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Abstract: Electric vehicles (EVs) have become a viable solution to the emerging global climate crisis.
Rechargeable battery packs are the basic unit of the energy storage system of these vehicles. The
battery thermal management system (BTMS) is the primary control unit of the energy source of
the vehicles. EV performance is governed by specific power, charging/discharging rate, specific
energy, and cycle life of the battery packs. Nevertheless, these parameters are affected by temperature,
making thermal management the most significant factor for the performance of a battery pack in an EV.
Although the BTMS has acquired plenty of attention, research on the efficiency of the liquid cooling-
based BTMS for actual drive cycles has been minimal. Liquid cooling, with appropriate configuration,
can provide up to 3500 times more efficient cooling than air cooling. Direct/immersive and indirect
liquid cooling are the main types of liquid cooling systems. Immersive/direct cooling utilizes the
technique of direct contact between coolant and battery surface, which could provide larger heat
transfer across the pack; however, parameters such as leakage, configuration, efficiency, etc., are
needed to be considered. Indirect cooling techniques include cold plates, liquid jackets, discrete
tubes, etc. It could result in complex configuration or thermal non-uniformity inside the pack. The
paper intends to contribute to the alleviation of these gaps by studying various techniques, including
different configurations, coolant flow, nanoparticles, varying discharging rates, different coolants, etc.
This paper provides a comprehensive perspective of various techniques employed in liquid cooling
battery packs, identifying the shortcomings in direct/immersive and indirect liquid cooling systems
and discussing their mitigation strategies.

Keywords: liquid cooling; immersive cooling; cold plate; discrete tube; battery thermal management system

1. Introduction

A significant problem for humanity today is global climate change, which is largely
caused by greenhouse gas (GHG) emissions. Economic policies, energy regulations, envi-
ronmental policy requirements, and fuel combustion technology all play a role in deter-
mining GHG emissions [1–6]. The predicted increase in worldwide CO2 emissions from
2013 to 2019 is 43.2 gigatonnes (Gt) per year, or a 20% increase. In order to meet COP21, the
2015 United Nations Climate Change Conference, the target of keeping change in global
temperature below 2 ◦C needs to be followed [7]. Carbon dioxide (CO2), which makes
up 65% of GHG emissions, is produced when fossil fuels are burned to produce energy
and for industrial activities. Forestry land usage and other land clearings for agriculture
are responsible for 11% of CO2 emissions. Methane (CH4) from waste management and
other agricultural processing makes up 16% of the total emissions. Additionally, 6% and
2%, respectively, come from fluorinated gases and nitrous oxide (N2O) [8]. The transport
sector is responsible for 14% of CO2 emissions [9]. Electric vehicles (EVs) have emerged as
one of the most promising solutions for the crisis resulting from emissions of conventional
automobiles [10]. Batteries are the major components of an EV. For the enhanced output of
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the battery module of an EV, it is of utmost importance to maintain the temperature of the
battery surface and the temperature gradient between cells within an optimum range [11].
The desired working temperature range for the battery pack of an EV is considered between
15 ◦C and 60 ◦C. Additionally, the temperature difference between any two battery pack
cells is not advised to be increased above 5 ◦C [12–17]. Such a requirement asks for the need
for a battery thermal management system (BTMS). A BTMS is an essential requirement for
regulating the temperature characteristics of a battery module/pack [18]. A brief classifica-
tion of the types of BTMS is as follows: air cooling, liquid cooling, phase change material
cooling, and heat pipes cooling [19,20]. Research on liquid cooling, which is going on at
present, generally focuses on the layout or structural optimization [21]. Liquid cooling
includes the regulation of the temperature of a battery pack/module by using liquid media
such as water, dielectric fluids, mineral oils, ethylene glycol, etc. [22].

Liquid cooling has become a preferred choice for the high specific power density of
cells. Liquid cooling can be employed either directly, i.e., there is direct contact between
the liquid coolant and the cells of the battery pack, or indirectly, i.e., liquid coolants are not
in direct contact with cell surfaces. The indirect liquid cooling technique can be employed
as a cold plate or discrete tube, depending upon the configuration of the battery pack.
Discrete tubes can be used for cylindrical cells, while for prismatic cells, a cold plate can
be employed [23]. This review paper analyses the literature consisting of liquid cooling
with indirect and direct methods. The paper identifies the shortcomings in the direct and
indirect cooling techniques in a BTMS. It also provides mitigation techniques for those
limitations as per the available literature. This paper attempts to compare indirect and
direct liquid cooling technologies and incorporates the effects of various factors, such as
nanofluids, the thermal resistance model, etc., under different discharging rates, parasitic
power consumption, configurations, and working fluids.

2. Parallel Cold Plate Liquid Cooling

Liquid cooling incorporating a mini or microchannel cold plate has been studied
extensively. These parallel flow-distributed mini/micro-channels were examined for their
structural and operational characteristics.

2.1. Mass Flow Rate

Studies were conducted for a parallel cold-plate liquid-cooled BTMS considering the
mass flow rate of the coolant and the number of channels. A three-dimensional cold plate
model with mini-channels consisting of parallel flow was fabricated by Huo et al. [24] to
study the impact of multiple factors on the thermal performance of a rectangular Lithium-
ion battery (LIB) pack (Figure 1). The peak temperature attained by the battery pack, Tmax,
decreased when the flow channels were increased in number, and the rate of mass inflow
was greater. Moreover, the impact of the direction of flow on cooling decreased as the mass
flow rate soared. The optimum mass flow rate at which the system’s efficiency deteriorated
was 0.5 g/s.

For a battery module (70Ah prismatic cells), a liquid (water)-cooled BTMS was statisti-
cally examined by Li et al. [25]. The research utilized the configuration of a cold plate with a
reduction in temperature at the inlet and an increment in the rate of water flow. The overall
temperature, Tmax, and the difference in temperature among cells, ∆Tmax were, respectively,
reduced to approximately 34 ◦C and not more than 1.8 ◦C for an inlet temperature of 28 ◦C
and rate of flow of 1 g/s. A liquid-cooled LIB pack system with a changeable contact
surface was suggested by Shang et al. [26]. It was challenging to enhance overall efficiency
in the liquid-cooled system by adjusting only a single parameter. Therefore, the most
effective cooling was attained at the flow rate of 0.21 kg/s, temperature at the inlet of 18 ◦C,
and width of the cooling plate of 70 mm. As a result, optimizations of the rate of mass flow,
the temperature of the inlet, and the width of the cooling plate were performed.
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Figure 1. Cooling system model: (a) Schematic of Li-ion battery pack; (b) Boundary condition of 
symmetry applied to the top and bottom surfaces [24]. 
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2.2. Number of Channels 
The thermal behavior of a liquid-cooled system consisting of a mini-channel (Figure 

2) and the impact of several affecting parameters were quantitatively examined by Zhao 
et al. [27]. The batteries’ Tmax must be kept at less than 40 °C, and it was discovered that up 
to eight channels were needed for this purpose; any more than that could result in reduced 
performance. Another study with a small channel cold plate-based thermal management 
system (TMS) for LIBs was proposed by Qian et al. [28] and later quantitatively examined. 
A cold plate with five channels was sufficient for improving temperature interaction by 
enhancing the rate of coolant flow and cooling, and the even temperature distribution 
could be improved by employing an extra plate.  

Figure 1. Cooling system model: (a) Schematic of Li-ion battery pack; (b) Boundary condition of
symmetry applied to the top and bottom surfaces [24].

2.2. Number of Channels

The thermal behavior of a liquid-cooled system consisting of a mini-channel (Figure 2)
and the impact of several affecting parameters were quantitatively examined by Zhao et al. [27].
The batteries’ Tmax must be kept at less than 40 ◦C, and it was discovered that up to
eight channels were needed for this purpose; any more than that could result in reduced
performance. Another study with a small channel cold plate-based thermal management
system (TMS) for LIBs was proposed by Qian et al. [28] and later quantitatively examined.
A cold plate with five channels was sufficient for improving temperature interaction by
enhancing the rate of coolant flow and cooling, and the even temperature distribution
could be improved by employing an extra plate.
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To enhance the efficiency of the heat exchanger in the internal flow field, Huang et al. [29]
presented a mini-channel cooling plate shaped like streamlines (Figure 3). The projected
approach could increase the efficiency of the heat exchanger by up to and around 44.52%,
as per the results obtained. A cooling plate with a streamlined shape could effectively
reduce resistance to flow and pressure differences and offer a steadier temperature. As the
cooling capacities of cooling plates with straight channels and streamlined shapes were
nearly identical, it was possible to study further how different channel quantities affect
cooling performance using the same methodology. Jiaqiang et al. [30] numerically studied
a BTMS based on a cold plate and rectangular channel. An orthogonal experimental design
approach examined the changes due to the number of channels, channel dimensions, and
coolant flow rate. The outcomes indicated that the effect of the channel quantity is more
significant than that of the flow rate of the coolant and dimensions of the channel.
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2.3. Discharging Rate

Discharging rate is the rate at which the battery discharges or the current is drawn from
the battery. Using an artificial neural network model, Panchal et al. [31] investigated the
heat generation rate in a prismatic battery having liquid cooling under various boundary
conditions (BCs) with temperatures of 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C. The findings illustrated
the rate of generation of heat increased as discharging rates amplified. Furthermore, for
discharging rates of 4C and 1C, respectively, the peak generated heat was 91 W, and the least
was 13 W. A liquid-cooled LiFePO4 battery pack was thermally and electrically assessed by
Malik et al. [32] at various rates of discharging and working temperatures of the coolant
between 10 ◦C and 40 ◦C. According to experimentation, the ideal working temperature
range (between 25 ◦C and 40 ◦C) can be restricted to coolant temperatures of 30 ◦C for all
discharging rates between 1C and 4C. Since liquid metal had a substantially higher thermal
conductivity than water, it was an ideal coolant for liquid cooling. A liquid metal-based
cooling method was suggested by Yang et al. [33] for a prismatic LIB. As per numerical
analysis and simulation, liquid metal is an efficient cooling agent for battery thermal
management under demanding and abusive settings for EVs. The weight of liquified metal
is its only drawback, which makes the whole system bulkier. Panchal et al. [34] used a
water-cooled technique to study the temperature characteristics of the LiFePO4 battery pack
over a variety of ambient temperatures and lower current rates. Four micro-channel cold
plates were put between three prismatic LIBs and examined and studied for 20A at 1C and
40A at 2C discharging rates at temperatures 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C. Findings showed
that by utilizing water cooling the most critical approximation of the overall temperature of
the surface was achieved for 40A and 35 ◦C, and the least was achieved for 20A and 5 ◦C.

2.4. Configuration

Most liquid-cooled BTMS research focuses on layout or structural optimization [21].
Xu et al. [35] assessed the thermal behavior of prismatic LiFePO4 batteries, which were
liquid-cooled using mini-channels and parallel circular flow (Figure 4). For evenly dis-
tributed water throughout each cold plate as well as mini-channel, a cold plate consisting
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of a T-shaped bifurcation construction was proposed. Employing an active liquid-cooled
system, the maximum temperature of the battery pack, Tmax, and the maximum tempera-
ture difference between the cells of the battery pack, ∆Tmax, obtained were approximately
32.5 ◦C and 1.5 ◦C, correspondingly. It was experimentally studied to assess the battery’s
efficiency and lifespan.
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Using ANSYS FLUENT, Chung et al. [36] conducted a thermal investigation and
computational analysis by simulating a pack with liquid-cooled pouch cells. To enhance the
efficiency of the suggested BTMS, various battery pack design configurations were offered,
assessed, and contrasted. The study compared several battery designs, and the findings
could be used to develop specifications for making larger EV battery packs. Tang et al. [37]
optimized and numerically analyzed the liquid cooling system employing a cold plate
with aluminum mini-channels to look into the thermal behavior of a square battery with a
large capacity. In order to investigate how cooling structure affected battery performance,
three distinct design configurations were modeled. The optimized findings demonstrated
that, compared to the other two structures, the structure with one cold plate placed at
the bottom and two plates on the sides of the pack of batteries provided effective cooling.
The ideal outcomes were a 2 L/min coolant flow rate, a 20 ◦C coolant input temperature,
and a 2C discharging rate. A LIB pack (five rectangular cells) was examined at a 5C rate
of discharge [38] and cooled by water which was passed through rectangular channels.
The temperature was reduced by 17.313 ◦C at a mass flow rate of 0.25 × 10−6 m3/s and
19.693 ◦C at a mass flow rate of 1.6 × 10−6 m3/s. Another method for improving cooling
using a liquid was the flow reversal method.

2.5. Variable Contact Resistance and Cooling Agent

Rao et al. [15] lessened the difference in cell temperatures by putting an aluminum
block amid two cells using the concept of variable contact resistance. The maximum
temperature of the aluminum block lowered to the same temperature as that when the
length was 24 mm when contact and variable surfaces were compared, but a lighter system
was required to achieve a more uniform temperature. It was advised against improving
cooling performance just by raising velocity because doing so increased pump power
consumption. Electrochemical and thermal studies, which were based on flow boiling
in mini-channels of prismatic LiFePO4 batteries, were carried out by Zhoujian et al. [39],
which employed NOVEC 7000, a Hydrofluoroether, as a cooling agent at various rates of
discharging and Reynolds numbers (Re). The suggested BTMS kept the highest battery
temperature, Tmax, and temperature differential at the surface, ∆Tmax, at 40 ◦C and 4 ◦C.
It was observed that a voltage drop happened as the fluid Re number increased due to
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a decrease in temperature. The effectiveness of nanofluids for controlling the heating of
battery packs of Li-ion was studied by Mondal et al. [40]. A blend of water–ethylene glycol
and pure water were added as cooling agents with CuO and Al2O3 nanoparticles. The
findings showed that, despite increasing thermal conductance, adding nanofluids with the
base cooling agents did not substantially enhance the thermal characteristics of LIBs.

3. Serpentine Cold Plate Liquid Cooling

The liquid-cooled method available commercially for electric automobiles that Tesla
had patented was the cold plate with serpentine channels. These serpentine-channeled
cold plates have been the subject of numerous studies for battery thermal management.

3.1. Discharging Rates

Panchal et al. [41] conducted experiments with Li-ion cells using a simulation based
on CFD at multiple discharging rates and working temperatures. It was noted that the
cold plate’s temperature elevated as the rate of discharge and the working temperature
soared and that the temperature in the vicinity of the electrodes was higher than the core
temperature inside the battery. Further, using the concept of neural network technique,
Panchal et al. [42] studied the thermal modeling and fluctuations in temperature of a LIB
pack with prismatic cells, which were cooled at various rates of discharging and boundary
conditions using cold plates. The outcome illustrated that changes in discharging rate and
boundary conditions significantly impacted the temperature uniformity of the pack.

3.2. Different Coolants

A liquid-cooled system using a cold plate was developed by Ponangi et al. [43], who
also looked into how different parameters affected the thermal efficiency of the battery pack.
For two coolants, (i) water and (ii) 50:50 blends of water and ethylene glycol, two types
of designs with diameters of 6.3 mm and 7.5 mm were studied. As per the CFD results
obtained from the simulation, design II, with a diameter of 7.5 mm, surpasses design I,
with a diameter of 6.3 mm. Water was also chosen as a cooling agent over a blend of water
with ethylene glycol since the pressure drop in water was lower. Beyond a rate of 1.25C, the
suggested technology did not perform adequately. Chen et al. [35] used water as the coolant
for simulation and laboratory studies of the temperature and fluid dynamic performance
of the proposed BTMS, which led to a temperature reduction of 1.87 ◦C and a temperature
fluctuation under 0.35 ◦C. The thermal study of a complete pack of cylindrical LIBs (18,650)
cooled by a channeled liquid flow arrangement was carried out by Cao et al. [44] and
validated by experiments. The experimental and numerical results were in excellent accord.
The results showed that while a rise in coolant rate improved battery efficiency, a rise in
C-rate worsened it.

3.3. For Peak Demands

Based on cold plate cooling with small channels, Li et al. [45] developed a 3D thermal
model of a 50 V battery pack consisting of prismatic LIBs (20 Ah) and examined its thermal
reactions under a high-demand duration. The equivalent circuit concept was also used
for subscale electrochemical modeling. Since the coolant velocity has been found to sig-
nificantly impact battery thermal performance, maintaining peak temperature, Tmax, and
temperature differential, ∆Tmax, inside the battery pack within 40 ◦C to 5 ◦C, correspond-
ingly, was essential. Additionally, at a 5C discharge rate, a tiny channeled cold plate fixed
in the middle of the battery module exhibited good thermal performance. Additionally,
it was advised that cold plates be retained in the middle of the battery for improved heat
dissipation and that a mass flow rate of 1 g/s was ideal for cooling.

3.4. Configurations

The impacts of outlet and inlet configurations on the LCP, liquid cooling plates,
were examined by Sheng et al. [46]. Designing a serpentine channel with multiple inlets
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and outlets allowed for the investigation of the impact of different parametric factors
on the cooling effect. The findings demonstrated that it was advantageous to build the
inlet opposite to the outlet of the LCP relative to the similar side. Rising the rate of
mass flow and channel width also reduced Tmax with little influence on the ∆Tmax of the
module. The design was suggested to be employed in a Li-ion BTMS. Changing the coolant
flow direction could help to provide an even temperature distribution, but the maximum
temperature reduction was unaffected. The serpentine channel cold plate was utilized
in [47,48] (Figure 5).
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Zhao et al. [49] evaluated a channeled liquid-cooled battery pack to minimize thermal
non-uniformity. Two approaches were pursued to clarify this issue: one used several short
channels, whereas the other made use of orderly enlarged contact regions in-between
battery and cooling channel, which, respectively, reduced the battery pack’s temperature
non-uniformity with the Tmax and ∆Tmax, 2.2 ◦C and 0.7 ◦C, at a discharging rate of 5C.
There were many ways to reduce thermal non-uniformity. Thus, the authors did not assert
that the suggested tactics were the only effective ones.

3.5. Thermal Resistance Model

A serpentine channel cold plate (Figure 6) was created by Jiaqiang et al. [50] to cool the
battery. An objective function and thermal resistance model were created to examine the
system’s thermal behavior. This study offered the simplest method for creating cold plate
liquid cooling systems with the least pressure loss and maximum cooling effectiveness.
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3.6. Dichotomos Flow Distributor

The usage of a liquid cooling thermal management system with a dichotomous flow
distributor and a liquid cooling plate with a spiral channel (Figure 7) suitable for high-
rate discharge circumstances was suggested in this study on pouch lithium-ion batteries
conducted by Li et al. [51]. Orthogonal testing and matrix analysis procedures were used
to optimize the liquid cooling plate’s structural design. The effect of the coolant mass flow
rate and initial cooling temperature on the battery module’s cooling capacity was studied,
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and it was concluded that a dichotomous flow distributor could provide better uniformity
than a multiseriate flow distributor.
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The study also revealed that under the same coolant mass flow rate and channel length
circumstances as the serpentine channel, the spiral channel liquid cooling plate can reduce
the maximum temperature difference of the battery module by 15.61%. The maximum
temperature of the battery module can be effectively lowered for spiral channel liquid
cooling plates by positioning the channel intake and outlet on opposite sides rather than
the same side. These findings suggest that the cooling performance of the cooling plate
depends greatly on the channel configuration in the cooling plate.

4. Discrete Tube Liquid Cooling

Cold plates were attached to isolated tubes, which were compressed to flatten or
made circular and made up of different metals. To provide cooling effectively, copper and
aluminum tubes were fastened to the surface of the cold plate. By adjusting the physical
and operational characteristics of the suggested cooling system, numerical analysis of a
model was performed for a liquid cooling system using mini-channels (Figure 8) [52], which
was then optimized, and validation was performed with a 3D model using conjugated heat
transfer. The outcomes showed that to maintain the temperature differential, ∆Tmax within
3 ◦C at a 2C discharging rate, one-half of the cell surface was required to be cooled on one
side of the cell.
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4.1. Natural and Forced Cooling

A copper tube BTMS with a silicon cold plate (Figure 9) was experimentally explored
by Li et al. [53] to improve cooling efficiency, and it was contrasted with a natural and
forced air-cooled BTMS based on a cold plate made up of silicon. With a volume flow rate
of 8 mL/s, the suggested cooling system could sustain the Tmax and ∆Tmax within 41.92 ◦C
and 1.78 ◦C. The cooling system was considered more efficient and used less energy.
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4.2. GO-SG: Graphene Oxide-Modified Silica Gel

Youfu et al. [54] experimentally examined a battery pack employing GO-SG, i.e., graphene
oxide-modified silica gel with fins-augmented copper tubes (Figure 10) and discovered
that the suggested method maintained the Tmax as well as ∆Tmax of the pack within 40 ◦C
and 4 ◦C, correspondingly. In addition, this unique technique’s thermal performance
outperformed the water-cooled module, which was missing the GO-SG and was air-cooled.
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Figure 10. Water-cooled battery module employing tubes of silicon (a) front side, (b) opposite
side [54].

The temperature characteristics of a LIB (cylindrical) liquid-cooled with a duct-based
system having a half-helical shape (Figure 11) were analyzed by Zhou et al. [55], who also
studied different factors affecting cooling. Findings revealed that altering the direction of
flow and duct width enhanced cooling performance, while increasing the coolant mass flow
rate improved the thermal properties. The pitch and quantity of ducts did not affect cooling
efficiency. The maximum temperature, Tmax, and maximum temperature differential,
∆Tmax, obtained were, respectively, around 30 ◦C and 4 ◦C.
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4.3. Discharge Rate

A BTMS employing water as a coolant for LIBs under dynamic cycling was studied by
experimentation as well as statistically by Li et al. [56], as shown in Figure 12.

The active cooling technique using water as coolant was a popular technique for
systems with low cycle rates and could be suggested for those with increased cycling
rates for incorporated thermal management systems. At various discharge rates, flow
rates, and configurations, Lan et al. [57] analyzed the thermal behavior of an LIB pack
with prismatic cells, which were cooled employing mini-channel tubes fabricated from
aluminum (Figure 13). It was revealed that the Tmax and ∆Tmax of 27.8 ◦C and 0.8 ◦C,
correspondingly, could be achieved at a discharging rate of 1C. A liquid-cooled system
(Figure 14) in which cells were connected thermally using elements that could conduct the
heat was investigated by Basu et al. [58]. They concluded that this system could effectively
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regulate the heat at high discharging rates, and a lower coolant flow rate could be used
with EVs.
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4.4. Multichannel Flat Tube

In this study, Ren et al. [59] studied a multichannel flat tube (MCFT)-based bottom
liquid cooling (BLC) TMS (Figure 15). By comparing trials with the passive cooling ap-
proach, the temperature distribution of the battery module under the BLC method was
examined. The impact of cold water flow rate and cold water inlet temperature variation
on the effectiveness of thermal management was then investigated. The BLC TMS based on
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MCFT could successfully lower the temperature rise of the battery module without signifi-
cantly lowering the temperature uniformity of the module. The battery module’s thermal
management capabilities were only marginally impacted by the increase in cold water
flow rate; the change in the module’s maximum temperature was only 1.4%. However, the
thermal management capabilities of the battery module were significantly impacted by
changes in the cold water inlet temperature. By lowering the cold water inlet temperature,
the temperature of the battery module might be kept below 45 ◦C, but the temperature
differences between the battery and module levels rose by 48.9% and 61.6%, respectively.
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5. Immersion or Direct Cooling

Direct or immersive liquid cooling has recently gained much interest in electronic
gadgets and the EV industry [23,60]. With this arrangement, the battery directly touches
the cell by being submerged in a non-conductive dielectric fluid (Figure 16).
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Fluids such as oils of hydrocarbons and silicone and fluorinated hydrocarbons were
considered potential dielectric fluids. This unusual cooling method has several benefits.
First, immersion cooling could provide the most preferred temperature homogeneity for
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pack and cell among all cooling techniques. The reason is that all the surfaces are sunk in the
fluid, generating an even thermal transport path consisting of a large heat capacity for heat
expulsion. This uninterrupted direct connection with the surfaces of the cell subsequently
decreases the thermal contact resistances encountered in indirect techniques of cooling [23].
System complexity is reduced, and system design is simplified by immersion cooling [60].
Additionally, some of the dielectric fluids inhibit flames as well. So, the suppression of
thermal runaways is a frequent phenomenon in immersion cooling, which subsequently
improves the LIB pack’s safety.

5.1. Working Fluid

A system consisting of direct liquid cooling and air-cooling with 48 cells was ther-
mally modeled by Nelson et al. [62]. Compared with air cooling, which showed a 5.3 ◦C
temperature rise for initial load conditions, the results demonstrated that direct cooling
using silicone oil delivered more excellent heat absorption with a cell temperature surge
of only 2.5 ◦C. Karimi et al. [63,64] found a similar finding when comparing the thermal
performance of direct silicone oil cooling and air cooling. A comprehensive comparison of
single-cell simulation for three separate TMSs, i.e., thermal management systems, incorpo-
rating air cooling, indirect water/glycol jacket cooling, and direct mineral oil cooling, was
carried out by Kim and Pesaran [65]. For smaller widths of cooling channels and larger
flow rates, natural cooling showed the least temperature differential at the cell surface
and the most excellent heat transfer coefficient among the three cooling techniques. A
pressurized saturated liquid ammonia was one of the working fluids researchers suggested
in addition to water/glycol systems. Al-Zareer et al. [66] demonstrated that a pressure of
9.0 bar is sufficient to keep the battery temperature below 40 ◦C for high power charging
and discharging cycles at a rate of 7.5C, even though this liquid only covered 5% of the cell
surface. A water cooling system was created by Pendergast et al. [67] for a battery module
that used 18,650 cells encased in aluminum. Although the complexity and running expense
increased, it was seen that the liquid cooling technology was as much as 3500 times more
efficient than the air cooling. Additionally, the parasitic load dropped by 40% [68].

5.2. Parasitic Power

For any BTMS, the efficacy of the entire system must be considered. A slender battery
module consisting of small gaps consumed lower parasitic power than a wider gap because
of the low flow rate of coolant. In contrast, the cell-to-cell temperature variation across
the module with large holes could be reduced, according to research by Park et al. [69],
who designed a model of cylindrical cells for immersion cooling. They discovered that air
cooling used more parasitic power than immersive cooling, particularly for heavy battery
loads. A cooling simulation on a battery module with 21,700 cells found that direct air
cooling and a dielectric coolant produced the battery system’s lowest temperature differen-
tial. The drawbacks of air cooling were the parasitic power requirement, insufficient heat
capacity, and difficult flow control. Hence, it was determined that immersion cooling using
dielectric fluid had the best cooling performance. However, its disadvantages included the
increased difficulty and expense of condensing evaporated vapor, the more considerable
pumping losses in high-viscosity fluids, the increased cost of the liquid, problems with the
compatibility of materials, and an increase in fluid weight.

Even with these difficulties, immersion cooling has much potential as a direct cooling
technique for BTMSs; moreover, there still needs to be an agreement on the kind of system
and fluid to be employed.

5.3. Heat Transfer Fluid

This technique utilized a dielectric heat transfer fluid (HTF) to reduce the battery tem-
perature more quickly and compactly than the air-cooling-based BTMS [70]. The HTF had a
greater heat transfer coefficient, including greater thermal conductivity, lesser viscosity, and
lower density, and was not allowed to react with battery material. In BTMS applications,
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water and mineral/silicone oils were typically employed. Due to their effective thermal
conduction, liquified metals, nanofluids, and boiling liquids were increasingly used as heat
transfer media in BTMSs [60]. Glycol was used with water as a heat transfer fluid during
colder climates to prevent water from freezing due to lower surrounding temperatures [71].
According to Pesaran [72], the comparatively slender layer of the boundary caused oil to
transmit heat at a rate significantly higher than air, although the mass flow rate was the
same. Yet, there were large pressure drops and increased pumping power due to the oil’s
higher viscosity. Hence, choosing the ideal oil mass flow rate was crucial. The working
of the BTMS under air cooling as well as liquid cooling using mineral oil was examined
by Chen et al. [73]. The researchers discovered that the BTMS consisting of the mineral
oil cooling approach performed better than the air-cooling system. While choosing a liq-
uid cooling system, the complete size and mass of the battery package, which was fairly
heavy due to the thick mineral oil, should also be considered. To study the effectiveness
of commercial-sized BTMSs with high-power lithium-ion cells under various operating
situations employing silicon oil, silicon water, and air as the HTF, Karimi and Dehghan [63]
created a thermal model, as shown in Figure 17. They discovered that the HTF inlet/outlet
design had a critical influence on the performance of the pack, regardless of the cooling
medium. Using silicon and water could be preferable since air as a heat transfer fluid was
insufficient to maintain the desired battery temperature range at high discharge rates (5C).
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5.4. Configurations

Park and Jung [69] analyzed the LIB’s cooling capabilities for various cell configura-
tions and heat transfer fluid (HTF) types. They discovered that liquid cooling was optimal
for narrow battery designs and that air cooling was best for larger ones with tiny cell-to-cell
gaps. When the discharge rate was high, the air-cooled system used more electricity than
the liquid-cooled system. In distinct scenarios, two BTMSs were considered: one liquid
circulation BTMS (LcBS) and one liquid-filled BTMS (LfBS), as illustrated in Figure 18.
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Jilte et al. [74] published the simulation findings for liquids utilizing water and
0.4 vol.% Al2O3 nanofluid. They discovered that, without a liquid circulation system
and low ambient temperatures, the LfBS would be a superior solution for batteries with
moderate discharge rates (2C). Additionally, the LcBS kept the battery surface’s temper-
ature within a desirable range for a greater discharge rate. The heat received by the heat
transfer fluid was rejected by the air conditioner’s recirculated air or the outside air. While
using LcBS rather than LfBS, the battery performance was improved because of the uniform
temperature distribution, which was a crucial component. Further, Al2O3 utilization could
dramatically lower the surface temperature of the battery at increased discharging rates for
these two cases.

5.5. Nanoparticles

In contrast to water, silicon oil had a higher viscosity, which increased power consump-
tion. Since the thermal conductivity of oils and water was low, direct-contact liquid cooling
systems were restricted. However, adding nanoparticles having higher thermal conductivi-
ties as compared to base fluid could enhance the efficiency of the liquid-cooled BTMS [75].
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By adding different concentrations of graphene nanoplatelets (GnP), Sidney et al. [76] as-
sessed water’s thermal conductivity. They noticed that adding 0.5 vol.% of GnP enhanced
the water’s thermal conductivity by up to 24%. Selvam et al. [77] found a similar rise in
glycol by 21% with 0.5 vol.%. Huo and Rao [78] used water and Al2O3-water nanofluid to
model the thermal characteristics of the battery systems, having one cell and five cells, with
a liquid cooling BTMS. Due to the increased cooling efficiency as compared to water-cooled
BTMS, they discovered that adding 0.04 vol.% of Al2O3 decreased the mean temperature of
cells by 7%.

5.6. Boiling Fluid

The drawback of the direct cooling BTMS was the extra power consumption required
for HTF pumping. Batteries were inserted straight into the dormant boiling HTF fluid to
eliminate the need for pumping power. In this procedure, the phase change fluid expelled
the heat to the other medium after the heat was absorbed from the battery surface by
the boiling fluid using latent heat of vaporization [66]. This process’s vaporizing boiling
heat transfer fluid temperatures should be around the ideal temperature of the battery
surface. Al-Zareer created a BTMS using a boiling fluid to transfer heat using ammonia [66]
and liquid propane [79]. Just 5% of the surface was filled with liquid ammonia and
propane, which was put in at a pressure of about 8.5 bars. Although there was a rise in
the average temperature at the surface, it was found that the pressure rise decreased the
temperature differential across the surface. They discovered that the application of a BTMS
based on ammonia and propane provided greater cooling regulation of the battery surface
temperature and could keep it beneath 40 ◦C under very high discharging or charging rates,
e.g., 7.5C. A boiling battery cooling method was created by Hirano et al. [80], employing
hydrofluoric ether (Novec-7000) and perfluoro ketone (Novec-649) as the medium for
heat transfer. Novec-7000 and Novec-649 had boiling points of 34 ◦C and 49 ◦C. High
discharging or charging rates of 10 C and 20 C were used in the investigation. The two
BTMSs for boiling liquid and air cooling at 10 C discharging/charging rates were compared.
It was noticed that when cells were cooled with air, their temperatures increased to between
80 ◦C and 90 ◦C, whereas when cells were completely submerged in Novec-7000 or Novec-
64, respectively, their temperatures remained at 35 ◦C and 50 ◦C. It was also discovered
that the boiling point of the chosen fluid was a factor in the steady temperature of the cell
surface. The ability of a boiling process to homogenize and bring down the temperature of
the batteries was investigated by Gils et al. [81]. It was discovered that Novec7000, which
was investigated as a cooling fluid, did not carry electricity; as a result, the battery was
directly used with any sealing material. Due to a greater heat transfer rate from solid to
liquid, Novec-7000 demonstrated better cooling capability than air. The results showed that
there was a 0.7 ◦C temperature differential between the negative and positive electrodes in
the absence of boiling, which disappeared entirely after the battery’s surrounding liquid
began to boil. A new cooling method for BTMSs was proposed by An et al. [39] which used
dielectric hydrofluoroether boiling in a mini-channel. When boiling heat transfer occurred,
the results showed that small channel cooling retained the cell temperature at about 40 ◦C.
Boiling heat transfer provided the advantage of lowering the battery’s maximum surface
temperature by 4 ◦C.

Wang created a unique thermal management system for EV battery packs, and Wu [82]
employed the dielectric refrigerant HFE-7000, which was non-flammable. Additionally,
they contrasted the experimental outcomes with analytical data. The findings demonstrated
that using refrigerant improved the heat transfer capacity of refrigerants by lowering ther-
mal resistance due to boiling. In addition, at a discharging rate of 5C, the cell temperature
was maintained between 0 ◦C and 3.7 ◦C. The findings illustrate that the maximum bat-
tery surface could be kept at 35 ◦C for a 5C discharging rate using HFE-7000 at 0.3 m/s
flow velocity.
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6. Conclusions

Liquid cooling, with an appropriate configuration, can be up to 3500 times more
efficient than air cooling. This conclusion is in a similar vein to previously conducted
studies, which suggest that despite requiring auxiliary indirect heat transfer devices, water
cooling is more effective than air cooling. The saving in parasitic power consumption can
be obtained by up to 40%. Indirect cooling technologies, such as cold plates, discrete tubes,
serpentine tubes, etc., have been explored significantly. Adding to the findings of previous
studies, which concluded that a proper dose of nanoparticles can be added to the cooling
system to improve cooling performance, it can be inferred that adding nanoparticles can
help increase the thermal conduction in the base coolant. However, it is found that it does
not affect the temperature of the battery pack significantly. For parallel cold plate liquid
cooling, the peak temperature attained by the battery pack, Tmax, decreased when the
flow channels were increased in number, and the rate of mass inflow was greater. As per
numerical analysis and simulation, liquid metal is an efficient cooling agent for battery
thermal management under demanding and abusive settings for EVs. With liquid metal
as a coolant, the weight of liquified metal is its only drawback, which makes the whole
system bulkier.

In a system using variable contact resistance, the maximum temperature of the alu-
minum block lowered to the same temperature as that when the length was 24 mm when
contact and variable surfaces were compared, but a lighter system was required to achieve
a more uniform temperature. It was advised against improving cooling performance just
by raising velocity because doing so increased pump power consumption.

For direct/immersive cooling, disadvantages included the increased complexity and
expense of condensing evaporated vapor, considerable pumping losses in high-viscosity
fluids, high cost of the liquid, problems with material compatibility, and an increase in
fluid weight. Even with these difficulties, immersion cooling had much potential as a direct
cooling technique for BTMSs; moreover, there still needs to be an agreement on the kind
of system and fluid to be employed. Immersion/direct cooling holds sufficient caliber to
be employed as a liquid cooling method. Indirect cooling methods, such as the cooling
plate technique, were found in previous studies to be suitable for prismatic and pouch
cells. Additionally, liquid jacket cooling is recommended for cylindrical cells. However,
this study found that the direct contact mechanism of coolant and the cell surface provides
an added advantage to direct cooling compared to indirect cooling. Direct cooling can
provide substantial relief from the threat of thermal runaway. Coolants appropriate for
direct cooling include mineral oils, hydrocarbons, silicone oils, esters, and a mixture of
water and glycol. However, further research is required to study the lifetime impact of
coolant on the immersed battery cells. Serpentine liquid cooling has been patented by the
electric vehicle giant Tesla Inc and has proven effective. Direct cooling techniques need
to be further explored with similar innovative efforts to alleviate the limitations of liquid
coolants concerning their weight, pumping losses, increased complexity, and expenses.
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