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Abstract: Additive manufacturing (AM) or 3D printing has opened up new opportunities for re-
searchers in the field of electrical machines, as it allows for more flexibility in design and faster
prototyping, which can lead to more efficient and cost-effective production. An overview of the
primary AM techniques utilized for designing electrical machines is presented in this paper. AM
enables the creation of complex and intricate designs that are difficult or impossible to achieve using
traditional methods. Topology Optimization (TO) can be used to optimize the design of parts for
various purposes such as weight, thermal, material usage and structural performance. This paper
primarily concentrates on the most recent studies of the AM and TO of the reluctance machines. The
integration of AM with TO can enhance the design and fabrication process of magnetic components
in electrical machines by overcoming current manufacturing limitations and enabling the exploration
of new design possibilities. The technology of AM and TO both have limitations and challenges
which are discussed in this paper. Overall, the paper offers a valuable resource for researchers and
practitioners working in the field of AM and TO of electrical machines.

Keywords: additive manufacturing; topology optimization; level set; synchronous reluctance machine;
switch reluctance machine; ON-OFF method; material density; genetic algorithm; power bed fusion;
binder jetting; soft magnetic materials

1. Introduction

The future goal of reducing carbon emissions in transportation can only be achieved
by exploring and implementing new technologies and innovative designs for drive-train
components. This will require a change in the traditional approach to electrification, as
outlined in various roadmaps [1–3]. Additive Manufacturing (AM) or 3D printing tech-
nology is one of the developing technologies of the current contemporary era. AM is a
technique for fabricating physical objects in which the substrate or powdered materials are
deposited layer by layer to build the 3D object [4,5]. Compared to conventional manufactur-
ing techniques, AM has several advantages over traditional manufacturing processes, such
as the potential to decrease material waste and trash parts coupled with the conventional
method [6].

In recent years, the use of additive manufacturing has grown in the field of electri-
cal machines, providing new possibilities for design and production of these machines,
although the technology is still maturing and has the potential to progress significantly.
The manufacturers are able to save the vital resources that would be greatly wasted in
the traditional subtraction-based production since AM allows for freeform limitless shape
complexity. In addition, AM technology could provide the most affordable and frequent
prompts to fabricate small volumes of extremely complicated shapes [7]. However, a fully
assembled AM electrical machine is still a dream for large-scale manufacturing and indus-
trial applications due to a number of challenges, including slow manufacturing speed, inner
structural imperfections, constrained multi-material printing potential, and the requirement
for postprocessing printed parts [8].
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In order to maximize performance and efficiency while reducing size, weight, and
losses, optimization is required in the design of electrical machines. The two primary
sub parts in the design process for an electrical machine are design and preliminary
design optimization [9,10]. By investigating several topologies and doing muti-disciplinary
study of the machine, engineers use design optimization to determine the best essential
performance parameters for a specific application [11,12]. The objective of conventional
optimization techniques for the design of electric machines is to find the optimum values of
the parameterized geometric variables by altering them within a defined range. However,
conventional optimization is limited to optimizing shapes within predefined boundaries
and cannot change the topology of the design. Topology optimization, on the other hand,
overcomes these limitations by allowing the design of the structure to be changed during
the optimization process, resulting in more optimal solutions [13].

Furthermore, the advantages of using AM for Topology Optimization (TO) include
the ability to create complex geometries and internal structures that would be difficult
or impossible to fabricate using traditional manufacturing techniques. TO is a design
method that aims to find the optimal layout of a structure or system in order to meet certain
design objectives, such as minimizing weight or maximizing average torque. Compared
to the geometric parameterization and optimization of rotor flux barriers, TO provides a
smoother barrier design by allowing for flexible material distribution within the design
space [14]. However, the manufacturability level of the TO is lower than the conventional
optimization, but thanks to the AM technique, it makes possible the fabrication of these
complicated geometries.

Researchers work on the different techniques of AM and TO, but there is limited
literature available on the integration of AM and TO. This paper reviews the use of TO
and AM with regard to magnetic components for electrical machines. In order to provide
background for further discussing the integration of TO in a later section of the paper, the
paper initially highlights the primary AM techniques, with a particular focus on those
pertaining to electrical machines. Additionally, various soft magnetic material types are
examined for possible use in AM. The state-of-the-art current literature of AM and TO,
particularly with regard to iron cores and windings in reluctance machines, is also covered
in more detail. Some challenges and limitations in the AM and TO are also summarized
in this paper. These case studies emphasize the innovative integration of these cutting-
edge technologies and demonstrate their potential for use in electrical machine design in
the future.

2. AM Technologies Suitable for Electrical Machines

Despite being designed for low-volume manufacturing with a low manufacturing rate
(0.01–1 kg/h) and high cost (USD 0.1–10 per gram) [15], the potential for AM’s application
to expand exponentially is expected to grow. This is due to its rapid development in
terms of material accessibility and process quality, which indicates a significant increase
in the extent and diversity of its utilization. There are several printer types used for
additive manufacturing; among these, the four AM technologies listed below are the most
well-known and developed for commercial applications.

• Powder Bed Fusion (PBF)
• Binder Jetting Technology (BJT)
• Direct Energy Deposition (DED)
• Resistance Heat or Joule Printing (JP)

The Powder Bed Fusion (PBF) is also known as Selective Laser Melting (SLM) or Elec-
tron Beam Melting (EBM). The majority of current metal additive manufacturing systems
use PBF technology [16]. For building full-density products, current PBF AM techniques
often employ melting rather than sintering. However, rather than using a laser or other
energy source to fuse the powder together, binder jetting uses a liquid binding agent
to join the powder particles together [17]. Binder jetting is generally considered to be a
more cost-effective method of fabricating parts compared to electron beam melting (EBM)
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and selective laser melting (SLM). However, binder jetting typically requires extensive
post-processing after the 3D printing process is complete. The binder-bonded parts pro-
duced by binder jetting are typically weak and brittle and require additional processing
steps to achieve the desired strength, hardness, and surface finish. In order to create
high-performance superalloys, direct energy deposition (DED) has been developed. DED
employs a laser or electron beam as an energy source that is simultaneously utilized to
melt feedstock material (powder or wire) and is narrowly focused on a small area of the
platform. The difference between DED and PBF technologies is that DED does not employ
a powder bed and melts the feedstock layer by layer before deposition while using a much
larger amount of energy to melt metals. This technique enables the simultaneous deposition
of different materials and various axis [18]. When compared to PBF, it can construct less
complicated components and has a lower precision, surface quality, and manufacturing
capacity [19,19,20]. Joule heating uses direct electrical current with resistance heating for
melting and layer bonding; it is somewhat comparable to other wire feed technologies
like DED. Compared to other techniques, this method uses a single feed and melt process
and a far more basic raw material. As a result, this simplicity reduces expenses and time
saving [21–23].

Figure 1 shows the overall comparison of the aforementioned techniques. Both PBF
and BJT provide higher resolution, which is needed in most applications, but are limited by
printing speed. Further, DED and Joule printing are faster while having a lower resolution.
On the other hand, EBM and SLM are typically more expensive 3D printing methods
that use high-power lasers to melt metal, ceramic, or polymer powders into solid objects.
However, EBM and SLM can produce high-quality, high-density parts with high mechanical
strength and fine resolution, making them suitable for applications where high performance
is required.
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3. Soft Magnetic Materials for AM Machines

Iron cores for electrical machines are traditionally made from non-oriented electric steel
laminations and these laminations are stacked together to form the core of the electrical
machine [24]. However, the problem of low mechanical strength in thin sheets causes
bending during stamping, which in turn reduces the ability to stack the laminations at
a high stacking coefficient. Another problem is that electrical steel laminations can only
be stacked in flat sheets and cannot be molded into intricate 3D patterns, which limits its
application in 3D iron cores [25,26].

AM has the potential to bring advancements in the field of magnetic materials by
allowing for the 3D printing of high-quality powdered soft magnetic materials, resulting in
the creation of complex-shaped iron cores with improved control over the electromagnetic
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and mechanical properties [5,27]. Furthermore, these materials are typically iron-based
alloys such as iron–nickel, iron–cobalt, and iron–silicon alloys can be printed. In [28] the
author demonstrated that using Fe–6.5Si alloys in the AM process of the iron cores of electric
machine components results in better magnetization properties compared to using Fe–3Si
alloys with a lower silicon content. The use of Fe–6.5Si alloys also leads to a reduction of
more than 50% in eddy current losses at 50 Hz frequency. Iron cores for electrical machine
may be 3D-printed using Fe–Ni alloys with high nickel compositions (up to 80%). The
magnetic characteristics of these alloys include low saturation magnetic flux density but
exceptional properties regarding permeability and losses. Among soft magnetic materials,
Fe–Co alloys have the greatest saturation magnetic flux density, with the 50–50% Fe–Co
alloy having a saturation magnetic flux density of 2.45 T [29]. The magnetic properties of
commonly used soft magnetic materials for AM is summarized in Table 1.

Table 1. Different soft magnetic material properties used for AM.

Material
Compositions Max. Saturation (T) Relative

Permeability (µr)
Resistivity
ρ(µΩcm) Density (g/cc) AM

Technique Reference

Fe–Si6.5 1.8 10,700 82 7.3–7.7 BJT [30]
Fe–Co-based alloy 2.4 20,000–66,000 40 8.12 SLM [31,32]

Fe–49Co-2V 2.23 - 49.4 - PBF [33]
20%Fe–80%Ni 1.08 8000–120,000 SLM [34]

4. Electrical Machines Manufacturing Using AM Techniques

With the use of 3D computer-aided design, AM is rapidly developing a collection of
new manufacturing technologies that allows for the direct manufacture of components from
powder or wire filament. AM technology should make it unnecessary to do extra processing
in order to produce intricate 3D geometries [35]. Furthermore, AM may reduce or even
eliminate the material waste and scrap components that are common in many conventional
manufacturing techniques. In general, the 3D printing process recycles wasted wire and
powder to fully use the raw material [36]. Although some efforts have been made to bring a
more holistic approach, where multiple parts are produced using AM, it is noteworthy that
the majority of work linked to the AM of electrical machines is focused on the individual
machine components and materials. In this section, the focus is on the electrical machine’s
active parts, and it includes the core and windings of the machine.

4.1. Stator and Rotor Core of Reluctance Machines

In order to build contemporary electrical machines with high specific output, magnetic
materials are necessary. There are several electrical steels and soft magnetic composites
(SMCs) used in the current procedures for creating magnetic cores. The most common
method for producing a magnetic core is to stack a number of electrical steel profiles or
lamination sheets that have been properly prepared, or to compress a mixture of metal
powder and an insulating material [37]. However, these materials are often challenging
to address using traditional methods because of their poor mechanical properties and
limitations on the manufacturing of complex geometries.

With respect to the fabrication of magnetic parts and components, AM offers a com-
pelling alternative to the well-established methods. The optimized switch reluctance
machine rotor, which has six poles of the salient type, is shown in Figure 2a. This rotor was
constructed using the PBF technique from an iron–cobalt alloy with a magnetic flux density
of 2.3T. The authors also indicate that to decrease the specific power loss, the electrical
resistivity of the developed design might be further enhanced [29]. Moreover, Figure 2b
depicts the synchronous reluctance machine’s rotor, which was fabricated using the PBF
AM approach [38].
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In [39], the 3D-printed rotor of switched reluctance machine was compared with the
benchmark machine. Due to the focus being on the material performance, both rotor
prototypes’ designs and dimensions were the same. Moreover, the rotor prototype was
also manufactured in three segments owing to the height limitations of the 3D printer.
The two segments’ axial lengths are 25 mm each, the third segment is 54 mm long, and
the rotor’s total axial length is 104 mm, as shown in Figure 3a. Due to the segmentation,
the 3D-printed rotor was also ensured to have lower eddy current losses than the solid
component. In Figure 3b the fully assembled 3D-printed rotor is shown and was compared
with the laminated benchmark rotor. This study demonstrates that the 3D-printed rotor
produces results similar to those of the benchmark rotor while yet leaving a significant
opportunities for performance improvement [40].
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In order to lessen the torque ripples and windage loss, a novel skew rotor design for
switched reluctance machines was proposed. It has 2 mm thick ribs with 0.4 mm diameter
holes in a honeycomb structure as shown in Figure 4. Using the conventional process, it
was challenging to construct this rotor design. The AM method of PBF is used to build
the prototype for this rotor design. Additionally, the 45% decrease in the machine’s torque
ripples profile was shown by the experimental results [41].

Energies 2023, 16, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 4. 3D-printed SRM rotor with honeycomb rib [41]. 

As the type of reluctance machine is most suited for PBF fabrication because it only 
needs one alloy powder, a fully assembled, fully functional axial flux switched reluctance 
was developed utilizing this technology. Other machine types, such as permanent magnet 
machines or induction machines, need several materials, making it challenging to print 
them using AM owing to the use of many materials. Due to the disparity in component 
sizes, the suggested machine was printed in five phases. For the whole machine with sta-
tor halves, the printing process takes 57 h. Figure 5 [42] depicts the different parts and 
fully assembled machine. Additionally, annealing was done to enhance the magnetic char-
acteristics. In order to do this, the toroid was heated for one hour at a temperature of 1150 
C with a heating rate of 300 K/h, and then gradually cooled [43]. 

 
Figure 5. Printed axial machine having stator halved embedded teeth [42]. 

In addition to emphasizing the internal design and manufacture of electrical ma-
chines, the author of [44] showed a prototype of an induction machine that was manufac-
tured employing additive manufacturing. The author introduces airgaps in the core in the 
form of crack-like printed regions to enhance the internal resistance of the core, and these 
airgaps were placed perpendicular to the core axis. The rotor and stator core were manu-
factured using metal rods, and the author stated that it is the first 3D-printed machine in 
scientific literature whose performance has been assessed. Figure 6 depicts the stator and 
rotor of a printed induction machine. Despite the irregular airgaps between the thick ma-
terial layers, the 3D-printed induction machine exhibited the nominal torque of 0.5 N-m 
at an efficiency of 34% when compared to the benchmark machine [45] whose efficiency 
was 52%. 

 
Figure 6. Fully assembled AM induction machine [44]. 

Figure 4. 3D-printed SRM rotor with honeycomb rib [41].

As the type of reluctance machine is most suited for PBF fabrication because it only
needs one alloy powder, a fully assembled, fully functional axial flux switched reluctance
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was developed utilizing this technology. Other machine types, such as permanent magnet
machines or induction machines, need several materials, making it challenging to print
them using AM owing to the use of many materials. Due to the disparity in component
sizes, the suggested machine was printed in five phases. For the whole machine with
stator halves, the printing process takes 57 h. Figure 5 [42] depicts the different parts
and fully assembled machine. Additionally, annealing was done to enhance the magnetic
characteristics. In order to do this, the toroid was heated for one hour at a temperature of
1150 C with a heating rate of 300 K/h, and then gradually cooled [43].
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Figure 5. Printed axial machine having stator halved embedded teeth [42].

In addition to emphasizing the internal design and manufacture of electrical machines,
the author of [44] showed a prototype of an induction machine that was manufactured
employing additive manufacturing. The author introduces airgaps in the core in the form
of crack-like printed regions to enhance the internal resistance of the core, and these airgaps
were placed perpendicular to the core axis. The rotor and stator core were manufactured
using metal rods, and the author stated that it is the first 3D-printed machine in scientific
literature whose performance has been assessed. Figure 6 depicts the stator and rotor of a
printed induction machine. Despite the irregular airgaps between the thick material layers,
the 3D-printed induction machine exhibited the nominal torque of 0.5 N-m at an efficiency
of 34% when compared to the benchmark machine [45] whose efficiency was 52%.
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According to [46], a line start synchronous reluctance machine was designed with
a novel, robust structure for less copper losses and vibration. As shown on the left side
of Figure 7, the flux barriers include small ribs that go both in the xy and z directions to
create a grid-like structure. Aluminum paste was placed within the cage of the line start
synchronous reluctance machine, which was then heated to produce a solid aluminum
cage as shown in Figure 7. The filling of the barriers lessens the machine’s vibration, but
this impact also lowers the saliency ratio, which reduces the torque.
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Figure 7. 3D-printed rotor of line start synchronous reluctance machine [46].

4.2. Windings

Electrical machine windings refer to the coils of wire that are used in electrical ma-
chines, to generate or utilize electromagnetic fields. These windings can be made of copper
or aluminum and are typically wound around a core made of iron or other magnetic mate-
rial. The development of modern electrical machine windings continues to be an active
area of research and development, with the goal of creating more efficient and cost-effective
electrical machines. In addition, AM is a promising technology for creating electrical
machine windings, as it allows for the creation of complex geometries and can improve the
performance and efficiency of the machine. It is important to note that the use of additive
manufacturing for winding production is still in its early stages and there are not yet many
examples in the industry, but it is considered a promising technology for the future.

In addition, the use of AM in electrical machines may serve a variety of goals, such as
improving power density by improving the fill factor [47,48], optimizing end-winding [49,50],
or integrating conductors with cooling channels [51]. The advancement in AM is the 3D
multi-material printing which offers more design freedom and a faster and unique structure
of fabricating different machines. Some examples of multi material printing are shown
in Figure 8 [52–55]. This comprises ceramic materials that, in terms of various physical
characteristics like heat resistance or thermal conductivity, outperform more traditional
organic insulating materials composed of plastic. In this approach, electrical coils with
much greater temperature resistance may be produced.
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The hybrid stranded concentrated winding of a high-speed traction machine is shown
in Figure 9a, the resulted machine yields 60% reduction in the overall losses [56]. These
improvements can be utilized to enhance the power density and reliability of the machine.
The author in [57] demonstrated different types of AM coils prototype using different mate-
rials for low weight and low losses applications and was compared with the conventional
manufactured coils. All four coils are shown in Figure 9b, which are then placed in the
E-core. The performance comparison of different cores is illustrated in Table 2. The high fill
factor and low AC losses were achieved as compared to the traditional one. Additionally,
AM introduced new materials that gained attention in the enhanced thermal management
method. In [58,59], the authors provide a detailed explanation about the advanced thermal
management for AM machines.
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Table 2. Different coils comparison using different materials [57].

Type of Conductor Flat Copper Coil AM Shaped Copper Coil Flat Aluminum Coil AM Shaped
Aluminum Coil

Material Commercial copper Pure copper powder Commercial aluminum Aluminum alloy powder
Insulation Enameled Class H-resin Enameled Class H-resin

Manufacturing Commercial wire 3D printed Commercial wire 3D printed
Fill factor 72.7% 77.96% 71.3% 62.4%
Cycle time <one hour 9–10 h <one hour 4–5 h

Mass density 8.96 g/cm3 8.95 g/cm3 2.7 g/cm3 2.67 g/cm3

Coil weight 171.2 gm 183.6 gm 55.2 gm 47.8 gm
DC losses 1 p.u 0.83 p.u 1.6 p.u 2.68 p.u
AC losses 81.6% 76.5% 64.5% 31.4%

Total losses 4.155 p.u 4.343 p.u 4.371 p.u 3.902 p.u
Efficiency 98.04% 97.76% 97.52% 98.71%
Frequency Up to 900 Hz Up to 900 Hz Above 1.2 kHz Above 900 Hz

5. Optimization of AM Electrical Machines

Optimization in electrical machine design refers to the process of making improve-
ments to the design of an electrical machine in order to maximize its performance and/or
cost-effectiveness. To examine and optimize several aspects of the machine, including
various parameters such as the shape of the machine, mathematical models and algorithms
are often used. The goal is to find the optimal trade-off between design objectives and
constraints, such as power density, torque density, efficiency, size, weight, cost, and mate-
rials. Generally, optimization techniques can be classified as deterministic and stochastic
optimization. Deterministic optimization techniques, such as gradient-based methods, use
a specific mathematical formula to find the optimal solution. They are fast and reliable
but may be trapped in a local minimum while stochastic optimization techniques, such
as genetic algorithms and particle swarm optimization use random processes to explore
the solution space. They are less likely to get trapped in a local minimum but may be
slower and less reliable [60]. The choice of method depends on the specific problem and
requirements of the application.

Moreover, commonly used machine geometry templates and mathematical models for
optimization are used to shape magnetic structures in electrical machines. These methods
are well established and have been used for many years in the design and optimization of
electrical machines. The use of these methods can make the design process more efficient
and manageable, but it also restricts the design options to the predefined parameters,
limiting the possible shapes and forms that can be generated. On the other hand, topology
optimization (TO) is a more recent technique that involves the optimization of the overall
layout and structure of the magnetic components in an electrical machine, rather than just
the shape of individual components. For example, in the design of electrical machines,
flux barriers inside the rotor or stator design spaces can be added and optimized for
performance improvement. If the geometry optimization is utilized for the flux barriers,
it increases the optimization variables and is not flexible to get the optimal shape [61–64].
Nevertheless, the TO approach can lead to more efficient and lightweight designs, but it is
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generally more computationally intensive and requires specialized software [65–67]. The
integration of TO and AM is demonstrated in the flowchart depicted in Figure 10.
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5.1. Topology Optimization of Reluctance Machines

The main objective of most TO studies for electric machines is to improve torque
density and optimize the torque profile or cogging torque by adjusting the material dis-
tribution in the rotor. This can be achieved by using advanced optimization techniques
and algorithms to find the optimal distribution of material in the rotor that results in the
highest torque density or the desired torque profile [13]. Additionally, reluctance machines
such as synchronous reluctance and switch reluctance machines have a simple construction
compared to other types of electric machines, which makes them a good candidate for
TO [13,68–71]. Despite receiving less attention, the TO of electric machine stator design has
been reported in [72,73]. Different TO methods have been developed in the field of electrical
machines during the last few years and these techniques may be broadly categorized into
three groups: (i) the ON–OFF method, (ii) the Level set method, and (iii) the Material
density method.

5.1.1. ON–OFF Method

The ON–OFF-based TO technique divides the design space into smaller cells and
assigns each cell as either air (OFF) or iron (ON) through a discretization process using
triangular or rectangular mesh structure [74]. This technique can be combined with various
numerical optimization methods, such as evolutionary and gradient-based algorithms, to
find approximate optimal solutions. In [75–78], evolutionary-based methods that do not
require gradient information have been used. However, it may result in complex and non-
intuitive shapes with isolated or disconnected regions of material, as shown in Figure 11a.
This can lead to difficulties in fabrication or reduced performance of the final design. To
overcome this issue, the author in [79–82] proposed the ON–OFF method with an immune
algorithm to optimize the rotor of SRM, in which the filtering process is introduced to
obtain the feasible shapes and improve the torque property as shown in Figure 11b.

In [64,83], ON–OFF-based normalized Gaussian network (NGNet) is presented to
improve the torque density and reduce the iron losses. The output of the NGNet is
determined by:

y(x) =
N

∑
i=1

wibi(x) (1)

bi(x) = Gi(x)
/

∑N
j=1 Gj(x) (2)

where Gi is the Gaussian function, wi and bi are the weight coefficient and normalized
function, respectively. N represents the number of Gaussian functions and i, j is the number
of cells. The state of the cells can be determined by:



Energies 2023, 16, 3840 10 of 19

Se =

{
on y(xe) ≥ 0
o f f y(xe) < 0

(3)
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Figure 11. ON–OFF TO results: (a) without filter; (b) with filter using immune algorithm.

The material is configured to iron when the cell is in the on state, whereas it is
configured to air when the cell is in the off state. Three different optimization problems
were studied to improve the performance of the machine: (i) maximize torque; (ii) minimize
iron losses with constraint of average torque; (iii) maximize average torque with constraint
of iron losses. Furthermore, the Gaussian function distribution and the optimized design is
shown in Figure 12a. There should be a tradeoff between the average torque and the iron
losses because the wider rotor surface increases the torque, but also, the latter should be
made smaller to reduce the iron losses. Another filtering technique, Gabor filter combined
with ON–OFF method based on NGNet, is presented in [84]. The authors concluded that the
proposed filter provided lower torque ripples as compared to the conventional NGNet, and
the optimized design using filter gives the thinner flux barriers as depicted in Figure 12b.
The main disadvantage of the abovementioned methods is the high computational cost
because the FEA computation is needed at each generation [85].
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The gradient based ON–OFF TO solves the problem of high computational cost but has
the probability that it may stop on a local optimal solution. In [86], the gradient-based TO
are applied to a 6/14 SRM to enhance the dynamic torque of the machine. The stator tooth
is selected for the design space of the TO, then utilizes the method of adjoint gradients with
respect to the material properties to optimize the material distribution for the reduction of
torque ripples. The main drawback of this method is the difficulty in the evaluation of the
non-differentiable functions [64].

5.1.2. Level Set Method

The level set method uses an implicit function known as the “level set function” to
handle interfaces and shapes numerically. The level set method was first introduced in [87]
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for the purpose of using it in TO to represent material boundaries. They demonstrated that
this method can be used to design a cantilever beam with distinct boundaries without being
dependent on a mesh or grayscale elements. Furthermore, the level set technique, which
is based on gradients, produces a solution that is more practical for the given problem
but lower convergence rate. In the level set TO, the material boundaries are shown in
Figure 13a and computationally it can be defined as [88]:

ϕ(x, t) =


ϕ(x, t) > 0 f erromagnetic material
ϕ(x, t) = 0 boundary edge
ϕ(x, t) < 0 Air

(4)

The objective of level set topology optimization is to find the optimal distribution of
material in a design space to meet specific design objectives, by determining the value of
ϕ(x, t) at each location (x, t). In [89], the rotor of the synchronous reluctance machine was
optimized using the level set method combined with the continuum sensitivity analysis.
The objective function of the problem was to improve the torque of the machine by redis-
tributing the magnetic material throughout the rotor design. The torque ripples profile of
8/6 pole SRM is enhanced by using the level set method, and sensitivity analysis having
the adjoint variable method is utilized in [90]. In the optimized design, the average torque
is improved by 12% with also the reduction in the torque ripples. The initial and optimized
model with the torque waveform comparison is shown in Figure 13b. For reducing the
iron losses and improving the torque of the synchronous reluctance machine, the level set
method with sensitivity analysis of adjoint variable method is employed [91].

Additionally, this technique does not need the creation of intermediary materials or
rely on the mesh that is used to discretize the design domain [92]. The level set approach for
TO of EM devices has become quite well-liked as a result of these benefits [93]. However,
this approach has certain limitations, including the need for an initial definition for the
level set representation, convergence to local optima, and difficulties in computing the form
gradients necessary to develop the interface [94].
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5.1.3. Material Density Method

The density method is a technique that was originally developed for solid mechanics
TO [14]. It is a simple method that has recently gained popularity for electromagnetic TO,
even for multi-material problems. This method is based on the idea of using a density
function to represent the material distribution in the design domain, then using opti-
mization algorithms to find the optimal density distribution that satisfies certain design
constraints and objectives. This method has been found to be effective for a wide range
of electromagnetic optimization problems and has been applied to a variety of different
types of electromagnetic structures [70,73,95–98]. It is based on interpolation, filtering,
and projection schemes, and originally used the simple power-law as the material pe-
nalization function. This leads to the SIMP (Solid Isotropic Material with Penalization)
approach [99]. A schematic flowchart of procedures in the material density method is
presented in Figure 14.
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By solving the magnetic flux density and integrating the Maxwell tensor stress using
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T =
x

dAr × (S.n) (5)

The objective of the optimization problem is to determine the function density and is
defined as:

ρ(x) =
{

1 xεΩm
0 xεΩa

(6)

where Ωm and Ωa represents the ferromagnetic region and air region, respectively. In the
material density method, the ρ(x) gives the values between 0 and 1 but practically, the
distribution of the material is either 0 or 1, due to which the discontinuity exists in the final
shape. To make the material distribution feasible, the magnetic reluctivity is defined by the
smooth heaviside function [101]:
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1
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(−h ≤ ψ ≤ h) (7)

where h represents the one half of the transition width between ρ(−h) = 0 and ρ(h) = 1.
The magnetic reluctivity is defined as:

vi

(
ψi,

∣∣∣B2
∣∣∣) = (1 − ρ(ψi))

p ∗ vair + (ρ(ψi))
p × vF

(∣∣∣B2
∣∣∣) (8)

where vF
(∣∣B2

∣∣) is the magnetic reluctivity and is a function of the mgnetic flux density
and vi, vair is the reluctivity of the ith element and reluctivity of air, respectively. The
penalization coefficient is represented by the variable p. By choosing the proper value of p,
the gray elements can be eliminated. In [102], the material density-based TO was utilized
for the torque ripple minimization and the design space include the stator teeth and rotor
poles. The optimized design showed a significant amount of reduction in the profile of
torque ripple with the cost of a slight reduction of 7.22% in the average torque. In addition,
the initial and optimized design of 6/4 pole SRM is depicted in Figure 15a. The TO of
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material density was applied in [103] to minimize the torque ripple and the final design
reach to the target torque value. The design space includes the half of the rotor pole as
shown in Figure 15b, and after optimization, the torque reached the target value. The
overview of TO applied to the reluctance machine for performance enhancement is shown
in Table 3.
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Table 3. Summary of TO used in reluctance machines for performance improvement.

Machine Type Optimization Method Design Space Objective Function Prototype
Fabrication Reference

SRM Material density method Stator teeth and rotor
poles Min. torque ripples Yes [101]

SRM Level set method Rotor poles
Max. average torque

and min. torque
ripples

No [89]

SynRM Level set method The rotor Max. average torque No [88]
SynRM ON-OFF The rotor Max. torque No [63]

SRM NGNet Stator teeth Min. iron losses No [85]
SRM Gradient based ON-OFF The rotor Min. torque ripples No [99]
SRM Material density + GCMMA The rotor Max. torque No [102]

SynRM Material density + GCMMA The rotor Max. torque No [83]
SRM ON-OFF NGNet The rotor Max. torque No [78]

SynRM Using Gabor filter The rotor Min. torque ripples No [74]

6. Challenges and Opportunities

AM and TO have the potential to revolutionize the way electrical machines are de-
signed and manufactured. However, there are several challenges associated with the AM
and TO of electrical machines, including:

Simulation Time and Geometry Complexity
The use of AM technology in the manufacturing of electrical machines is now facing

significant challenges due to simulation time and geometric complexity. Additionally, the
design of electrical machines is a non-convex optimization problem, meaning that gradient-
based optimization techniques may not always produce the global optimal solution. In
order to confront these challenges, researchers have come up with methods that utilize
machine learning and deep learning to reduce simulation time and improve the accuracy
of the global optimal solution. These techniques utilize the power of machine learning
algorithms and deep neural networks to improve the simulation process and reduce the
time required to find the optimal solution [85,104–107]. However, while these techniques
have shown promise in reducing simulation time and improving the accuracy of the
solution, they also require significant computational resources and specialized expertise to
implement effectively.

Manufacturability
AM offers a solution to the challenges posed by TO designs with unpredictable char-

acteristics, rough faces, and uneven material distribution that are difficult to manufacture
using traditional methods. However, the current state of AM technology presents a chal-
lenge in achieving the desired performance, especially when it comes to magnetic materials,



Energies 2023, 16, 3840 14 of 19

which have low magnetic properties. Therefore, further development and improvement of
AM technology is necessary to fully realize its potential in overcoming the limitations of
optimized designs in traditional manufacturing methods.

Structural Integrity
TO is an important tool in the design of electromagnetic performance, but it has a

significant limitation. It focuses primarily on improving electromagnetic performance and
may result in designs that are not mechanically robust. Especially when it comes to syn-
chronous reluctance machines, where the optimum design may have excessively thin ribs
that are not practical from a structural integrity perspective. To overcome this limitation,
it is necessary to perform a TO with structure analysis, which takes into account the me-
chanical restrictions of the machine. This will ensure that the optimized design is not only
optimal in terms of electromagnetic performance but also has sufficient structural integrity.

Multi-Materials
To optimize different materials and manufacture multi-material machines, AM and

TO are still in their early stages of development. As in case of reluctance machines, the
materials are homogenous and the optimization process may be simplified. However, TO
can become more difficult when dealing with multi-material machines, such as permanent
magnet machines, since it is necessary to take into account various materials and their
interactions. The usage of several materials may also lead to additional possible design
alternatives and better performance characteristics, making it a desirable challenge for
TO efforts. Despite notable developments in the area of AM, it is still very difficult for
researchers to fabricate whole machines using this technology. Even while multi-material
AM has been the subject of a few reports, it has not lived up to expectations. Future growth
of this technology depends on the development of AM for manufacturing multi-material
electrical machines.

To enhance the implementation of AM and TO in the design of electrical machines,
research should focus on addressing these challenges. This could include developing new
manufacturing techniques to produce the optimized designs, exploring new materials and
designs to achieve the desired properties, and developing new optimization algorithms
to reduce simulation time and complexity. Additionally, guidelines and design rules for
the AM-based electric machine TO should be developed to assist designers in applying
these techniques.

7. Conclusions

The paper reviewed various techniques used in modern AM and compared them, with
a focus on the application of AM in the manufacturing of electric machines. In addition to
highlighting examples of multi-material AM, also covered were various core and winding
types that can be produced using AM. The paper also presented a detailed discussion
on TO and how it can be used to optimize the design of electric machines for improved
performance and reduced weight. Both gradient- and non-gradient-based TO methods are
discussed, with an emphasis on reluctance machines. The ON–OFF TO produces complex
geometries that are impossible to manufacture. To address these problems, various filtering
techniques were used, and these were discussed in the study. The paper concluded that
while the combination of AM and TO has the potential to fundamentally change the design
of electrical machines, certain challenges such as manufacturability, geometric complexity,
and structural integrity must be addressed before this technique can be feasibly adopted in
practical machine designs. Overall, the paper suggests that there are many opportunities for
future research in AM and TO to improve the design and manufacture of electric machines.
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