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Abstract: One of the challenges posed by renewable energies is the stabilization of parameters related
to the quality of electrical energy. This study demonstrates the existence of a relationship between
input blocks of hydropower and the variation of the fundamental frequency of the electricity grid. By
mapping production data provided by the Spanish Electric Network with frequency measured in the
laboratory, it is shown that gradients of hydropower are correlated with frequency fluctuations for
certain characteristic times. Considering hourly instances of energy input, the study compares two
methods for calculating hydropower gradients (linear regression and pseudo-linear regression) and
two methods for calculating local frequency extrema (the “specular inertia” method and analysis by
comparison with the moving average) in order to corroborate the results.

Keywords: correlation power frequency; frequency stability; hydropower; power quality analysis

1. Introduction

The electricity grid is a complex system that interconnects generators and consumers
of electricity through transmission and distribution infrastructure. The frequency of the
supplied voltage is thus a critical parameter that must be kept constant and resilient despite
the numerous factors that affect its stability. In the context of an electricity grid, resilience
means the ability to withstand and reduce the magnitude and/or duration of disruptive
events, including the capability to anticipate, absorb, adapt to, and/or rapidly recover
from such an event. Indeed, variations in the frequency of the electrical grid can have
serious consequences at the local and large-scale levels, including blackouts and damage
to electrical equipment [1,2]. To be more concise, the frequency range for synchronous
systems imposed by the UNE-EN 50160:2011 standard for synchronized networks is the
following [3]:

• 50 Hz ± 1% during 99.5% of the year.
• 50 Hz + 4%/− 6% during 100% of the time.

This standard also mentions that the frequency must be measured using 10-s periods.
In the last decade, a considerable increase in frequency fluctuations in the grid has

been detected, mainly due to the penetration of distributed renewable energy sources [4]
and synchronous generators being replaced by power inverters. This is primarily due to
the global reduction of grid inertia: converter-based generators have a much lower inertia
than a rotating synchronous generator, and thus lead to a greater degree of instability in
the electricity grid frequency [5]. Additionally, certain renewable energy sources, such as
solar photovoltaic or wind power, are unpredictable, fluctuate, and introduce new terms of
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randomness in addition to traditional sources of internal noise into the process of stability
characterization [6,7].

Nonetheless, not all the energy sources will act the same way on the frequency be-
haviour. This paper attempts to characterize the difference regarding the energy sources
that have been known to have a major correlation with the electricity grid frequency.

Unscheduled energy demand also affects grid stability. For example, during high
demand periods, such as peak hours, generation may not be sufficient to meet it, causing
subsequent frequency fluctuations. Therefore, adequate control and automatic regulation
systems are necessary to maintain a sufficient level of relative stability. In these systems,
monitoring, analysis, and characterization of the fluctuation pattern play a crucial role [8,9].

In this paper, after performing a data analysis with MATLABTM, the hourly points
of maximum and minimum frequency were detected using two different algorithms. The
frequency data was obtained based on the methods described in previous work [10]. Ana-
lyzing the production data provided by the official website of the Spanish Electric Network,
we searched for a relationship between different energy sources, including renewable
sources (wind, solar photovoltaic, hydropower, and solar thermal), and combined-cycle
power plants [11].

The results show that the gradient of hydropower is correlated with the appearance of
the aforementioned local frequency maxima and minima; while the gradient is positive, the
tendency is the appearance of maxima, with the same relationship between the negative
gradient and minima.

On the one hand, this characterization will allow for quantitative information on the
range of frequency variation in a real case. On the other hand, correction mechanisms for
corrective maintenance actions can be implemented based on the models.

The paper is structured as follows: After this introduction, the methodology is pre-
sented in the next section. Section 3 details the interpretation of the results obtained and is
subsequently discussed. Finally, the conclusions are drawn in Section 4.

2. Experimental Methodology

Two datasets have been used: measurements of the frequency and production data of
the grid.

The former is extracted from a database of the research group PAIDI-TIC-168 at the
University of Cadiz. This dataset collects the values of the grid frequency measured every
10 s online.

The second dataset collects grid power production data, which includes real, fore-
casted, and scheduled power, as well as power generated from different energy sources
(nuclear, coal, combined-cycle, renewables, etc.) [12].

First, the network signal was acquired at the Algeciras Technical School of Engineering
(Algeciras, Spain) using hardware, which essentially consists of a chassis and a data
acquisition card (DAQ) from the manufacturer NI™, which receives on one hand the
voltage input (50 Hz, 230 V RMS) of the electricity grid, and, on the other hand, the pulsed
signal (1 PPS) from the GPS receiver (Symmetricon™) [10].

Once the frequency signal was obtained, several sudden fluctuations in the instanta-
neous frequency of the grid were identified, which occurred during the hourly blocks of
the electricity market, i.e., during peak hours.

In order to search for fluctuations or “peaks,” it is mandatory that we first define
this concept. In this paper, we understand a peak as a local maximum or minimum that
surpasses a certain threshold imposed by our algorithms and it is produced in an hour on
the hour. That threshold is lower than the actual limits imposed by the norm, so we can
thoroughly study not only the points that fall outside the norm but also the potential points
that can provoke that situation.

Two algorithms have been programmed to search for these changes using MATLABTM

software, which are detailed below:

• “Specular inertia” method:
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This method is based on stabilizing signals with weak damping around a final value.
An algorithm was developed using the MATLABTM (2022b version, MathWorks) func-
tion “Findpeaks”, which locates local extrema. The method identifies the first location
using the “MinPeakHeight” and “MinPeakDistance” parameters of the “findpeaks”
function, and identifies the second location by first inverting the signal so that the
local minimum of the signal becomes the local maximum, and then using the same
parameters to locate the R peak. Under these conditions, a search for these extrema
was performed, and the algorithm identified the following extrema over the course of
a month.

• Comparison with the moving average-based method:

This method is based on comparing the 10-min moving average of the frequency with
the current value in conjunction with an absolute extremum finder algorithm, working
within a certain time window. If the comparison value at the absolute extremum
between the moving average and the actual signal exceeds a certain threshold and
falls within the range of an hourly block in the electricity market, at each hour on the
hour, it is identified as a local maximum or minimum extremum, depending on its
value.

In Figures 1 and 2 we appreciate the flowchart of the “specular inertia method” and
the detected points with the algorythm, whereas in Figures 3 and 4 we witness the same
information but for the comparison with the moving average-based method.
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Figure 1. Flowchart of the “specular inertia” method. Figure 1. Flowchart of the “specular inertia” method.

As a clarification, in Figures 2 and 4, there are several detected points whose peaks are
extremely narrow. This is due to both the scale of the image and the sample time of the
frequency data (10 s).

It is also important to note that grid frequency is somewhat a measure of the grid’s
health, as it reflects its ability to balance and correct differences between supply and
demand. In this context, inertia has historically been an important issue of reliability in the
electric grid. Indeed, rotating electrical generators in fossil and hydroelectric power plants
(and eventually in nuclear power plants) represent sources of stored energy that is usually
withdrawn for a few seconds to provide the grid time to respond to the power plant or
other system failures. This is why, in this paper, the sharpness of the peaks provides a
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qualitative indication of the grid inertia. Inertia is negligible for renewable resources in
comparison with hydropower [4,5].
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Later on, the gradient of hydropower will be used to test the hypothesis that maxima
tend to occur in situations where there is an increase in hydropower, and conversely, where
there are minima, there is a decrease in hydropower.

To calculate this gradient, production data, which is provided every 5 min, is used.
The objective is to obtain an average gradient per hour in order to compare it with the
hourly maxima and minima and determine the average slope at which they occur.

Since there are 12 production data points in an hour (one every 5 min), they are divided
into 3 blocks of 4 data points. The average of each block is calculated, and with those 3
averages, the increase of the first block average with the second block average and the
increase of the second block average with the third block average are calculated, concluding
with the average of both increases. This average will be the hourly value of the gradient
used in subsequent sections. Figure 5 graphically represents the described method with an
example dataset.
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moving average-based method.
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Figure 5. Theoretical example of the pseudo-linear regression method.

With the MATLABTM function “Polyfit,” we obtain the coefficients of the regression
line of the analyzed data by means of the following line of code.

[r,~,mu] = polyfit(minute,Hydropower,1);

The polyfit function is given as input the time base, the hydroelectric power, and one,
which refers to the degree of the polynomial of fit of the regression line. These polynomials
are calculated 1 for each slope; that is, we will have 24 polynomials each day. We show an
example of one of the regression lines.

As an output, the MATLABTM function returns r and mu, where r is a vector of the
coefficients of the polynomial, and mu is a vector that represents the mean and median of
said line (statistical values of the regression line).

r = 354.3x + 1013.8
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3. Data Interpretation

To obtain the results presented in this section, the “specular inertia” method was used
to obtain maxima and minima, and the “pseudo-linear regression” method was used to
obtain the gradients of the hydropower.

After collecting the local extrema, the data is represented through various graphs
to facilitate comprehension and observation. First, we look at histograms differentiating
between local maxima and minima, classified by whole month, weekdays, and weekends,
to see if there are any different patterns in these time intervals throughout the month.

In Figure 6, the classification of the extrema identified with the algorithm is observed
for both the whole month (July) and weekdays/weekends. Throughout the month, the
extrema occur within a specific time period; in the case of local minima, between 9 p.m. and
4 a.m. We will look at other months to compare this observation. November and October
are represented in Figures 7 and 8 respectively:

Energies 2023, 16, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 6. Maxima and minima hourly histogram for July 2022. 

 

Figure 7. Maxima and minima hourly histograms for November 2022. 

Figure 6. Maxima and minima hourly histogram for July 2022.

Energies 2023, 16, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 6. Maxima and minima hourly histogram for July 2022. 

 

Figure 7. Maxima and minima hourly histograms for November 2022. 
Figure 7. Maxima and minima hourly histograms for November 2022.



Energies 2023, 16, 3832 7 of 13
Energies 2023, 16, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 8. Maxima and minima hourly histograms for October 2022. 

We can see that the trend of the occurrence of the extrema is the same in both months. 

As the points identified by the algorithm fall within a specific time period, the next 

step is to relate these extrema to the grid energy sources. For this purpose, the above 

histogram is represented on the same graph as the forecasted power curve for November 

2022. 

In Figure 9, we observe the relationship between the localized minimum points and 

the downward trend of the predicted power gradient, while no relationship is observed 

between the detected maximum points and the upward trend of the predicted power. In 

order to look for any pattern that relates the maximum and minimum points localized by 

the algorithm, in Figure 10, we represent the points along with various renewable sources 

(wind power, PV solar, thermal solar, and hydropower) along with the maximum and 

minimum points represented by the symbols ‘o’ and ‘x’, respectively.  

 

Figure 9. Maxima and minima hourly histogram for November 2022, along with the forecasted 

power curves. 

Figure 8. Maxima and minima hourly histograms for October 2022.

We can see that the trend of the occurrence of the extrema is the same in both months.
As the points identified by the algorithm fall within a specific time period, the next step

is to relate these extrema to the grid energy sources. For this purpose, the above histogram
is represented on the same graph as the forecasted power curve for November 2022.

In Figure 9, we observe the relationship between the localized minimum points and
the downward trend of the predicted power gradient, while no relationship is observed
between the detected maximum points and the upward trend of the predicted power. In
order to look for any pattern that relates the maximum and minimum points localized by
the algorithm, in Figure 10, we represent the points along with various renewable sources
(wind power, PV solar, thermal solar, and hydropower) along with the maximum and
minimum points represented by the symbols ‘o’ and ‘x’, respectively.
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Figure 10. Comparison of the power generated by combined-cycle plants with power sources from
distributed renewable energies: maximum and minimum points corresponding to May 2022.

As shown in Figure 10, we can observe at a glance that no energy source has a
relationship with the localized points except for two: hydropower and combined-cycle.
In both cases, we notice a higher probability for localized maximum points to appear
when there is an upward trend of power, and localized minimum points in sections with a
downward trend of power. This effect is even more noticeable with hydropower, so we are
going to focus the rest of the paper on this exact energy source.

Note that, in Figure 10, we are also considering the negative part of the power. This is
due to some energy sources, such as solar thermal consuming power instead of generating
it over certain time spans due to the automatic regulation system of the grid.

If we acquire the hydropower, combined-cycle, and wind power information from
Figure 10 and represent it with a histogram for any given month as shown in Figure 7, we
obtain Figure 11.
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Figure 11. Maxima and minima hourly histogram for 27 April 2022, along with hydropower,
combined-cycle, and wind power curves.

In Figure 11, we observe in greater detail the aforementioned assertion. We can
observe that when the hydropower power curve tends to decrease, localized minimum
points appear (orange bars), and when it tends to increase, localized maximum points
appear (blue bars).
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For combined-cycle, the same affirmation can be made to a lesser extent, but for wind
power, no correlation between the power curve and the extrema has been found.

Later in this paper, we will corroborate all these assertions statistically.
However, this representation shows only one day of power. If we calculate the hourly

gradients only for the hydropower curve and represent the values of these gradients on a
single histogram, we obtain the following representation.

In Figure 12, we can clearly notice that when localized minimum points appear,
the slopes at which these minimum points occurr tend to be negative for the most part,
representing a downward trend of the power curve. On the contrary, if we look at the
areas of local maxima, we see that most of the gradients are positive, which represents the
upward trend of the hydropower curve.
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Figure 12. Maxima (blue) and minima (orange) hourly histogram for November 2022, along with the
hourly hydropower gradient.

Table 1 shows the percentage of sign similarity of the gradients calculated using the
pseudo-linear and linear regression methods. This indicates that both methods have a very
high percentage of similarity in terms of the upward and downward trends, which are the
focus of Figure 12.

Table 1. Sign similarity percentage between pseudo-linear and linear regression.

Month Sign Similarity Accuracy Percentage (%)

April 98.88
May 99.46
June 97.63
July 97.58

August 98.92
September 99.16

October 98.25
November 97.50
December 97.84

Average 98.36

It is important to note that the scale of hydropower gradient in Figure 12 is 1:50 to
allow for a better representation of the data.

Finally, a scatter plot was created to confirm the veracity of the relationship between
the hydropower gradient and the locations of the maximum and minimum points.

In Figure 13, we represent the values of the hourly slopes of the hydropower on the
X-axis and, on the Y-axis, the hours at which these maxima or minima have occurred.
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Positive values on the Y-axis represent the hours where maxima have occurred, and
negative values represent the hours where minima have occurred. Therefore, we see that
quadrants 1 and 3 of the diagram contain the most localized points. Quadrant one indicates
positive gradient values and local maxima obtained by the algorithms, while quadrant
three indicates negative gradient values and local minima filtered by the algorithm.
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December 2022.

Table 2 shows the percentage of local maxima and minima found in the first and third
quadrants, respectively, as seen in Figure 13.

Table 2. Accuracy percentage of maxima and minima with their respective gradient signs
for hydropower.

Month Maxima with Positive Gradient
Accuracy Percentage (%)

Minima with Negative Gradient
Accuracy Percentage (%)

April 89.65 89.59
May 90.97 87.77
June 73.63 85.48
July 74.48 81.89

August 71.42 87.50
September 85.71 92.15

October 73.39 81.82
November 83.52 84.10
December 82.67 78.46

Average 80.60 85.42

These statistical results support the hypothesis that local frequency maxima are cor-
related with the positive gradient of the hydropower, while local frequency minima are
correlated with the negative gradient of the power.

In Tables 3 and 4, we can observe the accuracy percentage of matching maxima and min-
ima with positive and negative gradients for combined-cycle and wind power respectively.

These results lead us to the conclusion that hydropower has the strongest relationship
with the maximum and minimum values: the positive gradient of hydropower is correlated
with a higher chance to detect a maximum, while the negative gradient is correlated with
a minima appearance. Nonetheless, as mentioned earlier, the gradients of power from
combined-cycle have a significant correlation with the extrema that cannot be ignored.
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However, in the case of wind power, no statistically significant correlation has been found
with the extrema.

Table 3. Accuracy percentage of maxima and minima with their respective gradient signs for
combined-cycle power.

Month Maxima with Positive Gradient
Accuracy Percentage (%)

Minima with Negative Gradient
Accuracy Percentage (%)

April 83.00 78.61
May 88.19 79.44
June 71.81 75.80
July 76.53 84.48

August 71.42 87.50
September 82.85 88.23

October 72.58 88.31
November 80.22 81.82
December 81.33 70.00

Average 78.66 81.57

Table 4. Accuracy percentage of maxima and minima with their respective gradient signs for
wind power.

Month Maxima with Positive Gradient
Accuracy Percentage (%)

Minima with Negative Gradient
Accuracy Percentage (%)

April 45.00 54.33
May 56.25 57.78
June 47.27 61.29
July 53.06 59.48

August 71.42 64.58
September 58.50 62.74

October 46.77 52.59
November 38.46 40.15
December 52.00 51.53

Average 52.08 56.05

This paper has shown that hydroelectric power affects the frequency of the network
more than the rest of the energy resources, mainly due to its impulsive nature, but its degree
of affectation falls within the margins contemplated by the UNE-EN 50160:2011 standard
for synchronized networks. The rest of the energy resources do not significantly affect the
rate of change in frequency. The resilience of the network is therefore demonstrated. In real
practice, this is achieved thanks to the introduction of automatic regulation techniques and
procedures that are not the subject of this paper but are discussed hereinafter in order to
establish the necessary link between cause and effect. These new tools and control solutions
facilitate the integration and greater penetration of renewable sources without implying
a reduction in the capacities of the electrical system in terms of stability and response to
eventualities. They are based on advanced electrical systems that use the machine’s own
inertia, effectively integrating the renewable resource into the frequency control of the
electrical system.

The present research has shown that the stability of critical parameters, such as fre-
quency, before the introduction of renewable sources as a response to sudden demands is
currently guaranteed. The adaptation of new tools and solutions facilitates the integration
of renewable sources without implying a reduction in the capacities of the system elec-
tricity in terms of stability and response to contingencies. This fact enables the large-scale
introduction of renewable resources.
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4. Discussion

The study reveals a strong correlation between the gradient of hydropower and
the frequency variations of the Spanish electric grid; however, due to design limitations
and unmeasured factors, a causal relationship between these two variables cannot be
demonstrated. Therefore, caution is important when interpreting these results, and fur-
ther research is needed to determine whether the observed correlation is due to a causal
relationship or other factors that have not been considered in this study.

The main reason for this correlation could be attributed to the ability of hydropower
plants to introduce large amounts of energy into the electricity grid in a relatively short
period of time. Since the frequency of the electricity grid is directly proportional to the
amount of energy supplied and consumed, sudden changes in hydropower could have a
significant impact on the grid frequency.

It is important to note that abrupt frequency variations in the electricity grid can have a
negative impact on the country’s industrial equipment. This is because electrical equipment
is designed to operate within specific frequency and voltage limits, and variations outside
these limits can cause mechanical stress and strain that can damage internal components
and reduce equipment efficiency [2].

Therefore, it is essential to implement ad hoc measures to control the frequency and
voltage of the electricity grid and minimize abrupt variations while maintaining the stability
and quality of the supplied electrical energy. In addition, it is essential that industrial
equipment be designed to withstand frequency and voltage variations within established
limits to avoid damage and loss of efficiency.

Finally, it should be noted that despite the limitations of this study, the results pro-
vide a solid foundation for future research seeking to determine causality between grid
frequency and hydropower. It is necessary to carry out studies that use more rigorous and
comprehensive methods, such as obtaining frequency data at a point near a hydropower
plant, as frequency disturbances will be measured more clearly at points closer to the source
of the disturbance than at points farther away.

The results of such investigations are useful for grid operators in the development of
strategies related to the implementation of renewable energy resources in the grid.
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