capital stock in period (t − 1), and
(2) the embodied carbon emission intensity of inventory in period t is equal to the embodied
carbon emission intensity of the total output in period (t − 1). Based on these assumptions,
a dynamic accounting equation for the embodied carbon emissions can be constructed
as follows:

gi
r,t + ∑s ∑j zji

sr,tε
j
s,t + di

r,tεr,t−1 + ci
r,tε

i
r,t−1 =

(
yi

r,t + ci
r,t

)
εi

r,t (3)

where r and s represent the regions, t represents the period, i represents the sector, gi
r,t

represents direct carbon emissions, zji
sr,t represents intermediate inputs, di

r,t represents

depreciation, ci
r,t represents inventory use, yi

r,t represents total output, ε
j
s,t represents the

embodied carbon emission intensity, and εr,t−1 represents the capital embodied carbon
emission intensity in period (t − 1).

The accounting equation for the regional capital stock embodied carbon emissions can
be constructed as follows:

FCSr,t−1εr,t−1 −∑i di
r,tεr,t−1 + ∑s ∑j GFCFj

sr,tε
j
s,t = FCSr,tεr,t (4)

where FCSr,t−1 represents the capital stock in region r at the end of the previous period,
GFCFj

sr,t represents the capital formation in region r from sector j in region s in period

t, and ∑s ∑j GFCFj
sr,t represents the total capital formation in region r. Assuming that

the embodied carbon emission intensity of capital stock and total output in the first two
periods is the same—that is, εr,t0 = εr,t1 and εi

r,t0
= εi

r,t1
—Equations (3) and (4) can be

solved simultaneously to obtain the embodied carbon emission intensity of the first two
periods and then to derive the embodied carbon emission intensity for period t3 and all
subsequent periods.

Referring to [6], this study uses the EU KLEMS database released in 2019 [39,40] and the
WIOD database released in 2013 [38] to calculate each country’s 2000–2014 depreciation rates:

depratei
r,t =

(
FCSi

r,t−1 + GFCEi
r,t + FCSi

r,t

)
/FCSi

r,t−1 (5)

The annual fixed capital depreciation data were obtained by multiplying the deprecia-
tion rate calculated using Equation (8) by the fixed capital stock data in SEA (2016 edition)
(To ensure the robustness of the results, this study conducted a sensitivity test by adjusting
the fixed capital stock in 2000 to 0.5 times and 1.5 times the current year. Based on these
adjustments, the total output embodied carbon emission intensity and capital embodied
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carbon emission intensity were recalculated. The results indicate that the average change
in carbon emission intensity did not exceed 5%, indicating the robustness of the findings).
The EU28 and US data were calculated using the EU KLEMS database, whereas data for
countries other than Switzerland, Croatia, Norway, and the RoW were calculated using
SEA (2013 version). As the data for 2010–2014 are missing from the SEA (2013 version),
the average depreciation rates for the previous three years were used instead. For Switzer-
land, Croatia, Norway, and the RoW, data for 2000–2014 are missing, and the average
depreciation rates for other countries were used instead.

After calculating the embodied carbon emissions intensity, the embodied carbon
emissions in the consumption of households in period t in region r, denoted by CF_HHr,t,
can be calculated using the following formula:

CF_HHr,t = ∑s ∑j ecj
sr,t = ∑s ∑j ε

j
s,thhj

sr,t (6)

3.2.2. Factor Decomposition Analysis

To investigate the factor changes in households’ embodied carbon emissions, this
study employed a factor decomposition analysis. Based on the Kaya equation [41]. Ref. [42]
proposed the LMDI decomposition method. Compared with other methods, the LMDI
decomposition method solves the residual value problem in decomposition [43] and has
been widely used in the literature [44–46]. In this study, the changes in embodied carbon
emissions were divided into population size, consumption level, consumption structure,
and emission intensity. The formula used is as follows:

CF_HH = ∑i CF_HHi = ∑i
CF_HHi
C_HHi

× CF_HHi
CF_HH

× CF_HH
population

× population = ∑i ∈i ×Si × F× P (7)

where CF_HH refers to the embodied carbon emissions of households; CF_HHi represents
the embodied carbon emissions per capita generated by consumption category i, where i is
the consumption category; and ε, S, F, and P represent the emission intensity effect, con-
sumption structure effect, consumption level effect, and population size effect, respectively.
The specific formula for each effect is as follows:

∆CF_HH = ∑i ∆CF_HHi = ∑i(∆Pi + ∆Fi + ∆Si + ∆ ∈i) (8)

∆ ∈= ∑i
CF_HHt

i − CF_HH0
i

lnCF_HHt
i − lnCF_HH0

i
× ln

∈t
i
∈0

i
(9)

∆S = ∑i
CF_HHt

i − CF_HH0
i

lnCF_HHt
i − lnCF_HH0

i
× ln

St
i

Ss
i

(10)

∆F = ∑i
CF_HHt

i − CF_HH0
i

lnCF_HHt
i − lnCF_HH0

i
× ln

Ft

F0 (11)

∆P = ∑i
CF_HHt

i − CF_HH0
i

lnCF_HHt
i − lnCF_HH0

i
× ln

Pt

P0 (12)

where ∆ ∈, ∆S, ∆F, and ∆P correspond to the contributions of the four types of effects to the
difference in embodied carbon emissions per capita. If the value is positive, it means that
the effect increases the carbon emissions of household consumption, which is referred to as
the “carbon increase effect” in the following; otherwise, it decreases the carbon emissions
of household consumption, which is referred to as the “carbon reduction effect” in the
following. To better illustrate the impact of consumption structure on carbon emissions,
the 56 industrial sectors in the WIOD were combined into 10 household consumption
expenditure categories, as shown in Appendix A Table A1.
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4. Results
4.1. The Contribution of Embodied Carbon Emissions of Households

This study examined and compared the traditional and dynamic embodied carbon
emissions of households worldwide in both developed and developing countries, which
were shown in Figure 1. Whether looking globally, or at specific developed/developing
countries, the dynamic embodied carbon emissions of households consistently exceed their
traditional embodied carbon emissions. This is because the traditional model does not
account for implicit carbon emissions included in capital inputs and does not consider the
temporal deviation between current consumption and future emissions owing to changes
in capital stock [10]. This results in an underestimation of the carbon footprint. In 2014,
the proportion of embodied carbon emissions underestimated by traditional models was
24.02% and 26.03% of the carbon footprint of households in developed and developing
countries, respectively. This highlights the importance of re-estimating household carbon
footprints using dynamic models, particularly in developing countries during periods of
rapid capital accumulation.
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From 2000 to 2014, both direct and embodied carbon emissions in developing countries
exhibited continuous upward trends. Specifically, the dynamic embodied carbon emissions
of households increased from 3704.98 Mt to 6574.25 Mt, while traditional embodied carbon
emissions of households rose from 3164.56 Mt to 5216.26 Mt. In contrast, the trend of
direct and embodied carbon emissions in developed countries was slightly different. Direct
carbon emissions continued to decline, while embodied carbon emissions initially rose and
then fell. This suggests that in the early stages of carbon emission reduction, developed
countries transferred carbon emissions to other regions by importing products with high
embodied carbon emissions, leading to the illusion of lower direct carbon emissions. The
peak of traditional embodied carbon emissions occurred in 2005 at 8679.21 Mt, and the peak
of dynamic embodied carbon emissions occurred in 2007 at 10,483.18 Mt. The difference
between the two is due to the time shift caused by carbon emissions stored in fixed capital.

We calculated embodied carbon emissions of economies and showed the results in
Figure 2. In terms of total embodied carbon emissions, the US has remained the top emitter,
followed by China, the EU, India, and Japan in second to fifth positions, respectively. The
rankings of each economy fluctuated slightly over the 15-year period; however, the changes
were not significant. Moreover, the rankings of the countries differ significantly when em-
bodied carbon emissions per capita are considered. The US maintains its position as the top
emitter, but China, the European Union, and India experience significant declines in their
rankings, dropping to the 12th, 8th, and 15th rankings, respectively. In contrast, developed
countries such as Australia, Switzerland, and Canada move up in their rankings. Neverthe-
less, these countries appear to have achieved “low-carbon” development because of their
small population sizes. Conversely, the high emissions in countries with large populations,
such as China and India, are largely attributed to their large population bases, and these
countries face greater pressure to reduce their emissions from residential consumption.
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Significant differences exist in the embodied carbon emissions from household con-
sumption categories between developed and developing countries, which were shown in
Figure 3. Food consumption was the category with the highest share of embodied carbon
emissions in developing countries, and the Engel coefficient of carbon emissions from
households (i.e., the ratio of embodied carbon emissions from food consumption to total
embodied carbon emissions from household consumption) remained above 20% from 2000
to 2014. Additionally, the share of embodied carbon emissions in categories such as clothing
and household facilities was higher in developing countries than in developed countries.
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In developing countries, basic living needs are the most significant sources of households’
carbon footprint, and Engel’s coefficient of carbon emissions shows a decreasing trend as
households’ living standards and disposable income increase. The different income levels,
consumption habits, and consumption patterns of residents in each country, as well as
the domestic industrial structure and product quantity and quality, cause differences in
the consumption structures of each country. These differences have resulted in different
structures of the embodied carbon footprints of residents’ consumption.

Energies 2023, 16, x FOR PEER REVIEW 10 of 18 
 

country, as well as the domestic industrial structure and product quantity and quality, 
cause differences in the consumption structures of each country. These differences have 
resulted in different structures of the embodied carbon footprints of residents’ consump-
tion. 

In developed countries, housing consumption had the highest share of embodied 
carbon emissions, which remained at approximately 30% throughout the 15 years. This is 
in contrast to developing countries, where the share was only approximately 20%. The 
share of embodied carbon emissions from transportation, household facilities, and 
healthcare was also higher in developed countries than in developing countries.  

 
Figure 3. Dynamic embodied carbon emissions from global household consumption by category in 
2014. 

Each country has unique characteristics in terms of consumption categories, in addi-
tion to common trends, which were shown in Figure 4. For instance, China has a lower 
share of embodied carbon emissions from transportation consumption than other coun-
tries, with the highest share reaching only 10.24%, indicating success in achieving low-
carbon travel. However, China’s share of embodied carbon emissions from healthcare, 
education, and entertainment services has increased significantly faster than that of other 
countries, reflecting the changing consumption structure due to economic development 
and rising living standards. Germany, South Korea, and India have had little change in 
the structure of households’ dynamic carbon footprints over the past 15 years. In the US, 
the share of household carbon emissions rose and then fell, with the turning point occur-
ring around 2008, reflecting the impact of the financial crisis on residential consumption. 

Figure 3. Dynamic embodied carbon emissions from global household consumption by category
in 2014.

In developed countries, housing consumption had the highest share of embodied
carbon emissions, which remained at approximately 30% throughout the 15 years. This is in
contrast to developing countries, where the share was only approximately 20%. The share
of embodied carbon emissions from transportation, household facilities, and healthcare
was also higher in developed countries than in developing countries.

Each country has unique characteristics in terms of consumption categories, in addition
to common trends, which were shown in Figure 4. For instance, China has a lower share
of embodied carbon emissions from transportation consumption than other countries,
with the highest share reaching only 10.24%, indicating success in achieving low-carbon
travel. However, China’s share of embodied carbon emissions from healthcare, education,
and entertainment services has increased significantly faster than that of other countries,
reflecting the changing consumption structure due to economic development and rising
living standards. Germany, South Korea, and India have had little change in the structure
of households’ dynamic carbon footprints over the past 15 years. In the US, the share of
household carbon emissions rose and then fell, with the turning point occurring around
2008, reflecting the impact of the financial crisis on residential consumption.
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4.2. Decomposition Analysis of Changes in Total Carbon Footprint

To further investigate the factors driving the changes in carbon footprint between 2000
and 2014, an LMDI decomposition analysis was conducted, and the results were shown in
Figure 5. The US and Germany saw a decrease in total carbon emissions, whereas China,
Russia, India, and South Korea all experienced an increase. The emission intensity effect
had a similar impact in all countries, resulting in a reduction in the residential carbon
footprint. In contrast, the consumption level effect had the opposite effect, contributing
to an overall increase in the carbon footprint for all countries. This effect emerged as the
primary driver of carbon emission growth due to increased household consumption. In
addition, the consumption structure effect had a mixed impact on carbon emissions across
different countries. Finally, the population size effect was positive for all countries except
Germany and Russia, which is consistent with the change in population size over the
15-year period.

China, South Korea, and India experienced much greater increases in carbon emissions
because of the consumption level effect rather than the population size effect. Conversely, in
the US, both effects contributed almost equally to carbon emissions increasing. Additionally,
the consumption structure effect resulted in a reduction in carbon emissions for all countries
except South Korea. This reduction was particularly significant in the US and Germany,
reaching 104.53% and 152.70%, respectively.
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4.3. Decomposition Analysis of Change into Category and Structural Components

To further explore the impact of each consumption category, we conducted an LMDI
analysis of the consumption in different categories and the results were shown in Figure 6.
The carbon footprints of China, Russia, and India increased in all categories, whereas
the US, Germany, and South Korea achieved carbon reductions in seven, three, and two
consumption categories, respectively. For China, the five categories that showed the highest
increase in carbon emissions were food, other goods and services, healthcare, transportation,
and housing, all of which increased by more than 200 Mt over the 15 years. These five
categories also accounted for the largest share of the carbon footprint of Chinese residential
consumption in 2014. Therefore, to reduce emissions in the residential sector, it is essential to
control the carbon emissions of these five categories. In the US, residential carbon emission
reductions have been achieved in seven categories: transportation, food, other goods and
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services, accommodation services, clothing, education, culture and entertainment services,
and household equipment supplies and services.
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The emissions intensity effect is generally the strongest contributor to changes in car-
bon emissions across most consumer categories, although its impact varies by country. For
example, in the US, the emission intensity effect contributed the most to carbon reduction
from education consumption, with a reduction contribution of 854.31%. In contrast, in
China, this effect achieved a much lower contribution of only 99.34% and its absolute
impact was relatively low, making it impossible to counterbalance the carbon increase
resulting from other effects, especially the consumption level effect.
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The effect of consumption structure on carbon emissions varies significantly across
consumption categories. In China, it reduced carbon emissions in housing, food, household
equipment and services, and other goods and services, whereas it triggered an increase
for other categories. Similarly, consumption structure resulted in an increase in carbon
emissions in most consumption categories in Russia, India, and South Korea, and the
absolute carbon reduction was small and insufficient to offset this. In contrast, in the US and
Germany, which achieved total carbon emission reduction, the consumption structure effect
caused a carbon reduction effect in most categories, with the exception of communication,
education, and healthcare. The consumption structure and the emission intensity effects
were almost the same in terms of carbon reduction, and the carbon reduction effect of the
consumption structure effect exceeded that of the emission intensity effect.

5. Discussion
5.1. Differences in Household Carbon Footprint in Developing and Developed Countries

This study further highlights significant variations between developed and developing
countries in the carbon footprints of household consumption categories. Consumption
structures and the intensity of embodied carbon emissions vary between economies. For
instance, in 2014, the embodied carbon emission intensity of food in developing countries
was 1.22, which was twice as high as that in developed countries (0.66). Consequently, the
proportion of food consumption in developing countries was as high as 21.82%, which
was more than twice that of developed countries (6.99%). Differences in carbon emission
categories have significant implications for changes in carbon emissions across countries.
For instance, in China, the transportation, food, and other goods and services categories
have witnessed a significant increase in carbon emissions over the last 15 years, while the US
has achieved considerable carbon emission reductions in these categories. This discrepancy
leads to varying trends in carbon emissions between developed and developing countries.
To achieve carbon emission reductions, developing countries such as China must focus on
reducing the embodied carbon emissions of basic needs such as food, clothing, housing,
and transportation.

In addition to differences in emission categories, there are variations in the drivers
of emission changes between different countries. For instance, while emission intensity
reduction is the most critical factor in China, its reduction rate is lower than that of the US
and Germany, at 621.50% and 636.70%, respectively. Therefore, China can learn from the
advanced experiences of other countries and focus on promoting emission reduction and
energy-saving technologies and improving energy efficiency.

Furthermore, consumption structures and emission intensity contributed 5.78% and
40.10%, respectively, to carbon reduction in China. The contribution of the consumption
structure effect is negligible compared with the other three effects. Although China’s
consumption structure reduced carbon emissions, the change was minimal. The most
significant factor was the emission intensity effect, which represents the dynamic carbon
footprint corresponding to a unit of residential consumption. Its contribution represents a
reduction in the production process, including the use of clean energy, carbon sequestration
technologies, resource conservation, and green technological innovations.

It is also interesting to note that for most consumption categories, the emission inten-
sity effect triggered different levels of carbon reduction. However, in China and Russia, the
emission intensity effect leads to an increase in the carbon footprint of healthcare consump-
tion. Economic development has improved people’s lives, but it also causes environmental
problems such as air pollution, water pollution, and the greenhouse effect. These problems
lead to an increase in healthcare expenditure. Moreover, the carbon emission intensity
of healthcare consumption increased between 2000 and 2014, further exacerbating the
greenhouse effect. The healthcare sector is a significant source of greenhouse gases [47],
and the rising carbon intensity of healthcare consumption has made it more challenging to
reduce residential emissions. To address this issue, it is necessary to promote low-carbon
healthcare operations, establish a low-carbon healthcare system, and reduce the carbon
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intensity of the healthcare sector through clean renewable energy substitution, the estab-
lishment of recycling systems, efficient pollutant disposal, and the use of reasonable carbon
capture technologies.

5.2. Policy Implications for Shifts in Carbon Emissions

Based on these findings, countries should consider their specific consumption charac-
teristics when formulating carbon reduction policies for residential sectors. In developing
countries, focusing on reducing emissions from housing, food, and transportation can
lead to significant reductions as these categories account for more than half of the total
consumption carbon emissions. Therefore, encouraging low-carbon patterns in these areas
can be effective.

Reducing carbon emission intensity during production processes is also a powerful
way to reduce residential carbon emissions. Improving energy efficiency, increasing the
use of clean energy, and investing in green innovation and carbon capture technologies can
help reduce the embodied carbon emission intensity. Additionally, reducing the input of
high-emission intermediate goods can reduce carbon emission intensity.

Changes in consumption structure can also contribute to reducing the carbon footprint.
Reducing consumption in high-carbon intensity categories and increasing consumption
in low-carbon intensity categories can help offset the carbon footprint increase due to
population growth and consumption levels.

Given the pressure of a large population and rapidly increasing consumption levels,
reducing emission intensity and changing consumption structures with a dual approach
is necessary to achieve carbon reduction in the residential sector. In addition to strictly
managing direct carbon emissions from industrial production processes, the government
should introduce policies to encourage residents to reduce their consumption of products
with high carbon emission intensities.

6. Conclusions

This study employed a dynamic input–output model to accurately assess the global
carbon footprint and applied LMDI decomposition analysis to investigate the key drivers
of residential carbon emissions across various countries. Direct carbon emissions fail
to account for the regional transfer of carbon emissions, and the traditional accounting
methods ignore the temporal transfer of carbon emissions. Hence, it is necessary to re-
estimate residents’ carbon footprints using dynamic models.

The analysis revealed substantial differences between developed and developing
countries in terms of the carbon footprint of residential consumption categories and their
driving forces, leading to divergent trends in household carbon footprints. The impacts
of population size, consumption level, and emission intensity were consistent across
countries, while consumption structure effects varied. For most countries, an increase in
residential consumption expenditure was the most important reason for the increase in
carbon emissions, whereas a decrease in carbon emission intensity was the biggest driver
for countries to reduce carbon emissions.

In developing countries, the absolute emission intensity effect is lower, and the con-
sumption structure effect of most consumption categories leads to an increase in carbon
emissions. Additionally, the absolute amount of carbon reduction in sectors that achieve
carbon reduction is smaller, making it difficult to offset the increase in carbon emissions due
to the increase in consumption expenditure and population growth. Therefore, countries
must focus on improving their consumption structure and reducing the emission inten-
sity of high-carbon-emitting consumption categories to decrease carbon emissions. It is
essential for all countries to prioritize reducing the emission intensity and transforming
consumption patterns to effectively address the challenge of reducing carbon emissions.
Compared to developed countries such as the US and Germany, these efforts are even more
crucial for developing countries.
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This research has some limitations, leaving open various directions that future re-
searchers could explore. Firstly, using data that are more updated or detailed to account for
residents’ carbon footprint may uncover new features and changes through longer time
series. Secondly, considering international trade factors in the LMDI decomposition anal-
ysis by distinguishing between the consumption of domestic and imported goods could
improve our understanding of the drivers behind residential carbon footprints. Lastly, the
inclusion of residents’ characteristics, such as income or education level, would allow for a
detailed investigation into the heterogeneity of their carbon emissions.
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Appendix A

Table A1. Sectoral matching related to consumer expenditure.

Consumption Category Industry of WIOD

Food Crop and animal production, hunting and related service activities; Forestry and logging;
Fishing and aquaculture; Manufacture of food products, beverages and tobacco products

Clothing Manufacture of textiles, wearing apparel and leather products

Housing

Mining and quarrying; Manufacture of other non-metallic mineral products; Electricity,
gas, steam and air conditioning supply; Water collection, treatment and supply; Sewerage;
waste collection, treatment and disposal activities; materials recovery; remediation
activities and other waste management services; Construction; Real estate activities

Household Facilities

Manufacture of wood and of products of wood and cork, except furniture; manufacture of
articles of straw and plaiting materials; Manufacture of chemicals and chemical products;
Manufacture of rubber and plastic products; Manufacture of basic metals; Manufacture of
fabricated metal products, except machinery and equipment; Manufacture of electrical
equipment; Manufacture of machinery and equipment n.e.c.; Manufacture of furniture;
other manufacturing; Repair and installation of machinery and equipment; Activities of
households as employers; undifferentiated goods- and services-producing activities of
households for own use

Transport

Manufacture of coke and refined petroleum products; Manufacture of motor vehicles,
trailers and semi-trailers; Manufacture of other transport equipment; Wholesale and retail
trade and repair of motor vehicles and motorcycles; Land transport and transport via
pipelines; Water transport; Air transport; Warehousing and support activities for
transportation

Communications Postal and courier activities; Telecommunications

Accommodation services Accommodation and food service activities

Health Care Manufacture of basic pharmaceutical products and pharmaceutical preparations; Human
health and social work activities

Education and Entertainment Services

Manufacture of paper and paper products; Printing and reproduction of recorded media;
Manufacture of computer, electronic and optical products; Publishing activities; Motion
picture, video and television program production, sound recording and music publishing
activities; programming and broadcasting activities; Computer programming,
consultancy and related activities; information service activities; Education
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Table A1. Cont.

Consumption Category Industry of WIOD

Others

Wholesale trade, except of motor vehicles and motorcycles; Retail trade, except of motor vehicles and
motorcycles; Financial service activities, except insurance and pension funding; Insurance,
reinsurance and pension funding, except compulsory social security; Activities auxiliary to financial
services and insurance activities; Legal and accounting activities; activities of head offices;
management consultancy activities; Architectural and engineering activities; technical testing and
analysis; Scientific research and development; Advertising and market research; Other professional,
scientific and technical activities; veterinary activities; Administrative and support service activities;
Public administration and defence; compulsory social security; Other service activities; Activities of
extraterritorial organizations and bodies
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