
Citation: Shi, D.; Zhao, J.; Wang, Z.;

Zhao, H.; Eze, C.; Wang, J.; Lian, Y.;

Burke, A.F. Cloud-Based Deep

Learning for Co-Estimation of Battery

State of Charge and State of Health.

Energies 2023, 16, 3855. https://

doi.org/10.3390/en16093855

Academic Editor: Simone

Barcellona

Received: 11 April 2023

Revised: 22 April 2023

Accepted: 25 April 2023

Published: 30 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Cloud-Based Deep Learning for Co-Estimation of Battery State
of Charge and State of Health
Dapai Shi 1,†, Jingyuan Zhao 2,*,† , Zhenghong Wang 1, Heng Zhao 3, Chika Eze 4 , Junbin Wang 5, Yubo Lian 5

and Andrew F. Burke 2,*

1 Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang 441053, China
2 Institute of Transportation Studies, University of California-Davis, Davis, CA 95616, USA
3 College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
4 Department of Mechanical Engineering, University of California, Merced, CA 94720, USA
5 BYD Automotive Engineering Research Institute, Shenzhen 518118, China
* Correspondence: jyzhao@ucdavis.edu (J.Z.); afburke@ucdavis.edu (A.F.B.)
† These authors contributed equally to this work.

Abstract: Rechargeable lithium-ion batteries are currently the most viable option for energy storage
systems in electric vehicle (EV) applications due to their high specific energy, falling costs, and
acceptable cycle life. However, accurately predicting the parameters of complex, nonlinear battery
systems remains challenging, given diverse aging mechanisms, cell-to-cell variations, and dynamic
operating conditions. The states and parameters of batteries are becoming increasingly important in
ubiquitous application scenarios, yet our ability to predict cell performance under realistic conditions
remains limited. To address the challenge of modelling and predicting the evolution of multiphysics
and multiscale battery systems, this study proposes a cloud-based AI-enhanced framework. The
framework aims to achieve practical success in the co-estimation of the state of charge (SOC) and
state of health (SOH) during the system’s operational lifetime. Self-supervised transformer neural
networks offer new opportunities to learn representations of observational data with multiple levels
of abstraction and attention mechanisms. Coupling the cloud-edge computing framework with the
versatility of deep learning can leverage the predictive ability of exploiting long-range spatio-temporal
dependencies across multiple scales.

Keywords: lithium-ion battery; state of charge; state of health; deep learning; cloud; field application

1. Introduction

With increased concerns about global warming, transportation electrification has
recently emerged as an important step across the world. In electrified vehicles, rechargeable
lithium-ion batteries are currently the most widely used systems for electrochemical energy
storage and powering electric vehicles (EVs) due to their relatively high specific energy,
acceptable cost and cycle life [1]. However, degradation and aging during the system’s
operational lifetime is still one of the most urgent and inevitable problems, especially under
realistic conditions [2]. In field applications, such as an EV, an online battery management
system (BMS) offers tools to monitor cell behavior under dynamic operating conditions.
However, predicting real-life battery performance in field applications only using the online
BMS is either difficult or impossible due to the limited data computing and storage ability
of the onboard chips.

Over the past decade, scientists and researchers are increasingly storing and analyzing
their big datasets by using remote ‘cloud’ computing servers [3]. On the cloud, researchers
can interact with field data more flexibly and intelligently. Migrating observational data
from custom servers to the cloud opened up a new world of opportunities to both assimilate
the data sensibly and explore it in depth.
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Several international companies have recognized this and have recently launched their
cloud-based software, including Bosch [4], Panasonic [5] and Huawei [6]. Such public-cloud
services are also termed software as a service (SaaS). The SaaS provided by Bosch—battery
in the cloud—claimed that it is possible to improve the cycle life of batteries by 20% through
the development of digital twins by using the big datasets from vehicle fleets. The universal
battery management cloud (UBMC) service developed by Panasonic aims to identify the
cell state and optimal battery operation. The SaaS launched by Huawei aims to provide
a public cloud computing and storage service for EV companies. By learning from the
historical battery data, the purely data-driven model embedded on its cloud monitoring
system is applied to predict cell fault by discovering intricate structure in large EV-battery
datasets. Beyond enterprise-level cloud services, a national-level big-data platform was
built in 2017 in China, named the National Monitoring and Management Platform for New
Energy Vehicles (NMMP-NEV) [7]. Up to now, the NMMP-NEV has provided remote fault
diagnosis for more than six million EVs.

1.1. Literature Review
1.1.1. Modelling and Predicting Battery States

A battery is a sophisticated material system, with its functionality reliant on the
transport of charge and ions through distinct phases and across interfaces, as well as both
reversible and irreversible chemical reactions, among other material-dependent factors.
The performance of a cell can be influenced by variations in components such as electrodes,
electrolytes, interfaces, microstructures, current collectors, separators, binders, and cell or
pack designs, as well as environmental factors and operating conditions. While significant
progress has been made in first-principles, atomistic, and physics-based electrochemical
modeling of battery systems, the absence of comprehensive predictive models remains a
limiting factor for advancement. The battery management system (BMS) plays a pivotal
role in maintaining the safe and reliable operation of battery systems for EV applications.
Battery modelling is the core function of a BMS. Over the past few years, a variety of
estimation techniques have been developed for the determination of the state of batteries in
terms of two important parameters: SOC [8] and SOH [9]. In the literature, the most-studied
methods in this regard for Li-ion batteries are equivalent circuit models (ECMs), physics-
based models (PBMs), the observational filter model, and, more recently, data-driven,
machine learning-based techniques. Each method has its own advantages and challenges.
But there is always a trade-off between model accuracy and computational cost (Figure 1).
For example, ECMs offer an effective tool to identity the cell states with low computational
cost. Such a simple method has been widely used in onboard BMS for the last decade.
However, it cannot provide accurate cell parameter values due to the simplification and
assumptions in battery behaviors. Compared to ECMs, PBMs can approximate the physico-
chemical processes that take place inside the cell during the system’s operation, which
provides accurate and physically consistent predictions. This method requires detailed
information on cell specifications, including the materials and chemistry of the electrode,
electrolyte, separator, current collectors, and so on. However, it is impossible to obtain the
evaluation of these parameters during the operational lifetime under realistic conditions.
In addition, battery problems in this case are governed by highly parameterized partial
differential equations (PDEs). Solving the governing PDEs faces severe challenges and
introduces multiple sources of uncertainty, especially in real-life physical problems with
missing and noisy data and uncertain boundary conditions. Filter-based models are the
most-commonly used methods for battery parameter estimation in the existing studies.
Two issues constrain the wide application of filtering algorithms: (i) model parameters
need to be updated and (ii) the algorithms may have poor generalization performance.



Energies 2023, 16, 3855 3 of 19
Energies 2023, 16, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. The trade-off between computational cost and model accuracy. 

Conversely, the data-driven approach, especially machine-learning-based tech-
niques, displays superior advantages in applications to materials and batteries, from the 
characterization of the material properties to the non-destructive evaluation of cell perfor-
mance [10]. Machine learning allows computational models to discover intricate structure 
in the dataset and capture the statistics of the observational data [11]. 

The machine learning techniques used to predict the evolution of the battery can be 
classified into two main categories: traditional machine learning such as kernel-based ap-
proaches, and deep learning approaches such as deep neural networks. Conventional ma-
chine-learning techniques can be applied to process observational data in their raw form. 
The learning subsystem in widespread use in the machine learning community, deep or 
not, is supervised learning—that is, classification and regression. Such practical applica-
tions of machine learning use hand-engineered features or raw data for almost all recog-
nition and predictive tasks. For example, extreme gradient boosting (XGBoost) was used 
to estimate the battery SOC of Li-ion batteries under dynamic loading conditions [12]. The 
XGboost technique offers a tool to improve the predictive performance by leveraging a set 
of weak learners and aggregating the outputs of each base model. The application of the 
multi-step forecasting strategy using XGBoost has been demonstrated to work in captur-
ing, in real-time, the cell dynamics and predicting the terminal voltage and SOC under 
WLTP driving cycles. Moreover, gradient boosting also shows good performance in bat-
tery lifespan prediction [13]. Using the openly shared dataset provided by MIT/Toyota 
[14], a variety of features including voltage-related, capacity-related and temperature-re-
lated features were extracted and constructed for the gradient-boosting regression tree 
(GBRT) model. Gaussian process regression (GPR) is another common machine learning 
technique for battery SOC and SOH estimation. For example, battery SOC is identified by 
using electrochemical impedance spectroscopy (EIS) measurements based on GPR [15]. 
Through the feature selection from EIS data over frequencies of 1 mHz to 6 kHz, the GPR 
model can be trained to establish the mapping relationship between the selected features 
and the SOC under various temperatures. In another study, the GPR technique has been 
demonstrated as an effective tool to learn nonlinear battery systems and predict capacity 
fade in a variety of loading scenarios [16]. By introducing a Bayesian non-parametric tran-
sition, the model can incorporate estimates of uncertainty into predictions, allowing the 
determination of varying probabilities of the ranges of possible future health values across 
a long-term timescale. 

Conventional machine learning offers a straightforward and effective tool for classi-
fication and regression tasks. However, constructing such a machine-learning system in 

Figure 1. The trade-off between computational cost and model accuracy.

Conversely, the data-driven approach, especially machine-learning-based techniques,
displays superior advantages in applications to materials and batteries, from the characteri-
zation of the material properties to the non-destructive evaluation of cell performance [10].
Machine learning allows computational models to discover intricate structure in the dataset
and capture the statistics of the observational data [11].

The machine learning techniques used to predict the evolution of the battery can be
classified into two main categories: traditional machine learning such as kernel-based
approaches, and deep learning approaches such as deep neural networks. Conventional
machine-learning techniques can be applied to process observational data in their raw
form. The learning subsystem in widespread use in the machine learning community,
deep or not, is supervised learning—that is, classification and regression. Such practical
applications of machine learning use hand-engineered features or raw data for almost all
recognition and predictive tasks. For example, extreme gradient boosting (XGBoost) was
used to estimate the battery SOC of Li-ion batteries under dynamic loading conditions [12].
The XGboost technique offers a tool to improve the predictive performance by leveraging a
set of weak learners and aggregating the outputs of each base model. The application of the
multi-step forecasting strategy using XGBoost has been demonstrated to work in capturing,
in real-time, the cell dynamics and predicting the terminal voltage and SOC under WLTP
driving cycles. Moreover, gradient boosting also shows good performance in battery
lifespan prediction [13]. Using the openly shared dataset provided by MIT/Toyota [14],
a variety of features including voltage-related, capacity-related and temperature-related
features were extracted and constructed for the gradient-boosting regression tree (GBRT)
model. Gaussian process regression (GPR) is another common machine learning technique
for battery SOC and SOH estimation. For example, battery SOC is identified by using
electrochemical impedance spectroscopy (EIS) measurements based on GPR [15]. Through
the feature selection from EIS data over frequencies of 1 mHz to 6 kHz, the GPR model
can be trained to establish the mapping relationship between the selected features and
the SOC under various temperatures. In another study, the GPR technique has been
demonstrated as an effective tool to learn nonlinear battery systems and predict capacity
fade in a variety of loading scenarios [16]. By introducing a Bayesian non-parametric
transition, the model can incorporate estimates of uncertainty into predictions, allowing the
determination of varying probabilities of the ranges of possible future health values across a
long-term timescale.
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Conventional machine learning offers a straightforward and effective tool for classi-
fication and regression tasks. However, constructing such a machine-learning system in
general requires careful feature engineering and considerable domain-specific expertise to
design a feature extractor that can transform the raw data (such as battery voltage, current,
etc.) into suitable vector representations from which the learning algorithm could classify
or predict patterns in the input.

In recent years, a new learning philosophy is the family of deep learning, which
enables a machine to be fed with raw observations in mathematically useful latent spaces
and to discover intricate structure in datasets automatically. One popular type of deep
learning model is recurrent neural networks (RNNs) and their popular variants, including
long-short term memory (LSTM) and gated recurrent units (GRU).

For example, a single hidden-layer GRU-RNN model was designed to estimate battery
SOC by using the measured voltage and current [17]. In the proposed gradient method, the
weight change direction takes a compromise of the gradient direction at current instant and
at historical time to prevent the oscillation of the weight shift and to improve the training
speed. Moreover, artificial noise was added to the observational data to improve the
generalization and robustness of the neural networks. Recently, a hybrid neural network
model was developed for SOC estimation of batteries at low temperatures by coupling
a convolutional neural network (CNN) and GRU [18]. The CNN module was applied to
learn the feature parameters of the inputs, while the bidirectional weighted GRU offers
tools to improve the fitting performance of the network at low operating temperatures by
tuning the weights.

In application to battery SOH estimation, a dynamic RNN model with good mapping
ability was established for co-estimation of SOC and SOH for a lithium-ion battery [19]. The
dynamic RNN model was suitable for estimating the nonlinear and dynamic cell behaviors.
Meanwhile, self-adaptive weight particle swarm optimization was applied to improve the
performance of the networks. Compared with the traditional gradient descent algorithm,
particle swarm optimization offers an opportunity to improve the error convergence speed
and avoid local optima. In a recent study, an encoder–decoder model based on the GRU
was developed to be suitable for time series prediction of a Li-ion battery. The GRU-based
encoder–decoder model has demonstrated its ability to predict the dynamic cell voltage
response under complex current load profiles. In contrast to a conventional ECM model,
the data-driven deep neural network does not require domain-specific knowledge and
time-consuming tests under a well-controlled laboratorial environment.

Collectively, the results from these works demonstrate that RNNs and their variants
are effective in modelling and predicting nonlinear battery systems [20]. However, they
suffer from limitations due to the sequential processing and challenges related to back-
propagation through time, particularly in the modelling of long-range connections across
multiple timescales. These are manifested as training instabilities leading to vanishing
and exploding back-propagated gradient problems [21]. The transformer model, primarily
utilized for natural language processing, has recently achieved remarkable advancements
in time series forecasting [22]. The transformer model allows for parallel processing,
enabling efficient utilization of computing resources and faster training. Consequently, this
methodology can be a promising option for battery state estimation. For example, one study
proposed Dynaformer, a new deep learning architecture based on a transformer, which
can predict the aging state and full voltage discharge curve for real batteries accurately,
using only a limited number of voltage/current samples [23]. The study shows that
the transformer-based model is effective for different current profiles and is robust to
various degradation levels. Transformers tackle these obstacles by employing self-attention
and positional encoding methods that simultaneously focus on and encode the order
information while analyzing current data points within the sequence. These methods
preserve the sequential information essential for learning while eliminating the traditional
concept of recurrence. Transformers are capable of capturing such information through
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the utilization of multiple attention heads. In addition, the model bridge the gap between
simulations and real data, enabling accurate planning and control over missions.

1.1.2. Cloud-Based Progress on Battery State Prediction

Engineers are increasingly exploring the option of outsourcing computing needs to
the cloud, which has become popular among researchers dealing with large amounts of
data, due to its rapid improvements [24]. For example, one study proposed a cloud-based
approach to estimate battery life by analyzing charging cloud data, which includes capacity
and internal resistance estimations [25]. The capacity estimation relied on the ampere-hour
integral method, which was further improved using temperature data and optimized
with the Kalman filter (KF). To increase the precision of the estimation results, the study
also implemented fuzzy logic (FL) to manage observation noise. Finally, the battery life
was predicted using the Arrhenius empirical model. Experimental results demonstrated
that the proposed method exhibited a low error rate of less than 4% in estimating battery
life. In another study, the authors proposed a cloud-assisted online battery management
method based on AI and edge computing technologies for EVs [26]. A cloud-edge battery
management system (CEBMS) was established to integrate cloud computation and big data
resources into real-time vehicle battery management. The proposed method utilized a deep-
learning-algorithm-based cloud data mining and battery modeling method to estimate the
battery’s voltage and energy state with high accuracy. The effectiveness of the proposed
method was verified by experimental tests, demonstrating its potential for more effective
battery use and management in EVs.

Solving real-life physical problems in practical applications can be a daunting task,
especially when dealing with multiple sources of uncertainty and imperfect data, including
missing or noisy data, and outliers. This study focuses on the potential of using an
AI-powered cloud-based framework to predict a nonlinear multiphysics and multiscale
electrochemical systems’ evolution in real-world applications. The cloud-based, closed-
loop framework utilizes machine learning models that can learn seamlessly from field
battery data in EV applications [27]. The concept of establishing digital twins for battery
systems is an innovative approach to generating longitudinal electronic health records in
cyberspace. By creating a digital replica of the battery system and continually training it on
a stream of field data, it allows for continual lifelong learning. This approach can lead to
significant benefits such as improved robustness, higher accuracy and faster training times.
The continual training on a stream of field data enables the digital twin to adapt to changing
conditions and learn from real-world experiences. This leads to improved accuracy in
predicting the behavior of the battery system, which can help optimize its performance and
extend its lifespan. In summary, the establishment of digital twins for battery systems offers
a powerful approach to achieving continual lifelong learning, improving the robustness
and accuracy of the system and reducing downtime.

1.2. Major Challenges Involved

Onboard BMS has long been an important component for EVs in the monitoring and
controlling of battery systems. Despite relentless progress, solving real-life battery problems
with noisy data and uncertain boundary conditions through traditional approaches remains
challenging. Modelling and predicting multiscale and multi-physics battery problems for
EV applications require further developments. Challenges specific to battery SOC and SOH
estimation will further stimulate the development of new methodologies and frameworks,
and we identify four major issues why collaboration between onboard BMS and cloud BMS
(Figure 2) is of great importance in achieving the task, as follows.
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(1) Although data-driven machine learning techniques introduce considerable savings in
computational cost compared with the traditional numerical methods (e.g., solving
PDEs using finite elements), it still requires complex formulations and elaborate com-
puter codes. Performing such tasks requires scheduling the training of computational
algorithms in a more powerful computing environment. This is where cloud systems
have come into play.

(2) Upon identifying cell conditions in real-world applications, there will be cell-to-
cell, pack-to-pack and batch-to-batch variation, even with the most state-of-the-art
manufacturing techniques. These cells would exhibit distinct states after long-term
incubation. The specific approach to the predictive modelling of such battery systems
significantly relies on the amount of data available and on the cell itself.

(3) In field applications such as EVs, the operation of the batteries depends not only on
user driving patterns but also on environmental factors. Lab tests cannot incorporate
diverse driving cycles and resting periods. Uncertainty arising from the random-
ness of high-dimensional parameter spaces make it difficult to perfectly match lab
experiments to field applications.

(4) Last, but perhaps most important: even with open sharing of test data, reproducibility
and generalization issues make it rather challenging to transfer academic progress to
industry. However, the cloud-computing system provides a very flexible platform
for analyzing, training and developing new frameworks and standardized bench-
marks, which can be leveraged to improve our observational, empirical and physical
understanding of real-life battery systems in a more intelligent manner.

1.3. Contributions of the Work

Despite relentless progress, predicting the dynamics of nonlinear battery systems
by using traditional physical models inevitably faces severe challenges and introduces
multiple sources of uncertainty. First-principle, phase-field, atomistic simulations may lead
to insights into fundamental battery charging–discharging mechanisms, but they cannot
truly predict cell performance for real-world applications [28]. We are well aware of the
many benefits from cloud computing and storage. However, obviously, it is not enough to
migrate data to a cloud platform; researchers need to be able to interact with the data more
seamlessly and intelligently. Contributions of this study are as follows:

(a) Field data, which exhibits irregular loading conditions, dynamic operating scenarios,
and path-dependent deterioration processes, is generated and uploaded to the cloud,
reflecting real-world usage and making reliable predictions meaningful.
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(b) A specialized attention-based transformer neural network model is designed to learn
parameters in the high-dimensional stochastic thermodynamic and kinetic battery
system. The proposed transformer model has the advantage of strong generalization
and robustness in the small data regime.

(c) We examine the evolution of batteries using deep learning approaches in the time-
resolved context and demonstrate how transformer neural networks, which automati-
cally extract useful features, have the potential to overcome the limitations that have
hindered the widespread adoption of data-driven machine learning-based techniques
to date.

(d) The designed cloud-based data-driven framework provides a highly flexible digital
solution for a wide range of diverse physical, chemical and electrochemical problems
in a way that produces promising results for the target outputs.

2. Key Components of Cloud BMS

Machine learning has emerged as a promising technique, but training an intelligent
machine requires plentiful, high-quality and relevant training data. Onboard BMS cannot
competently perform this task due to the high computational complexity of the data-
driven models [29]. To make the best use of such a flexible technique, a cloud-based
BMS provides complementary skills and opportunities to improve our understanding and
evaluate comprehensive battery behaviors. Sensor data can be transmitted continuously to
the cloud, where machine learning models can learn seamlessly from labeled samples while
exploiting the wealth of information in the observations (Figure 3). With the advancement
of sensor networks, it is now feasible to monitor the battery system across multiple spatial
and temporal scales.
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2.1. Physical Entity

In EV applications, lithium-ion batteries encounter complex operating conditions,
including stochastic discharging processes for driving, dynamic charging processes for
“refilling”, and resting processes when parked. While most existing research in battery
modeling has focused on either one cell or a specific, well-designed test, these efforts pro-
duce insights and improve our understanding of physical systems but cannot fully reflect
the real-life situations with diverse aging mechanisms, significant cell-to-cell variability,
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and complex loading scenarios. The huge gap between lab tests and practical applications
makes it challenging to transfer academic progress to engineering. However, by assimilat-
ing real sensor measurements to optimize computational models, a digital twin can be used
to replicate the behavior of a physical entity in silico. Focusing on analyzing time-resolved
battery data such as voltage, current and temperature can directly contribute to meeting
certain goals. Ultimately, what matters is the predictive ability under realistic conditions.
These three fundamental parameters are the only information that we can obtain from an
operating a battery using the onboard BMS.

2.2. IoT

The widespread use of the internet of things (IoT) in end-use devices such as EVs
enables a wealth of multi-fidelity observations to be explored across several spatial and
temporal scales [30]. There is a growing realization that terminal devices embedded with
electronics and connected to networks play a crucial role in monitoring the evolution
of complex digital and physical systems. With the prospect of trillions of sensors in the
coming decade, it will be possible to seamlessly incorporate multi-fidelity data streams
from real-world cases into physical models. In electric vehicle (EV) applications, battery
performance, states and mechanical properties can vary greatly with dynamic loading con-
ditions such as charging–discharging current rate, operating voltage window, frequency of
usage and temperature. This calls for sophisticated and continuous monitoring throughout
the operational lifetime.

Sensor measurements of battery cells can be transmitted to IoT components by the
onboard BMS using the Controller Area Network (CAN) protocol. A special IoT protocol,
message queuing telemetry transport (MQTT), allows for dual-direction messaging be-
tween the device and cloud and requires minimal resources. A large amount of sequential
data are generated and collected from both private and fleet vehicles, which can be easily
scaled to connect with millions of IoT devices. Data stored in onboard memory can be
seamlessly uploaded to the cloud using TCP/IP protocols. The IoT wireless system in mod-
ern cities provides infrastructure for real-time data transmission using IoT actuators and
onboard sensors.

2.3. Cloud

Cloud storage and computing have been demonstrated as powerful tools for remote
monitoring and diagnosis. For automotive industry uses, researchers and engineers can
configure their cloud environment and infrastructure to suit their requirements. The
cloud-based BMS can seamlessly learn the stream of time-series battery data and produce
electronic health records in the cloud. The most popular programming languages for cloud
development include Java and Go. In addition, PHP offers a simple, effective, and flexible
tool for web developers to create dynamic interfaces and interact with data deluge. The
servers in these systems should have high-performance CPUs, plenty of RAM, and fast
storage such as solid-state drives (SSDs). Additionally, the storage arrays should have high
capacity, high performance and redundancy features such as RAID or replication to ensure
data availability and durability. Backup and recovery systems are also critical for protecting
customer data in case of disasters or system failures, and they should have high capacity
and reliability. Cloud-based digital twins have demonstrated practical value in closed-loop
full-lifespan battery management, including material design, cell performance evaluation
and system optimization [31].

2.4. Modelling

Despite the progress made on the electrochemical modeling of battery systems using
first-principle, atomistic or physics-based methods, the lack of canonical predictive models
that can associate cell properties and mechanisms underlying their behavior with cell states
has been a bottleneck for widespread adoption. Mathematical and computational tools
have been developing rapidly, yet the multiscale and multiphysics battery system behavior
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dominated by the spatial or temporal context underscores the need for a transformative
approach. Machine learning technology is now a successful part of data-driven approaches,
addressing a wide range of problems that have resisted the best efforts of the artificial
intelligence (AI) community for many years [32]. The availability of shared data and
open-source software, along with the ease of automation of materials tools, has brought
machine learning into computational frameworks. Several software libraries, including
TensorFlow, PyTorch and JAX, are contributing to the determination of cell performance
by using various data modalities, such as time series, spectral data, lab tests, field data
and more.

3. Methodologies

A learning algorithm that can seamlessly combine data and abstract mathematical
operators plays a crucial role in discovering the representations needed for regression or
classification. Deep learning techniques, in particular, naturally offer tools for extracting
features and patterns from data automatically. To explore the observational data (which are
uploaded to a private cloud system) that are characterized by multiple spatial and temporal
coverages, a specialized self-attention transformer-based neural network model is designed
in this study. Transformer-based deep learning (bidirectional encoder representations from
transformers, known as BERT) has received a lot of attention since it was proposed in
2017 [33], particularly in natural language processing [34] and computer vision [35]. In
comparison with recurrent neural networks (RNNs), transformer neural networks perform
parallelization and solve the long-term dependencies problem and thus can process the
observations much more quickly. Inspired by the successful operation, recently, various
transformer-based models have been designed in the aspects of time-series prediction
and analysis. The core idea of transformer networks is the self-attention mechanism,
which belongs to a variant of the attention mechanism that can discover intricate structure
in large time-series datasets and reduces dependence on the unimportant information
across multiple timescales. In this study, we investigate the use of a transformer and
design specialized network architectures that automatically satisfy the physical system for
multivariate time series predictive tasks, as shown in Figure 4.
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3.1. Transformer Neural Networks for Co-Estimation

In this study, the transformer deep learning model includes embedding, dual-encoder
architecture and a gating mechanism. Time-series data are a collection of samples, observa-
tions and features recorded in a sequential manner over time. Self-supervised techniques
are utilized to enhance transformers by providing them with the capability to learn, classify
and forecast unlabeled data. The embedding vector replaces the original time-series data,
i.e., the entire feature vector at a given time step. The specialized dual-encoder architec-
ture is applied to battery prognostic and health management, which shows a higher test
accuracy than a typical encoder–decoder architecture. A gating mechanism is used for
coupling the predictive results of the two encoders. The success of a data-driven approach
for predictive modeling of such real-life battery systems depends heavily on the amount of
available data and the complexity of the model. Therefore, the model can be trained offline,
and during the system’s operational lifetime, online prediction only requires some sampled
data points after data preprocessing (Figure 5).
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3.1.1. Data Processing

Data normalization has been demonstrated as a crucial step to a training process in a
data-driven machine learning manner. A classical method of data normalization, named
Z-score transformation, is used to normalize all the parameters of Li-ion batteries in the
dataset into the vectors, characterized by the standard normal distribution with a mean of
zero and variance of one. The Z-score method for each feature is calculated as:

zfeature =
xobs. − µ

σ
(1)

where xobs. is the raw observational data, and µ and σ are the mean and standard deviation
of the complete population, respectively.
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The Transformer is an encoder-decoder structured sequence-to-sequence model, de-
signed to accept a sequence of observational data as input. Transformers capture this
information by employing multiple attention heads. To implement the transformer model
efficiently, time-series data are separated into different segments based on the charging
and discharging processes using an adaptive-length sliding window. Each time, the deep
learning explores the long-range correlations across multiple timescales based on the sensor
data inside the sliding window (Figure 6). It follows two rules: (a) the model outputs the
SOC every 1 sample points (i.e., 10 s) when the direction of the current flow is constant.
(b) the model re-starts the prediction process when the direction of the current flow changes.
The sliding window offers a simple and effective tool to capture the structured relationships
between the input and output under the charging and discharging processes.
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3.1.2. Embedding

Unlike the LSTM or RNN models, The transformer model has no recurrence and no
convolution. Instead, it models the sequence information using the encoding included in
the input embeddings. The embedding of a typical BERT model includes token and position
embeddings. By embedding time (seconds, minutes, hours, weeks, years, etc.) into the
input, the model can effectively analyze time-series data while utilizing the computational
advantages of modern hardware such as GPUs, TPUs and others. In some ways, our
embedding strategy is analogous to BERT, but it has unique capabilities and merits for
leveraging physical information. The token embedding of the original BERT is a discrete
variable (word), while the observational data of our model is a time-series variable (cell
parameters) with missing data and sensor noise. Moreover, fine-tuning ensures that the
output embedding for each cell condition encodes contextual information that is more
relevant to the multiscale and multiphysics battery system. The positional encoding applied
to model the sequence information of the battery can be expressed as:

PE(t)i =


Pi = sin( pos

10,000
2i
d
)

Pi+1 = cos( pos

10,000
2i
d
)

 (2)

where pos is the position in the time-step of the input, and i is the dimension of the
embedding vector. It allows the learning algorithm to easily learn to attend by relative
positions [33].

3.1.3. Dual Encoder

In a typical transformer model, the encoder block consists of multi-head self-attention
modules and position-wise feedforward neural networks. To meet the needs of the battery
system, a dual-encoder architecture is designed to produce predictions that respect the
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physical invariants and principles. The transformer model has made breakthrough progress
due to the self-attention mechanism, which offers an effective tool for the automatic extrac-
tion of abstract spatio-temporal features automatically. Such new paradigms of pretraining
and fine-tuning enable large-scale scientific computations on long-range correlations across
multiple timescales and thus enhance the generalization of neural network models. The
multi-head attention mechanism allows the transformer model to extract information from
different representation subspaces, which offers new opportunities for capturing the subtle
differences between different battery cells within the pack.

In the self-attention module, multi-head self-attention sublayers simultaneously trans-
form into query, key and value matrices. A sequence of vectors can be generated from the
linear projections of the scaled dot-product attention:

Attention(qh,kh,vh) = softmax(
qhkT

h√
dk

)vh (3)

where qh ∈ Rn∗dk , kh ∈ Rm∗dk , vh ∈ Rm∗dv represents the query, key and value matrices,
respectively; n and m denote the lengths of queries and keys/values, respectively; and dk
and dv denote the dimensions of keys/queries and values, respectively. The multi-head
attention mechanism with h ∈ {0, 1, · · · , H} different sets of learned projections can be
expressed as:

Multi-head_Attention(qh,kh,vh) = Concat(head1, headh)ω
o (4)

where
headh = Attention(qhω

q
h, khω

k
h, vhω

v
h) (5)

3.2. Data Generation

Machine learning techniques encompass a collection of algorithms, techniques, nor-
mative structures and data that enable the derivation of a plausible model directly from
observational data. The battery raw data under realistic conditions has been recorded
and uploaded to a private cloud server, including cell voltage, current and temperature,
which has been used to achieve a number of tasks for prognostics and health management,
such as battery failure diagnosis [36] and battery SOH prediction [37]. In EV applica-
tions, multivariate time series represent the evolution of a group of variables: voltage,
current and temperature over time. Table 1 lists the key cell specifications. The dataset
is divided into training and test sets. The training set is utilized to learn the model for
developing a base model and improve the accuracy and generalizability of predictions by
fine-tuning the model under unseen battery charge-discharge protocols. The test set is used
to quantitatively predict cell states: SOC and SOH.

Table 1. Cell chemistry and operating windows.

Parameter Value

Cell type Nickel Manganese Cobalt (NMC)
Nominal open circuit voltage 3.6 V

Nominal capacity 135 Ah
Operating voltage window 4.2 V to 2.5 V

Operating current density Up to 1 C during charging vs. up to 6 C during
discharging/driving

Operating temperature window Less than 45 ◦C protected by thermal
management
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3.3. Evaluation Criteria

SOC and SOH are the two most important parameters in the prognostics and predictive
health management, which are generally defined as:

SOC =
Ahcurrent

Ah f ull
× 100% (6)

SOH =
Ahfull_pre.

Ahfull_nom.
× 100% (7)

where Ahcurrent and Ah f ull are the cell capacity in the present state and its full capacity,
respectively, during the specific charging or discharging step, and Ahfull_pre. and Ahfull_nom.
are the full capacity and nominal capacity, respectively.

The main output of the transformer model in this study is the prediction of SOC and
SOH, which is compared with the observed values of the Li-ion cells. Three metrics are
used to evaluate model performance, including root mean square error (RMSE), the mean
absolute percentage error (MAPE) and the maximum absolute error (MAE). The inputs are
the variables that follow a ground truth joint distribution. Specifically, RMSPE is defined as

RMSPE =

√
1
n

n

∑
i=1

(ŷi − yi
∗)2 (8)

where ŷi and are yi
∗ the observed and predicted value of the i-th sample in the

observational data.
MAPE can be expressed as

MAPE =
1
n

n

∑
i=1

|ŷi − yi
∗|

yi
(9)

MAE can be given by:
MAE = max

1≤i<<n
|ŷ∗i − y∗i | (10)

4. Performance of Cloud-Based BMS
4.1. SOC Estimation Results

The proposed transformer model was utilized to explore the intricate structures in
battery time-series data and identify the representations necessary for predicting cell states.
However, please note that solving real-life physical problems with missing, gappy or noisy
boundary conditions requires pre-training of transformer models. In this study, tens of cells
are randomly collected and used during their operational lifetime to pre-train the model
initially. The observational data were fed into the transformer model, and its output was
the SOC estimations corresponding to the sampling points (10 s sampling frequency using
onboard sensor measurements). Due to the physico-chemical (thermodynamic and kinetic)
principles, the model split the time-series data into several segments based on the charging
and discharging processes. The model can thus discover intricate structures in two distinct
operating conditions and then couple them together.

In the transformer model, multiple self-attention heads are introduced to operate on
the same input in parallel. Each head uses distinct weight matrices to extract various levels
of correlation between the input data. The transformer dual encoder offers predictive tools
to extract vector representations of multivariate time-series, which can be considered as
an autoregressive task of denoising the input [34]. The estimation results are independent
in the charging and discharging conditions since the transformer model maps the input
voltage and current sequences to SOC separately based on the direction of current flow. The
initial SOC is calibrated at the time when the cell is fully charged or fully discharged during
the system’s operational lifetime, which depends on the usage behavior at an uncertain
time. Once a precise value of the initial SOC is obtained, ampere-hour (Ah) counting
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can be directly introduced to provide the ground truth for those observations. Therefore,
the model estimates the SOC of the cell from voltage, current and temperature data by
coupling the transformer model and the Ah counting method. The transformer-based
model is initially trained for Cell_1, and the SOC estimation result is shown in Figure 7. The
data-driven model achieves a MAPE of 0.76% and an RMSPE of 0.68%, with a maximum
absolute error of less than 2%.
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Subsequently, the self-attention transformer model is calibrated using another Cell_2,
under totally different dynamic operating conditions. Regular calibration and maintenance
of machine learning models require significant resources, including specialized personnel
and technicians. Ensuring that the system remains accurate and effective necessitates
constant attention and care, making it a crucial component of successful machine learning
implementation. A good calibration process can be expressed as

P(ŷ = y| p̂ = p) = p (11)

where the probability p ∈ [0, 1] is over the joint distribution, and ŷ and p̂ are the predictions
and the associated confidence (probability of correctness). Let NN be a neural network,
and thus it can be given by NN(x) = (ŷ, p̂). As shown in Figure 8, the developed model
can accurately estimate the SOC for the NMC battery (Cell_2) over both the charging and
discharging processes with a MAE of less than 2.5%, a MAPE of 0.96% and an RMSPE
of 0.81%. The proposed transformer approaches, in particular, provide reliable SOC esti-
mations during the plateau in charge–discharge profiles. While accurate SOC estimation
through machine learning modeling is possible, it should also focus on accounting for SOC
errors induced by aging, temperature and hysteresis. Despite these factors, data-driven
estimation remains a reliable SOC reference for other methods.
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4.2. SOH Estimation Results

The definition, based on the Equation (12), is used to calculate the SOH in its current
state. The estimation of the capacity can be expressed as:

Ĉmn = trans f ormer([xmn,t, xmn,t+1, · · · , xmn,t+1+i]
∣∣Cmj) (12)

where Ĉmn is the estimated capacity of the m-th cell in the n-th cycle, xmn,t is the observa-
tional data in the n-th cycle, and Cmj is the observed value used as the ground truth. In field
applications, the ground truth of the capacity cannot be obtained for every cycle. Therefore,
j << n. The methodologies of the transformer model need to be revisited. For a complete
explanation of the algorithm, refer to [22].

Herein, the loss value used to determine the hyperparameters of the self-attention
transformer model can be given by:

MSE =
1
n

n

∑
i=1

(ŷi − yi
∗)2 (13)

Setting the hyperparameters for a transformer model can be a challenging task, which
depends highly on the specific case, including the size and complexity of the training data
and the available hardware. The model processes the encoder block’s outputs for input
into the linear layers. However, concatenation alone may yield poor prediction accuracy.
Thus, a dense interpolation algorithm [38] with tunable hyperparameters is adopted to
enhance performance. The validity of the trained transformer is demonstrated through
the interpolated results in the time-space domain. Despite a decrease in accuracy with
increasing feature differences between the test and training data, the proposed method
still produces reasonable interpolation results. The trained transformer is then employed
to reconstruct dense data with halved trace intervals for the field data. The reconstructed
dense data exhibit greater spatial continuity, and the spatial aliasing effects disappear in the
time domain. These reconstructed dense data hold the potential to enhance the accuracy of
subsequent seismic data processing and inversion.

Hyperparameters are inherent in every machine learning system, and the fundamental
objective of automated machine learning (AutoML) is to optimize performance by auto-
matically setting these hyperparameters. Table 2 summarizes the hyperparameters used in
this study.
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Table 2. Hyperparameters of the transformer model.

Hyperparameter Value/Method

Layers 10 layers with 8 heads per layer

Training 65 k gradient updates, 4096 sequence length, 64 batch
size (262,144 tokens)

Learning Rate Maximum of 1 × 10−3, linear warmup of 500 steps
Dropout 0.2 rate

Optimizer Adam with starting learning rate of 2

Implementation Use TensorFlow and PyTorch for efficient
implementation

Layer Normalization Normalize input to each layer of the transformer
Weight Tying Tie decoder and output layer weights

Label Smoothing Apply label smoothing to target labels
Early Stopping Stop training when validation loss stops improving

Figures 9 and 10 illustrates the performance of the transformer model in estimating
the SOH of cell_1 and cell_2, which are used to train and test the model, respectively. In
each group, we randomly selected 50 sampling points, and the results show that the pro-
posed transformer-based model can achieve high predictive accuracy, with MAPE varying
between ±2.5% within a 98% confidence interval during the system’s operational lifetime.
However, the model still needs further development in some field applications. Firstly,
more efforts are required, such as hand-engineered feature extraction and establishing
ground truth, to label the observational data for training. Secondly, more calibration work
is needed to enhance the model’s performance in short-length cycles, such as charging
from 50% to 80% SOC. As the model lacks sufficient information to learn from, it may
fail to provide accurate and physically consistent predictions for each field charging pro-
cess, especially under random usage behaviors (e.g., charging for only a few minutes).
This can lead to extrapolation or observational biases, which can negatively impact the
model’s performance.
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5. Outlook

Developing cloud systems for battery and EV applications can pose challenges for
many practitioners, but a user-friendly and accessible cloud development environment
could help address some key issues. Observational data can be sparse and noisy, and
may comprise vastly heterogeneous data modalities such as images, time series, lab tests,
historical data, records, and more. The data for certain quantities of interest might not be
readily available. To enhance the efficiency and accuracy of these systems, we propose five
major recommendations:

(i) There is a significant opportunity for synergy between onboard-BMS and cloud-BMS
technologies. Urgent and real-time tasks should be allocated to onboard BMS, while
complex tasks that involve multiple scales and temporal dependencies should be
distributed to cloud BMS.

(ii) Machine-learning models rely heavily on observational data, and new algorithms and
mathematics are needed to yield accurate and robust methods that can handle high
signal-to-noise ratios and outliers. These methods should also be able to generalize
well beyond the training data. However, the model requires craftsmanship and
elaborate implementations on different cell chemistries.

(iii) Battery behavior in EV applications is much more complex than in lab tests due to
unprecedented spatial and temporal coverage. Working with noisy data and limited
training sets and dealing with under-constrained battery problems with uncertain
boundary conditions are major challenges that need to be addressed.

(iv) Developing deep learning architectures for modeling multiscale and multiphysics
battery systems is currently done empirically, which is time-consuming. Training and
optimizing deep neural networks can also be expensive. Emerging meta-learning
techniques and transfer learning may offer promising directions to explore.

(v) Battery performance fluctuates unpredictably throughout its operational life. Precise
forecasting and modeling of long-range spatio-temporal dependencies across cell,
pack, and system levels are essential for efficient learning algorithms. A promising
approach might involve hybrid modeling, combining physical process models with
configurable, structured data-driven machine learning.

6. Conclusions

Field data have the potential to enhance the effectiveness of computational techniques
developed for cloud-based battery management systems (BMS). In this study, we propose
a cloud-based data-driven technique that utilizes state-of-the-art computational methods,
specifically transformer neural networks, to accurately model cell behaviors for real-life elec-
tric vehicle (EV) applications. Our prediction model automatically extracts spatio-temporal
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features using an attention-based deep learning approach, without relying on data from
experimental test cycles or prior knowledge of cell chemistry and degradation mechanisms.
By combining IoT devices to generate field data and machine-learning modeling on the
cloud, our work underscores the potential for understanding and forecasting complex
physical systems such as lithium-ion batteries. Overall, modeling and estimation using
cloud-based BMS can complement other approaches based on simplified battery models
(such as equivalent circuit models), physical and semi-empirical models, and specialized
diagnostics embedded in the onboard BMS.
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