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Abstract: Direct numerical simulations (DNSs) of spatially developing thermal turbulent boundary
layers over angle-ribbed walls were performed. Four rib angles (γ = 90◦, 60◦, 45◦ and 30◦) were
examined. It was found that the 45◦ ribs produced the highest drag coefficient, whereas the 30◦ ribs
most improved the Stanton number. In comparison to the transverse rib case, streamwise velocity
and dimensionless temperature in the V-shaped cases significantly increased in the near wall region
and were attenuated by secondary flows further away from the ribs, which suggested a break of
the outer-layer similarity in the scenario presented. The surprising improvement of heat transfer
performance in the 30◦ rib case was mainly due to its large dispersive heat flux, while dispersive stress
reached its peak value in the 45◦ case, emphasizing the dissimilarity in transporting momentum and
heat by turbulence over a ribbed surface. Additionally, by calculating the global and local Reynolds
analogy factors, we concluded that the enhancement in heat transfer efficiency was attributed to an
increasing Reynolds analogy factor in the intermediate region as the rib angle decreased.

Keywords: direct numerical simulation; thermal turbulent boundary layer; ribbed surface; heat
transfer; Reynolds analogy

1. Introduction

Turbulent flows over rough walls are ubiquitous in natural and engineering applica-
tions. Roughness significantly alters dynamics of flow and the progress of heat and mass
transfer. As a result, the effects of various surface textures, such as longitudinal [1] and
transverse ribs [2–4], regular and irregular distributed shaped elements [5], and irregu-
lar [6,7] roughness, have been extensively studied, through experiments and simulations,
over the last decade. Several distinct phenomena caused by roughness, including secondary
motions, outer-layer similarity [8], and dispersive flux, have received considerable atten-
tion, due to their influences on surface drag and thermal performance. Rough surfaces are
widely used in many industrial devices to achieve heat transfer augmentation. However,
the presence of rough elements means the flow systems suffer from a remarkable increase
in drag, particularly for ribbed surfaces, which is undesirable for energy conservation.
Therefore, understanding the complexities of the underlying physics in flow over rough
surfaces is of great practical interest and requires further inspection.

Over the last decade, experimental and numerical studies have conclusively demon-
strated that roughness with spanwise heterogeneities induces secondary flows [9–11]. The
secondary flows manifest as high-momentum pathways and low-momentum pathways
(HMPs and LMPs), respectively, flanked by counter-rotating vortices in time-averaged
streamwise velocity. This differs from the high and low momentum regions observed in
instantaneous flow over smooth surfaces. Secondary motions play a dominant role in the
roughness sublayers, with their effects extending to several times the height of roughness
in the wall-normal direction. This significantly modifies wall shear stress, wall heat flux
and other flow properties. For example, Willingham et al. [12] numerically investigated
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the turbulent boundary layers on surfaces with alternating high and low roughness strips.
Their results showed that secondary flows, or LMPs, occur at the junction of two strips.
The counter-rotating rollers pump the low momentum fluid to the outer flow, increasing
the boundary thickness and Reynolds stress in the cross-section. Moreover, wall stress
increases significantly over rough surfaces when the ratio between the heights of two strips
increases, or the width decreases, indicating an augmentation in secondary flows. Similar
conclusions were drawn by Hwang [10] when investigating turbulent boundary layers
over longitudinal bars. The size of secondary motions was found to be mainly determined
by the pitch size and width.

Much attention has been devoted to conventional roughness, such as 2D rib-roughened
surfaces. Mahmoodi and Wang [13] studied the turbulence on V-shaped and inclined ribs
in a square duct and observed distinct mean and secondary flow structures. The pressure
drag in the V-shaped rib case was nearly twice that of the inclined rib at a matched
Reynolds number. Moreover, the location of the strongest turbulent levels was lower
compared to the inclined case, due to the stronger down-wash of high-velocity flow.
Fang et al. [14] investigated turbulent flow over V-shaped ribs of different angles using
particle image velocimetry and compared this to a transverse ribs case. They attributed the
remarkable differences observed in mean velocity, vorticity and Reynolds stresses to the
geometrical skewness of V-shaped ribs. Their later study evaluated the influence of angled
ribs on turbulent structures using large-eddy simulation. The effect of vortex shedding
was attenuated in V-shaped rib cases, whereas angled ribs imposed stronger streamwise
elongated vortices. This contributed to higher streamwise momentum immediately above
the rib crests and skin friction when compared to that in perpendicular or transverse
ribs [15]. They further studied turbulent structures by examining spatial and temporal
autocorrelations and found isotropic turbulence in angled rib cases, which clearly differed
from that in perpendicular rib cases.

Another similarly rough surface, named convergent–divergent (C–D) riblets, has been
well-documented in recent literature. Guo et al. [16] focused on the influence of the C–D
riblet wavelength on friction drag. They concluded that the strength of secondary motions
first increases and then decreases as the wavelength increases. The strongest secondary
flow was observed when the wavelength equaled the channel height. Moreover, factors
contributing to drag increase when the wavelength varies. Compared to research on drag,
limited attention has been paid to the variation of heat transfer efficiency in the presence of
rough elements [17,18].

Significant differences arise in the thermal turbulent boundary layer when the flow is
exposed to roughness. Among these differences, skin friction and heat transfer coefficient
are the most crucial in practical applications. Wall quantities were demonstrated to have a
direct relationship with the outer flow away from the surface in seminal research conducted
by Fukagata, Iwamoto and Kasagi [19]. In this research, the skin friction factor of the
turbulent channel was decomposed into laminar, turbulent and spatial heterogeneity terms
using a method known as the FIK identity. Numerous studies have focused on extending
the FIK identity [20,21]. However, the triple integration used in FIK identity suffers from
a lack of clear physical interpretation. Renard [22] derived a new decomposition, named
RD identity, by integrating the mean streamwise kinetic-energy budget equation. Recently,
Guo [16] employed the RD identity to study the influence of secondary flow on drag
augmentation of turbulence over convergent-–divergent riblets with different wavelengths.
The contribution from the wake component to drag and the intensity of the secondary
flow motion was enhanced with increasing wavelength. The aforementioned studies
primarily investigated the impact of transverse and longitudinal ribs on wall turbulence.
These studies concluded that the pitch size, height, and width of the ribs exert the greatest
influence on the turbulent transport of momentum and heat. In contrast to a conventional
2D rough wall, surfaces with V-shaped ribs enhance drag and heat transfer through more
complex mechanisms. Both drag and secondary motion play indispensable roles in fluid
vortical motion. Additional parameters, such as wavelength and rib angle, also have
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significant impacts. Previous studies on V-shaped ribbed walls have primarily focused on
the spatial distribution of mean and high-order flow statistics [13,14]. To the best of the
authors’ knowledge, less attention has been paid to secondary motion and its influence
on the drag coefficient and Stanton number, as well as its influence on the local Reynolds
analogy factor in thermal turbulent boundary layer flow. In light of this, we conducted
a comprehensive study on the contribution of secondary motions to the total drag and
heat transfer coefficient in V-shaped ribbed turbulent boundary layers (TBLs) using the RD
identity and examining the dissimilarity between momentum transport and heat transfer.

To further understand the influence of rib angle on drag increase and heat transfer
augmentation, we performed direct numerical simulations (DNSs) of three V-shaped rib
cases at different angles, with a transverse rib case as the baseline. Section 2 describes the
numerical details and the averaging method. Section 3 presents the investigation on the
total drag and heat transfer coefficient along the flow direction and the spatial distribution
of mean velocity and temperature to examine the influence of ribs on the flow structure
and heat transfer performance. We also analyze Reynolds stress and wall heat flux profiles
by focusing on the effects of secondary motions and decomposing the drag coefficient
and Stanton number. Moreover, global and local values of Reynolds analogy over ribs are
compared to investigate dissimilarity in turbulent transport of momentum and heat caused
by ribs. Finally, Section 4 provides the conclusions.

2. Methods

This section describes the geometry configurations and numerical details used in the
simulations presented.

2.1. Geometric Model

In the current study, DNSs were performed using an auxiliary simulation approach [23],
where two computational domains are required. The first is an auxiliary region of smooth
wall and supplies the inlet velocity and temperature profiles to the second domain, which
is composed of multiple V-shaped ribs, as shown in Figure 1. The auxiliary domain is much
longer than the second domain to generate a fully developed turbulent flow. A Blasius
laminar boundary layer profile, with boundary layer thickness δ0, was initialized in the
auxiliary domain, and then instantaneous velocity and temperature fields at the target
position were extracted as the inflow condition of the rib domain. Four simulations were
conducted: one for a transverse bars case and three for V-shaped ribs cases. he lengths of
the rib domain were set to Lx× Ly× Lz = 44δ0 × 10δ0 × 10δ0. The height of the ribs H and
the width of the ribs D were both set to 0.2 δ0, and the pitch value P, which denotes the
distance between two adjacent ribs in the streamwise direction, was set to 1.4δ0. Here, δ0
was the initial boundary layer thickness set in the auxiliary domain.

The angle of ribs (γ) was the only varied parameter and was set at 60◦, 45◦, 30◦ in RB,
RC and RD, respectively. Although the transverse ribs case can be treated as a specific
case with a rib angle equal to γ = 90◦, significant differences in turbulence statistics exist
between the transverse rib case and the real V-shaped rib cases. These differences suggest
that the angle of ribs is an important underlying mechanism influencing momentum and
heat transport, as discussed in Section 3.

2.2. Numerical Method

The non-dimensional governing equations for incompressible fluid with heat transfer
can be expressed as

∂ui
∂xi

= 0 (1)

∂ui
∂t

+
∂uiuj

∂xj
= − dP

dxi
+ ν

∂2ui
∂xj∂xj

+ fibm,i (2)
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∂T
∂t

+
∂ujT
∂xj

= α
∂2T

∂xj∂xj
+ qibm (3)

where ui = u, v, w designates the instantaneous fluid velocity components in the ith di-
rection, where i = x, y, z refer to the streamwise, wall-normal, and spanwise coordinates,
respectively, and P is the pressure, ν is the kinematic viscosity, α is the thermal diffusivity,
and T is the temperature. For the correspondence with velocity, we adopted the dimen-
sionless temperature Θ = (T − Tw)/(Tb − Tw) in data processing, where subscript b and
w denote the bulk flow and wall quantity, respectively. The terms fibm,i and qibm are the
source terms derived from the immersed boundary method. Results discussed hereinafter
are compared with a similar Reynolds number Reθ(≡ Ubθ/ν) ≈ 2200. The same Prandtl
number Pr(≡ ν/α) = 0.71, which was, here, Ub is the bulk flow velocity. The momentum
thickness θ is defined as

∫ δ
0 〈u〉(1− 〈u〉)dy. The Richardson’s number is small enough to

neglect the buoyancy forces, and temperature is treated as a passive scalar.

Figure 1. Schematic of surface topographies discussed in the present study. Transverse bars were
configured in case RA, and V-shaped cases with angles equal to 60◦, 45◦, 30◦ were set in RB, RC and
RD, respectively.

The present study simulated spatially developing zero-pressure-gradient turbulent
boundary layers using the well-developed Fortran code Incompact3d [24], based on the
finite difference method. The first and the second spatial derivatives were discretized by
a fourth-order central difference and a sixth-order compact finite difference scheme for
momentum and energy equations, respectively. A semi-implicit Adams-Bashforth method
was adopted as a time marching scheme with viscous terms in a wall-normal direction
integrated implicitly. The solid region was treated using the immersed boundary method
(IBM), which allows for the modeling of complex geometries with lower computational
resources than body-fitted mesh techniques. One problem that needs to be solved is the
emergence of sawtooth waves when using IBM to resolve oblique lines. Different grid
resolutions, as shown in Table 1, were chosen in the present study to ensure a straight-line
rib boundary during the simulations.

Table 1. Numerical details for DNS cases in the rib domain.

Case γ(◦) Reθ nx × ny × nz uτ Θτ δ/δ0

RA 90 2090 499 × 309 × 192 0.0735 0.0585 4.55
RB 60 2124 499 × 309 × 192 0.0927 0.0615 4.62
RC 45 2296 739 × 309 × 168 0.1025 0.0712 4.79
RD 30 2160 989 × 309 × 128 0.0911 0.0790 4.87
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The boundary conditions, other than the inflow condition described in Section 2.1,
were the same for all the cases. For the outflow condition, a convective condition
∂ui/∂t + c∂ui/∂x = 0 was applied and a constant temperature Tw = 1 and zero velocity
were set at the bottom wall. At the top of the computational domains, u = Ub, ∂v/∂y = 0
∂w/∂y = 0, and Tb = 0 were imposed [23]. In the present study, the time step ∆t was set to
0.0025Ub/δ0. The velocity and temperature fields reached a statistically quasi-steady state
after 80,000∆t. Subsequently, statistics in RA were collected for an additional 60,000∆t, and
in V-shaped cases were collected for an additional 80,000∆t.

2.3. Double-Averaging Method

The turbulence field variable over 3D rough elements varies in streamwise and span-
wise directions. Hence, the double-averaging method, which decomposes an instantaneous
variable using a time–space average, was applied to split the effect of spatial heterogeneity
and turbulent fluctuation [25]. In Equation (4), an instantaneous variable g is decomposed
into the space–time mean component 〈g〉, dispersive component g̃ and instantaneous fluc-
tuation g′′. Overlines and angular brackets represent the temporal and spatial averages,
respectively. Moreover, since both dispersive and instantaneous components contribute to
the turbulent intensity, a total fluctuation g′ is introduced, here, in Equation (5)

g(x, y, z, t) = 〈g〉(x, y) + g̃(x, y, z) + g′′(x, y, z, t) (4)

g′(x, y, z, t) = g̃(x, y, z) + g′′(x, y, z, t) (5)

When the spatial-averaging operator is applied, the variables are averaged over
spanwise and over one pitch as 〈g〉(y) = 1

ϕ(y)

∫∫
LW g(x, y, z)dxdz, where ϕ(y) denotes

the solid-occupied fraction and LW marks the averaging area [5,16], highlighted with the
yellow color in Figure 1. The pitch, with matched momentum thickness Reynolds number,
was selected for each case. Using the triple decomposition in Equation (4), the Reynolds
stress could be divided into dispersive and turbulent portions, as〈

u′v′
〉
= 〈ũṽ〉+

〈
u′′v′′

〉
(6)

The first and second terms correspond to the dispersive shear stress and turbulent
shear stress, respectively. Similar operations on the total heat flux in Equation (7) yielded
the following decomposition: 〈

v′Θ′
〉
=
〈
ṽΘ̃
〉
+
〈

v′′Θ′′
〉

(7)

2.4. Data Analysis

Some basic and advanced data analyses are reported here, due to the rough elements
involved. The rough wall flow drag constitutes the skin friction and pressure or form
drag, and individually calculating and integrating the two portions is difficult for some
practical rough surfaces. Based on the immersed boundary method, we derived the total
drag and heat transfer coefficient in a more direct way using the computed time-averaged
IBM forcing terms.

The global drag coefficient, C f , and Stanton number, Ch, used in this study are given as:

C f = 〈τtot〉/
(

1
2

ρU2
b

)
and Ch =

〈qtot〉
ρUbcp(Tw − Tb)

(8)

where 〈τtot〉 and 〈qtot〉 are the double-averaged total wall shear stress and heat flux, respec-
tively, and cp is the specific heat capacity. For turbulent boundary layer flow, the mean
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shear stress 〈τ〉 and heat flux 〈q〉 were varied in the wall-normal direction, and their spatial
distribution with respect to the wall-normal coordinate expressed as:

〈τ〉(y) = ν
d〈u〉
dy
−
〈

u′′v′′
〉
− 〈ũṽ〉+

∫ δ

y
Fibm,xdy +

∫ y

0

(
〈u〉d〈v〉

dy
− 〈v〉d〈u〉

dy

)
dy (9)

〈q〉(y) = λ
d
〈
Θ
〉

dy
−
〈

v′′Θ′′
〉
−
〈
ṽΘ̃
〉
+
∫ δ

y
Qibmdy−

∫ y

0

(
〈u〉

d
〈
Θ
〉

dx
+ 〈v〉

d
〈
Θ
〉

dy

)
dy (10)

As y approaches zero, the Reynolds stress, including dispersive and turbulent terms,
and the last term, representing the growth of the boundary layer, tend to be zero. Then,
the wall shear stress and heat flux can be rewritten as 〈τtot〉 = ν ∂〈u〉

∂y |w +
∫ δ

0 Fibm,xdy and

〈qtot〉 = α ∂〈Θ〉
∂y |w +

∫ δ
0 Qibmdy, respectively [26]. The friction velocity, uτ , and friction

temperature Θτ , which are used to scale the flow and thermal quantities in inner units, are
then calculated as

uτ =
√
〈τtot〉/ρ and Θτ =

〈qtot〉
ρcpuτ

(11)

Therefore, the viscous length scale is y+ = yuτ/ν, where + denotes that the quantity
is in inner units.

2.5. Validation of the Numerical Method

The reliability of the present simulations was validated by comparing the mean
streamwise velocity and Reynolds stress profiles over a smooth wall in inner units with
a reference dataset [27] in Figure 2. The results showed good agreement between the
two datasets, indicating that the DNSs presented had sufficient accuracy. The present
simulation employed IBM to enforce no slip velocity and constant temperature conditions
on solid surfaces. To validate this approach, a channel flow, consisting of six rib periods at
Reτ = 160 and a pitch-to-height ratio of 4, was conducted, identical to the set-up of Nagano
et al. [28]. As shown in Figure 3, both the mean streamwise velocity and temperature
showed good agreement with their results, demonstrating the reliability of the IBM used in
this study.

Figure 2. Turbulent statistics of smooth wall case at Reθ = 2000 in inner units: (a) Mean streamwise
velocity; (b) root mean square of turbulence intensities and Reynolds shear stress.
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Figure 3. Comparison of the vertical profiles of (a) mean streamwise velocity and (b) temperature
against the DNS data of Nagano et al.

3. Results

The impact of the rib angle upon turbulence and heat transfer performance is ex-
amined, based on global properties and first-order statistics. Next, the characteristics of
turbulent momentum and heat transfer are discussed in detail by analyzing the shear stress
and heat flux in the cross-sectional plane and decomposing the drag coefficient and Stanton
number. Finally, the Reynolds analogy is analyzed to evaluate the heat augmentation
performance of different surface regions.

3.1. Mean Statistics

The influence of angled ribs on the overlying flow was assessed by evaluating the
evolution of boundary layer momentum thickness θ, drag coefficient C f , and Stanton num-
ber Ch along the streamwise direction in the rib domain. as shown in Figure 4. Compared
to the transverse rib case, all quantities in the V-shaped rib cases substantially increased.
The growth rate of momentum thickness increased and then decreased when the rib angle
became smaller. A similar trend was also observed for C f and Ch. The drag coefficient and
Stanton number reached peak values of approximately 0.021 and 0.0073, respectively , in
the 45◦ rib case. This non-monotonic behavior may be attributed to reduced pressure, or
drag formed and the presence of secondary flows as the rib angle decreased. While similar
trends were observed, significant differences existed between the momentum and heat
transport. For instance, approximately the same drag coefficients were obtained in cases RB
and RD, whereas better heat transfer performance was observed in RD. In order to further
illustrate the changes in drag and heat transfer coefficients, Figure 5 was constructed show
the comparison between pressure drag Dp and frictional drag Dν. For the transverse rib
case, drag mainly came from the pressure difference between the windward and leeward
walls of the rib. Due to the formation of stable recirculation opposite the mainstream
flow direction in the cavity, the drag at the bottom wall was negative, that is, opposite
to the direction of the total drag. As the angle decreased, the contribution of pressure
drag gradually decreased, and the contribution of viscous drag gradually increased. The
variation in viscous drag was nonlinear and changed rapidly when approaching 0◦ and
90◦. Furthermore, the decrease of drag accelerated when exceeding 45◦. The decrease in
drag from case RC to RD was primarily attributed to the decrease in pressure drag, which
greatly exceeded the increase in viscous drag. Heat transfer was not affected by a pressure
penalty and was greatly influenced by the mean velocity gradient. As the angle decreased,
mean flow velocity increased, leading to an increase in Ch from case RA to RC, but when
the angle exceeded 45◦, mean streamwise velocity had no evident change in the near wall
region, and, consequently, no significant change was found in Ch from case RC to RD.
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Figure 4. Profiles of (a) momentum thickness (θ), (b) drag coefficient (C f ) and (c) Stanton number
(Ch) in the streamwise direction for all cases.

 V90M          V60M           V45M            V30M

Figure 5. Comparison between pressure drag Dp and frictional drag Dν.

Figures 6 and 7 demonstrate the mean streamwise velocity and temperature profiles
in the inner and outer coordinates, respectively. The velocities in Figure 6a were non-
dimensionalizedy friction velocity uτ , and showed evident downward shifts, known as
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momentum defects, due to hindrance from the rough elements. Under the crest of ribs, the
maximal streamwise velocity occurred in RD as the rib obstruction reduced with decreasing
rib angle. Close above the crest of the ribs, 〈u〉, reflected significant improvement for all
V-shaped cases relative to that in the transverse rib case. In the plots shown in the small
box in Figure 6b, the velocity prominence above the rib gradually increased as the rib angle
decreased. The peak occurred in the 30◦ rib case, reaching the value 〈u〉/Ub = 0.646 at
y/δ0 = 0.6. Fang reported similar velocity bulges in their study on duct channel flow over
aibbed surface. This non-typical behavior indicated the break of wall-similarity under
the influence of angled ribs, which was preserved in the transverse rib case and smooth
wall turbulence. The enhancement of double-averaged streamwise velocity just above
and under the crest of ribs indicated that ribs with sharper angles effectively reduced
the obstruction in the near wall regions. The coverage of this region expanded from the
wall to approximately y/δ0 = 1.3, above which 〈u〉 was conversely suppressed up to the
boundary layer edge. Therefore, we concluded that angled ribs influenced the flow across
the boundary layer and that the area of influence could be classified into two regions,
depending on whether 〈u〉was enhanced or suppressed. We further plotted the mean
streamwise velocity differences between V-shaped and transverse rib cases in Figure 8a to
highlight the two regions. The enhanced region ranged, approximately, from the wall to
y/δ0 = 1.3, which was nearly equal to seven times the height of the ribs, and the suppressed
region extended from this position to the edge of the boundary layer. The maximal positive
velocity difference occurred closely above the rib crests , whereas the maximal negative
velocity was positioned at y/δ0 = 2. We explain the underlying mechanism leading to
these differences in the streamwise velocity when we discuss the flow structure.

Similarly, we present the dimensionless temperature, normalized by Θτ , in Figure 7.
The maximum value at the edge of the boundary layer is indicative of the heat transfer
efficiency for each case, due to the inherent definition of Θτ , which takes into account both
friction velocity and temperature. RD exhibited the highest heat transfer efficiency, while
RC had the largest Ch, as shown in Figure 4c. As discussed in the velocity flow section,
enhanced and suppressed regions were also observed in Figure 8b. The temperature
differences were overall smaller compared to streamwise velocity, with a larger difference
observed in RC at the crest of the ribs than that in RD,nd the maximal negative difference in
RD was significantly larger than that in RC. In regard to the velocity pattern, differences in
RD were slightly smaller than those in RC. Moreover, the demarcation points of the positive
and negative temperature differences were closer to the wall and located at y/δ0 ≈ 1,
equating to a smaller enhanced region in the temperature field. Thus, the larger suppressed
region demonstrated the discrepancy in the vertical transport of momentum and heat in
the thermal turbulent boundary layer flow over the ribbed surface.

100 101 102 103 104

 y+

0

5

10

15

20

25

30

100 102
0

2

4

6

 y/
0

Figure 6. Comparison of the mean streamwise velocity profiles along the wall-normal direction with
(a) viscous scaling, and (b) outer scaling.
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Figure 7. Comparison of the mean temperature profiles along the wall-normal direction in (a) inner
coordinate, and (b) outer coordinate.

 y/
0

 y/
0

Figure 8. Difference of (a) mean streamwise velocity and (b) mean temperature between V-shaped
and transverse rib cases.

3.2. Secondary Motion

In this section, we present the flow structures and temperature spatial distributions
to understand how angled ribs alter flow dynamics. Figure 9 presents a comparison of
the mean streamwise velocity and temperature in the x− y planes of both converging and
diverging areas. These measurements were taken at spanwise coordinates z/δ0 = 5 and
z/δ0 = 7.5. In the transverse rib case, a shear layer was present n the crests of the ribs
and recirculation occurred in the cavity between the two ribs, consistent with findings in
previous studies [15]. For the V-shaped rib cases in the converging area (Figure 9b,d,f), the
strength of the recirculated flow in the cavity under the crests of the ribs became weaker
as the incoming flow was drawn into the sidewalls by the angled ribs, attenuating the
streamwise impinging effect. In diverging slices displayed in Figure 9c, for example, as the
rib angle decreased, the recirculation size became smaller, while strength was augmented.
Reattachment points moved closer to the leeward sides of the ribs and the outer flow, with
higher velocity, occupied a considerable space underneath the crests of the ribs. Thus,
in the sharper angle case (RD), the velocity under the crests of the ribs was higher, as
mentioned in Figure 6b. In regard to temperature, heat accumulated, due to the recirculated
flow near the leeward surfaces of the ribs, resulting in low-temperature areas forming near
the windward surfaces under the crest of the ribs, in both the diverging and converging
slices. As rib angle decreased, the high-temperature fluid from the outer region had more
opportunities to attach to the wall and then to enhance the heat transfer.

Contours of time-averaged normalized streamwise velocity, normalized strength of the
secondary flow, and dimensionless temperature in the cross-stream plane, superimposed
with the streamlines of secondary flows, are plotted in Figure 10. The magnitude of

the secondary flow is defined as
√
〈v2〉+ 〈w2〉. The first row of the figure highlights

strong flow disturbances in the spanwise direction induced by the ribs. Secondary flows
appear as LPMs and HPMs located above the diverging and converging regions of the ribs,
respectively. The streamlines and secondary motion strengths in the second row clearly
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indicate that LMPs were flanked by a pair of counter-rotating vortices aligned in the flow
direction. These vortices carried the high-velocity fluid in the domain center downward to
the sidewalls, forming a relatively high velocity region above the windward angle of the
ribs, as depicted in Figure 6.

Figure 9. Contours of time-averaged normalized streamwise velocity and dimensionless temperature
in diverging and converging areas in the x− y coordinate.

Figure 10. Contours of time-averaged normalized statistics in the y− z coordinate of the V-shaped
cases. (a,d,g): mean streamwise velocity, (b,e,h): the intensity of the secondary flow motions,
and (c,f,i): mean dimensionless temperature. Lines with arrows, which represent the direction of
secondary flows, are superposed to highlight the vortical structures. The first, second and third rows
represent cases RB, RC and RD, respectively.

As the rib angle decreased, the vortex edges extended further away from the wall
(highest position y/δ =≈ 0.5 for RD), while the strongest secondary motion intensity
was observed in the 45◦ rib case RC. Thus, it was not possible to simply conclude which
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case was most affected by secondary flow. The overall impact is discussed in detail
in Sections 3.3 and 3.4. An analogous phenomenon is presented in the third column of
Figure 10, where rotating vortices drove fluid with high dimensionless temperature to the
lower region, enhancing heat exchange between the wall and the bulk flow.

3.3. Characteristics of Shear Stress and Heat Flux

Understanding the total wall stress and heat flux modifications can provide insight
into ow the angled ribs change the integral properties. Figure 11a presents he total shear
stress along the wall-normal direction in the outer coordinate at the matched Reynolds
number. The vertical position of the peak value for all cases occurred at y/δ0 ≈ 1, which
was nearly four times the height of the ribs, while, for the transverse rib case, the peak
value was found closely above the ribs. Maximal total stress was obtained in RC, while
the peak value of shear stress was roughly equal in RB and RD. However, the extent of
stress in the outer region increase, with decreasing rib angle. The dispersive and turbulent
components are depicted in Figure 12 to further investigate the distinct features of shear
stress and their spatial distribution in the cross-stream plane. The results, illustrated in
Figure 11b, show that the magnitude rank of dispersive stress was RC > RD > RB. Moreover,
no stress contribution came from the dispersive component in the transverse rib case due
tots homogeneity in the spanwise direction. In the first row of Figure 9, negative 〈ũṽ〉
occupied both the diverging and converging regions and the intensity of 〈ũṽ〉 above the
converging region first increased and then decreased. Furthermore, the strength of the
secondary motion in the diverging region grew consistently with decreasing rib angle,
leading to a higher magnitude of 〈ũṽ〉 in RD than that in RB. Turbulent stresses for all
V-shaped cases, displayed in Figure 11c, showed double peaks, including an inner and an
outer peak. The inner peak occurred in the vicinity of the rib crest, while the outer peak was
further away from the wall. The emergence of double peaks resulted from turbulent shear
stress with opposite signs forming above the diverging and converging regions. In the
second row, the negative turbulent shear stress played a dominant role under the rib crest,
while more positive spots appeared in the adjacent two sides of the ribs as the rib angle
decreased, consistent with the decreasing inner peak values shown in Figure 9a. Above
the crest of ribs, alternating positive and negative turbulent shear stress formed in the
LMPs and HMPs, that is, converging and diverging regions, respectively, creating a defect
between two peaks. Additionally, due to the faster attenuation of positive shear stress, the
second peak formed vertically away from the ribs. The distance of extent in the wall-normal
direction of the two components was consistent with that in the total shear stress.

 y/
0

 y/
0

 y/
0

Figure 11. Profiles of double-averaged (a) total shear stress, (b) dispersive shear stress and
(c) turbulent shear stress along wall-normal direction.

Contrary to the shear stress profiles, both RC and RD displayed relatively high total
heat flux, as illustrated in Figure 13. This was primarily due to the nearly equal dispersive
components in both cases. This behavior differed from the stress pattern, where the
secondary motion contributed the most in the middle angle case (RC). By comparing
Figures 12 and 14b, a change in the intensity of the dispersive component in the diverging
region was evident. For RD, a strong negative 〈ṽΘ̃〉 was found in the diverging regions,
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while the approximately equivalent strength of 〈ũṽ〉, relative to RC, is shown in Figure 12.
This significant difference offers new insights into the underlying dissimilarity mechanisms
in the turbulent transport of momentum and heat over ribbed surfaces.

Figure 12. Contours of time-averaged stress distributions in the wall-normal-spanwise planes:
(a–c) dispersive shear stress; (d–f) turbulent shear stress.

 y/
0

 y/
0

 y/
0

Figure 13. Profiles of double-averaged (a) total heat flux, (b) dispersive heat flux, and (c) turbulent
heat flux along the wall-normal direction.

Figure 14. Contours of time-averaged heat flux in the wall-normal-spanwise planes: (a–c) dispersive
heat flux; (d–f) turbulent heat flux.
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3.4. Decomposition of Velocity and Thermal Field

The contributions of constituents of C f and Ch were examined to determine the effect
of the secondary flow on the drag and heat transfer efficiency. The terms presented in
Equation (12) were derived from the RD identity by performing triple decomposition of
the mean transport equation of TKE and, subsequently, integrating from the wall to bulk
flow as follows:

C f =
2

U3
b

ν
∫ δ

0

(
∂〈u〉
∂y

)2
dy︸ ︷︷ ︸

C f ,V

+
2

U3
b

∫ δ

0
Pk,totdy︸ ︷︷ ︸

C f ,P

− 2
U3

b

∫ δ

0
Fibm,x〈u〉dy︸ ︷︷ ︸

C f ,ibm

+
2

U3
b

∫ δ

0
(〈u〉 −U∞)

(
〈u〉∂〈v〉

∂y
− 〈v〉∂〈u〉

∂y

)
dy︸ ︷︷ ︸

C f ,G

(12)

where C f ,V , C f ,P, C f ,ibm and C f ,G on the right-hand side of Equation (12) are the laminar
term, total production term, IBM forcing term and spatial growth term, respectively. The
detailed process of derivation is presented in Appendix A. Based on Equation (6), C f ,P can
be further divided into the dispersive production term, C f ,pt, and turbulent production
term, C f ,pd ∫ δ

0
Pk,totdy =

∫ δ

0

〈
u′′v′′

〉∂〈u〉
∂y

dy︸ ︷︷ ︸
C f ,pt

+
∫ δ

0
〈ũṽ〉∂〈u〉

∂y
dy︸ ︷︷ ︸

C f ,pd

. (13)

The decomposition of Ch and terms with analogous physical meanings are obtained
in a similar manner

Ch =
α

UbΘ2
b

∫ δ

0

(
∂
〈
Θ
〉

∂y

)2

dy︸ ︷︷ ︸
Ch,V

+
1

UbΘ2
b

∫ δ

0
PT,totdy︸ ︷︷ ︸

Ch,P

− 1
UbΘ2

b

∫ δ

0
Qibm

〈
Θ
〉
dy︸ ︷︷ ︸

Ch,ibm

− 1
UbΘ2

b

∫ δ

0

(〈
Θ
〉
− 1
)(
〈u〉

∂
〈
Θ
〉

∂x
+ 〈v〉

∂
〈
Θ
〉

∂y

)
dy︸ ︷︷ ︸

Ch,G

(14)

∫ δ

0
PT,totdy =

∫ δ

0

〈
v′′Θ′′

〉∂
〈
Θ
〉

∂y
dy︸ ︷︷ ︸

Ch,pt

+
∫ δ

0

〈
ṽΘ̃
〉∂
〈
Θ
〉

∂y
dy︸ ︷︷ ︸

Ch,pd

(15)

The contributions of these terms are shown in Figure 15. As expected, the dispersive
constituent was absent in the transverse rib case. C f ,V increased as the rib angle decreased
due to the reduction in impingement of the incoming flow, resulting in higher 〈u〉 un-
derneath the crests of ribs and generating large laminar effects. Conversely, turbulent
shear stress was suppressed in the presence of the angled ribs, thereby decreasing the
contribution of C f ,pt. Although the dispersive component in the RC case was significantly
higher than that in the RB case, no notable difference was observed when compared to
that in the RD case. For heat transfer patterns, the laminar component Ch,V accounts for a
considerable portion in the Stanton number and presents a different trend from the drag
pattern. RC had the largest laminar contribution in Ch, indicating limited temperature
gradient improvement when the rib angle exceeded 45◦. The contributions of dispersive
and turbulent components were similar to that of drag patterns. A remarkable difference
was the increased Ch,pd in RD relative to that in RC, which differed from that in C f ,pd. Since
nearly the same magnitude of dispersive flux was observed, as seen in Figure 13b, we con-
cluded that the excess of dispersive production in RD resulted from a higher temperature
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gradient in the near wall region. The IBM-related terms, C f ,ibm and Ch,ibm, contributed
more as the angle decreased. According to Fan’s research [21], boundary layer growth is
strongly related to the pressure gradient. Although the total mean pressure gradient was
zero in the cases presented, the appearance of ribs induced local non-equilibrium pressure
in the streamwise direction. As shown in Figure 5, the influence of pressure decreased
rapidly with a decreasing rib angle, exceeding 45◦. Therefore, the growth terms, C f ,G and
Ch,G, contributed less as the angle decreased in the V-shaped cases.

Figure 15. Comparison of contributions of different terms towards the total shear stress and heat flux.

3.5. Global and Local Reynolds Analogy

From the view of energy saving, the goal is for the ribbed wall to enhance heat transfer
performance without generating excessive additional drag. The Reynolds analogy was
used here as an indicator of heat transfer augmentation capacity under this criterion. The
Reynolds analogy was plotted globally and locally, in Figures 16 and 17, for each case to
investigate the performance of ribbed walls at different angles.

The Reynolds analogy factor s is defined as the ratio between the Stanton number and
drag coefficient and can be expressed as [20]

s ≡ 2Ch
C f

=
〈qtot〉Ub

〈τtot〉cp(Tw − Tb)
(16)

where C f and Ch are evaluated at matched Reynolds number. Value 2Ch/C f = 1 for smooth
wall boundary layer flow indicates the similarity in turbulent transport momentum and
heat evident in the present study without rough elements. In this study, s = 0.52, 0.43, 0.44
and 0.56 correspond to the four cases, as shown in the Figure 16. According to the definition,
a surface transports heat from wall to fluid more efficiently when s is large. Therefore, in the
present study, the largest Reynolds analogy was obtained in RD, indicating that, among the
angled ribs researched, ribs with 30◦ angle were favorable for heat transfer augmentation.

For clear visualization, the Reynolds analogy is shown in the C f /C f s − Ch/Chs coordi-
nate in Figure 16b, based on Rouhi [29], where C f s and Chs correspond to the skin friction
coefficient and Stanton number of the smooth surface at matched Reynolds numbers. In
general, the point located at the top left corner represents high heat transfer efficiency, and
the grey line denotes the smooth wall case. As shown in Figure 16b, RD generated a much
higher heat transfer coefficient than the transverse rib case, while producing less drag than
RC and, therefore, achieved the highest heat transfer efficiency.
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Figure 16. (a) Mean Reynolds analogy s of each case, (b) Mean Reynolds analogy in the
C f /C f s − Ch/Chs coordinate.

Figure 17. Investigation of local C f /C f s and Ch/Chs. (a,c,e,g) are the local Reynolds analogies at the
positions that crossed over the half range of the V-shaped ribs in the second-row figures. Only one
point is plotted in the transverse rib case for the periodicity in the spanwise direction. (b,d,f,h) are
the contours of C f /C f s and Ch/Chs in the x− z coordinate for each case.

The local distribution of Reynolds analogy factor in the x− z plane is presented in
Figure 17. The Reynolds analogy values at points sampled from diverging region to con-
verging region (marked with point P1 and P2, respectively) were plotted in Figure 17a,c,e,g
for each case. The spatial distribution of C f /C f s and Ch/Chs were contoured in the second
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and third columns of the figure. In the diverging region, both positive and negative drag
existed in the cavity. As discussed in Section 3.1, steady recirculated flow formed near
the leeward faces, and the reattachment point moved towards the leeward face with a
decreasing rib angle, resulting in an increase in the area of contact between the wall and
high-speed fluid. This is reflected in the second column of Figure 17, where the blue area,
representing negative drag in the diverging region, decreased with decreasing angle. In
the ribbed area of the diverging region, the pressure difference between the windward
and leeward walls was the primary source of drag. As observed in Figure 17, as the angle
decreased, the formed drag became increasingly concentrated on the ribs at the windward
angle as the angle decreased. This phenomenon is primarily attributed to the stronger sec-
ondary flow in cases with sharper angles. In terms of the Stanton number in the diverging
region, cases with sharper ribs’ angles exhibited better heat transfer performance, due to
the smaller size of the recirculation zone in the cavity, which led to accumulation of heat.
Consistent with the above analysis, P1, which represents the s in the diverging region in
Figure 17c,e,g, gradually became close to the “smooth wall line” as the rib angle decreased,
indicating higher heat transfer efficiency. RD showed the best heat transfer efficiency in the
diverging region, due to its greatest heat transfer gain.

In the transition region, which ranged from point P1 to P2, many points were dis-
tributed near the “smooth wall line” for all V-shaped rib cases, indicating enhancement
in heat transfer efficiency in this region. This was mainly due to the fact that C f /C f s
decreased faster than Ch/Chs from P1 to P2, in other words, from the diverging region to
the converging region, for the V-shaped rib cases. This trend was more pronounced at
smaller angles. When C f /C f s decreased to around 5, the points were densely distributed
near the line in RD, indicating a relatively high heat transfer efficiency region near P2.
However, in this region, both C f /C f s and Ch/Chs were low and showed less effect on total
shear stress and heat flux.

Additionally, the Reynolds analogy in the windward angle (marked with P1) became
larger with decreasing rib angle, due to the higher Ch/Chs, and C f /C f s was almost un-
changed, indicating that the heat transfer efficiency gradually improved from 90◦ to 30◦

in the diverging regions. In the converging area, marked with P2, lower streamwise fluid
velocity led to the accumulation of heat and generated a smaller temperature gradient.
Thus, low heat transfer efficiency was obtained in this area, especially in the central line of
the V-shaped ribs. Differing from the diverging region, values of s within the converging
area were distributed around the reference line with no significant difference found for
all cases, suggesting that this area played no dominant role in changing the heat trans-
fer efficiency. The heat transfer performance in immediate areas, ranging from P1 to P2,
varied significantly among the three V-shaped cases. In this area, the Reynolds analogy
consistently changed from the value of P1 to the value of P2 in a convex form, with some
points exceeding the diagonal line. The curvature of the convex line was linked with the rib
angle, with more points above the reference line in the 30◦ rib case than in other cases. This
indicated that most RD regions were heat-transfer friendly. Based on the above discussion,
the immediate region with high heat transfer originated from the more rapid decline of
C f /C f s than Ch/Chs from P1 to P2, and the increasing width of this region contributed
more to heat transfer efficiency when the rib angle decreased.

4. Conclusions

To investigate the influence of rib angle on friction factor and Stanton number, DNSs
of thermal turbulent boundary layer flow over ribbed surfaces were performed. Four
rib angles, set to 90◦, 60◦, 45◦ and 30◦, were considered in the present study. Data were
collected at Reθ ≈ 2200 and a constant Prandtl number of Pr = 0.71 was chosen. Among
the configurations, the 45◦ rib case introduced the highest drag coefficient, while the 30◦

rib case exhibited the best heat transfer performance.
The profiles of mean streamwise velocity in wall-normal direction for V-shaped cases

showed significant differences to that of the transverse rib case, suggesting a break of
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the outer-layer similarity. Streamwise velocity was enhanced, ranging from the wall to
nearly seven times the height of the ribs and was then suppressed up to the boundary layer
edge. A similar trend was observed in the temperature profile, albeit with smaller variation
in amplitude. The physical mechanism behind these split regions was investigated by
analyzing the spatial distribution of mean spanwise velocity and temperature in x− y and
y− z planes. As the rib angle decreased, recirculations within the cavities between ribs in
the diverging region became smaller and the shear layer over the rib crests became stronger,
contributing higher 〈u〉 and 〈Θ〉 in the near wall region. The LMPs induced by secondary
motion were responsible for the lower streamwise velocity and temperature further away
in the outer region.

Dispersive and turbulent stress and heat flux were studied. The ranking of dispersive
stress intensity near the rib crests was RC > RD > RB, and for the dispersive heat flux it
was RC ≈ RD > RB. Depressions were observed at the location of the peak value in the
dispersive profiles for both shear stress and heat flux patterns in V-shaped cases, and in
turbulent components for V-shaped cases in both shear stress and heat flux patterns. To
further investigate the specific physical mechanism responsible for the variations in drag
and heat transfer performance, decompositions of C f and Ch, based on the extended RD
identity, were examined. The results showed higher dispersive, and nearly equal, turbulent
heat fluxes, compared to those in the 45◦ rib case, were the main reason for enhancement of
heat transfer in the 30◦ rib case.

The global Reynolds analogy factor s was presented. The 30◦ rib case achieved the
best heat transfer efficiency (s = 0.56), due to its lower drag coefficient, compared to the 45◦

rib case. The local Reynolds analogy factor was calculated, ranging from the converging to
the diverging region. In the diverging region, s became larger with decreasing rib angle,
while it remained almost unchanged in the converging region, with lower C f and Ch. In
the intermediate region, a sharper rib angle induced faster decline of C f than Ch, resulting
in an improvement in the global Reynolds analogy factor.
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Appendix A. Grid Refinement

A grid-refinement analysis was performed to evaluate the sufficiency of the mesh in
accurately resolving the momentum and heat transport. Calculations were performed on a
finer mesh with a resolution of 799 × 309 × 192 for RA. The mean streamwise velocity and
temperature above the crest (position A) and in the center of the cavity (position B) for two
resolutions are presented in Figure A1. The results showed good agreement between the
two simulations, indicating sufficient accuracy of the DNSs presented.
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 y  y

Figure A1. Grid refinement study: (a,b) streamwise velocity 〈u〉 and (c,d) dimensionless temperature
〈Θ〉 in position A and B, respectively.

Appendix B. Decomposition of Reynolds Stress and Heat Flux

We decomposed the decomposition of C f and Ch based on the method proposed by
Wei [30]. The double-averaged momentum balance equation for turbulent boundary layer
flow with immersed boundary forcing term can be written as

0 = 〈u〉∂〈v〉
∂y
− 〈v〉∂〈u〉

∂y
+ ν

∂2〈u〉
∂y2 −

∂
〈

u′v′
〉

∂y
−

∂
〈

u′u′
〉

∂x
+ Fibm,x (A1)

the fifth term in the right hand side of Equation (A1) is the spatial derivative in the x
direction of the Reynolds normal stress, which can be neglected in smooth wall boundary
layer flow [22,30]. As shown in Figure A2, ∂u′u′/∂x and ∂u′Θ′/∂x was small compared
to ∂u′v′/∂y, and ∂v′Θ′/∂y both underneath and above the ribs. Therefore, ∂u′u′/∂x and
∂u′Θ′/∂x could also be neglected in turbulent boundary layer flow with ribs.

Integrating Equation (A1) from wall to boundary layer edge using the boundary
condition yields: 〈u〉 = 0,〈v〉 = 0 and 〈u′v′〉 = 0 at wall; 〈u〉 = 1 and 〈u′v′〉 = 0 at the
boundary layer edge

ν
∂〈u〉
∂y
−
〈

u′v′
〉
= ν

∂〈u〉
∂y

∣∣∣∣
w
−
∫ y

0
Fibm,xdy−

∫ y

0

(
〈u〉∂〈v〉

∂y
− 〈v〉∂〈u〉

∂y

)
dy (A2)

we obtain the wall shear stress at y = 0

〈τtot〉
ρ

= ν
∂〈u〉
∂y

∣∣∣∣
w
−
∫ δ

0
Fibm,xdy = u2

τ (A3)

substitution of wall shear stress in Equation (A2) and transformation yield:

ν
∂〈u〉
∂y
−
〈

u′v′
〉
= u2

τ +
∫ δ

y
Fibm,xdy−

∫ y

0

(
〈u〉∂〈v〉

∂y
− 〈v〉∂〈u〉

∂y

)
dy (A4)
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multiply the Equation (A1) by a weight function 〈u〉:

0 = ν
∂2〈u〉
∂y2 〈u〉 −

∂
〈

u′v′
〉

∂y
〈u〉+ Fibm,x〈u〉+

(
〈u〉∂〈v〉

∂y
− 〈v〉∂〈u〉

∂y

)
〈u〉 (A5)

integrate Equation (A5) in wall-normal direction and substitute the relation (A4) resulting in

0 =ν
∂〈u〉
∂y
〈u〉 − ν

∫ y

0

(
∂〈u〉
∂y

)2
dy−

{〈
u′v′

〉
〈u〉 −

∫ y

0

〈
u′v′

〉∂〈u〉
∂y

dy
}

+
∫ y

0
Fibm,x〈u〉dy +

∫ y

0

(
〈u〉∂〈v〉

∂y
− 〈v〉∂〈u〉

∂y

)
〈u〉dy

(A6)

More information about the integration is discovered by rearranging the terms and taking
advantage of the definition of C f . Eventually, we obtain the decomposition of drag friction
based on RD identity:

C f =
2

U3
b

ν
∫ y

0

(
∂〈u〉
∂y

)2
dy +

2
U3

b

∫ y

0
Pk,totdy− 2

U3
b

∫ y

0
Fibm,x〈u〉dy

+
2

U3
b

∫ y

0
(〈u〉 −Ub)

(
〈u〉∂〈v〉

∂y
− 〈v〉∂〈u〉

∂y

)
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(A7)

The procedure of decomposing Ch follows the same manner.

0 = −
(
〈u〉

∂
〈
Θ
〉

∂x
+ 〈v〉

∂
〈
Θ
〉

∂y

)
+ α

∂2〈Θ〉
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∂
〈

v′Θ′
〉

∂y
+ Qibm (A8)

Integrate double-averaged mean dimensionless energy Equation (A8) in the wall-
normal direction leading to

α
∂
〈
Θ
〉

∂y
−
〈

v′Θ′
〉
= 〈q〉+

∫ δ
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Qibmdy +

∫ y

0

(
〈u〉

∂
〈
Θ
〉

∂x
+ 〈v〉

∂
〈
Θ
〉

∂y

)
dy (A9)

At the wall, we obtain the wall heat flux (A10) using the analogous boundary condition
stressed in the velocity pattern

〈qtot〉
ρcp

= α
∂〈Θ〉

∂y
|w −

∫ δ

0
Qibmdy (A10)

Multiplying Equation (A8) by 〈Θ〉 leads to Equation (A11) and further integrating this
relation from y = 0 to position y results in Equation (A12)

0 = −
(
〈u〉

∂
〈
Θ
〉

∂x
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〉
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(A11)
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∂
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0
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〉∂
〈
Θ
〉
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+
∫ y

0
Qibm

〈
Θ
〉
dy

(A12)

Similarly, we obtain Equation (A13) by substituting the heat flux relation in Equation (A12)
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〈q〉
ρcp

〈
Θ
〉
=α

∫ y

0
(

∂
〈
Θ
〉

∂y
)2dy−

∫ y

0
PT,totdy +

(〈
Θ
〉 ∫ δ

y
Qibmdy +

∫ y

0
Qibm

〈
Θ
〉
dy
)

−
∫ y

0

(
〈u〉

∂
〈
Θ
〉

∂x
+ 〈v〉

∂
〈
Θ
〉

∂y

)〈
Θ
〉
dy +

〈
Θ
〉 ∫ y

0

(
〈u〉

∂
〈
Θ
〉

∂x
+ 〈v〉

∂
〈
Θ
〉

∂y

)
dy

(A13)

and, finally, the decomposition of Ch can be expressed as:
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Figure A2. Spatial derivatives of Reynolds stress and heat flux in case RC: (a) ∂u′u′/∂x and ∂u′v′/∂y
underneath the ribs (y/H = 0.5); (b) ∂u′u′/∂x and ∂u′v′/∂y above the ribs (y/δ = 0.3); (c) ∂u′Θ′/∂x
and ∂v′Θ′/∂y underneath the ribs (y/H = 0.5); (d) ∂u′Θ′/∂x and ∂v′Θ′/∂y above the ribs (y/δ = 0.3).
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