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Abstract: This study focused on Middle Permian Lucaogou Formation saline lake source rocks,
utilizing a combination of biomarkers and hydrocarbon generation thermal simulation to analyze
their biological compositions, depositional environments, and hydrocarbon generation potential.
The Pr/Ph ratio, Ph/nC18 ratio, and Pr/nC17 ratio indicate that the Lucaogou Formation was in a
reducing environment during the deposition period, and the lower part of the Lucaogou Formation
(P2l1) is more anoxic than the upper part of the Lucaogou Formation (P2l2). The maturity index
20S (%) and ββ (%) reflect that the maturity of organic matter in the P2l1 is slightly higher than that
in the P2l2. The G/H index and the ETR index indicate that the stratification of the water column is
better during the sedimentary period of Lucaogou Formation and the salinity of the P2l1 is higher
than that of the P2l2. The biomarker parameters of nC21−/nC22+, CPI, S/H, and C22T/C21T reflect
that the organic matter of the source rocks have a higher abundance of bacteria and algae than
higher plants, and the contents of bacteria are more than that of algae. The (7- + 8-MMAs)/Cmax

and (C28 + C29 − St)/St parameters indicate that cyanobacteria accounted for a certain proportion of
bacteria, and the algae are mainly green algae. The co-evolution of the sedimentary environment and
the biological composition reflects the control of the sedimentary paleoenvironment on biological
composition. According to the relative content of cyanobacteria, green algae, and Rhodophyta,
the source rocks of the upper and lower Lucaogou Formation correspond to the low-salinity type
(LS-type) and the high-salinity type (HS-type), respectively. Compared with LS-type source rocks,
HS-type source rocks have greater generation potential of oil and weaker gas generation potential.
This study is valuable for the accurate assessment of source rocks and holds significant practical
implications for the exploration of oil and gas resources.

Keywords: biomarker; synergistic evolution; hydrocarbon generation; Lucaogou Formation; Jimusar

1. Introduction

The source of organic matter and its accumulation in lacustrine source rocks are
key factors that control hydrocarbon generation and are important to assess during the
exploration and evaluation of oil and gas resources [1]. Therefore, it is very important
to find out the controlling factors of the biological source of organic matter in saline lake
source rocks. The biogenesis of organic matter in rocks has always been significant research
content in petroleum geology and organic geochemistry [2–5]. Due to the sensitivity of
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organic matter sources to environmental changes [4], lacustrine source rocks generally
show strong lateral and vertical heterogeneity [6]. Previous studies have summarized the
formation of source rocks and the enrichment of organic matter in ancient lakes under
different tectonic settings and paleoenvironments [7], such as the Green River Formation
type, the middle-deep lake type [8], the shallow lake type [9], and the anoxic lake model [10].
Specifically, the synergistic evolution of the sedimentary paleoenvironment and the source
rock organic matter [5] may cause differences in the hydrocarbon generation potential of
source rocks.

Different researchers have carried out in-depth research on the controlling factors of or-
ganic matter accumulation and petroleum generation. It is generally believed that the main
controlling factors are as follows: (i) the strength of primary productivity is particularly
important for the accumulation of organic matter and (ii) the abundance of organic matter
in source rocks is determined by the preservation conditions [11–14]. Changes in the pale-
oenvironment directly affect the characteristics of the biological community, the depth of
the lake, the salinity of the water body, and the paleo-oxygenation facies of the lake [15,16],
which also influences the type, enrichment, and preservation of the organic matter. The
geochemical characteristics of the source rock record paleoenvironmental signatures, which
indicates the source of the organic matter. Many shales that are sources of the hydrocarbons
trapped in the oil reservoir in northwestern China, such as the Fengcheng Formation (P1f )
in the Mahu Sag and the Lucaogou Formation (abbreviation is P2l) in the Jimusar Sag, are
associated with volcanic-hydrothermal activities [7,17,18]. Volcanic ash and hydrothermal
activities bring large amounts of nutrients that stimulate the development of phytoplankton
and cyanobacteria [19,20].

Previous studies have extensively investigated the elements and organic geochemistry
in the Lucaogou Formation and have identified differences between its upper and lower
parts [9,21,22]. However, the biomarker characteristics of the source rocks remain poorly
researched; notably, the sedimentary paleoenvironment of the P2l and the biological origin
of the organic matter. There has been limited quantitative research through the use of
temperature and pressure simulation experiments. The aim of this paper is to investigate
the variation in the hydrocarbon generation potential of organic matter derived from vari-
ous biological sources. Additionally, we will explore the co-evolution trend between the
evolution of paleoenvironments and biological sources. To achieve this, we will conduct
organic geochemical analyses and temperature–pressure simulation experiments to quan-
titatively analyze the differences in hydrocarbon generation among various source rocks
resulting from environmental changes. Firstly, with emphasis on the co-evolution of the
organic matter source and the environment, the characteristics and differences in the source
rocks from the upper and lower parts of the Lucaogou Formation (abbreviation is P2l2
and P2l1) will be analyzed by organic geochemical analyses; for instance, the maturity, the
formation environments, the enrichment factors, and the evolution pattern of the organic
matter. Secondly, the coupled simulation experiments in high temperature and pressure
will be used to analyze the hydrocarbon generation differences (the potential of oil and
gas generation) between the source rocks of the P2l2 and the P2l1. Finally, the organic
geochemical characteristics and the coupling simulation experiment data will be combined
in order to comprehensively evaluate the source rocks of the P2l2 and the P2l1.

2. Geological Setting

The Junggar Basin is located in northwest China (Figure 1a), and the Jimusar Sag is
located in the eastern uplift of the Junggar Basin [18] (Figure 1b). Based on the division of
the tectonic units in the Junggar Basin, the Jimusar Sag belongs to the second-order tectonic
unit, affected by Hercynian, Indosinian, Yanshan, and Himalayan multistage tectonic
movements successively [22]. In the interior of the depression, subsidence has occurred in
each tectonic movement period, and the periphery was surrounded by Shaqi uplift, Guxi
uplift, Beisantai uplift, and the Fukang fault zone, with obvious boundaries (Figure 1c).
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Permian strata in the Jimsar sag successively developed the Jiangjunmiao Formation, 
the Lucaogou Formation, and the Wutonggou Formation, from bottom to top [22]. Among 
those strata, the Permian Lucaogou Formation (P2l) is the primary strata for shale oil explo-
ration, which is developed in the inland lake environment under the sutures of the Tarim 
plate and the Junggar plate, dominated by semi-deep lacustrine facies [25,26]. The thickness 

Figure 1. Location and column-map sampling points of Well J305. (a) Location of Junggar Basin on a
map of China. (b) Sag distribution map of Junggar Basin. (c) Contour map of sedimentary thickness
of Lucaogou Formation in Jimusar Sag (Adapted with permission from Ref. [23]). (d) Lithology and
sampling points of Well J305 (modified with reference [24]).

Permian strata in the Jimsar sag successively developed the Jiangjunmiao Formation,
the Lucaogou Formation, and the Wutonggou Formation, from bottom to top [22]. Among
those strata, the Permian Lucaogou Formation (P2l) is the primary strata for shale oil
exploration, which is developed in the inland lake environment under the sutures of the
Tarim plate and the Junggar plate, dominated by semi-deep lacustrine facies [25,26]. The
thickness of the P2l is 200~300 m, and it develops siltstone mudstone, mudstone, shale, and
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tuffaceous dolomite with thin tuff, which are the major source rock series in the Jimusar
Sag [27].

The Lucaogou Formation (P2l) is divided into two parts: the lower part (P2l1) and the
upper part (P2l2), according to logging data and lithology characteristics [18] (Figure 1d).
In Well J305, the depth of the P2l1 is from 3486 to 3598 m, while that of the P2l2 ranges
from 3402 to 3486 m. The reservoir mainly consists of the following three types of rock:
dolomite siltstone, tuffaceous siltstone, and tuffaceous dolomite [27]. The organic-rich
shales interbedded with the reservoir in the “sweet spot” member are the main source
rocks and reach maturity at the “oil-generating window”. The source rocks of the lower
Lucaogou Formation may have good oil-generation potential [27]. They are currently
in a massive oil generation stage, forming a source–reservoir symbiosis and a proximal
accumulation mode. These reservoirs are targets for shale oil exploration [22].

The burial history of the Jimusar sag is shown in Figure 2. After the deposition of the
Lucaogou Formation, it underwent rapid and continuous subsidence. At the end of the
Triassic, the strata experienced regional tectonic uplift, but the Lucaogou Formation did not
erode at the surface. At the end of the Jurassic, small-scale uplift and denudation had little
effect on the evolution of the organic matter in the Lucaogou Formation. Due to regional
tectonic movement, the strata began to uplift in the late Cretaceous, and the Cretaceous
strata were eroded. At this time, the source rocks of the Lucaogou Formation were within
the hydrocarbon generation threshold. The strata were buried again in the late Cretaceous.
Furthermore, the present burial depth is the maximum burial depth of the strata [28].
According to vitrinite reflectance (Ro) characteristics, it is mainly distributed in a range of
0.7% to 1.0 %, indicating that the source rock evolution is in a stage of low maturity [29,30].
The paleogeothermal gradient at the end of the Permian was about 36.3 ◦C/km [31], while
the current geothermal gradient ranges from 27.5 to 35 ◦C/km [32].
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Figure 2. Burial and thermal history of P2l in the Jimusar Sag (Adapted with permission from
Ref. [28]). *Ro = 0.018 × Tmax − 7.16 (Reprinted with permission from Ref. [29]).

3. Samples and Experiments
3.1. Samples

Nineteen core samples were selected from Well J305 in the Jimusar Sag, Junggar
Basin. The lithology of the samples is mudstone of the Lucaogou Formation (sample
No.: Jl2-1~Jl1-19, Table 1 and Figure 1). Two samples (mudstone, Jl2-6 (*RO = 0.72) and
Jl1-15 (*RO = 0.80)) were selected for the hydrocarbon generation simulation experiment.
Samples Jl2-6 and Jl1-15 represent typical source rocks in the P2l2 and P2l1, respectively.
The above two samples were crushed to −80 mesh and extracted with dichloromethane to
remove soluble organic matter, which needs to be removed before the temperature–pressure
simulation experiments.
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Table 1. Biomarker parameters of source rocks within the Middle Permian Lucaogou Formation in the Jimusar Sag, Junggar Basin.

Stratum Sample
No.

Depth
(m) Lithology TOC

(%) * Pr/Ph nC21−
/nC22+

G/H * S/H 20S (%) * ββ (%) * ETR * C22T/
C21T 27% 28% 29% (C28 + C29 −

St)/St
(7- + 8-C18

MMAs)
/Cmax *

2α −
C32Meh/C32H *

P2l2

Jl2-1 3402 Mudstone 6.02 1.00 1.56 0.16 0.09 0.39 0.19 0.57 0.10 34% 22% 44% 0.66 9.29% 5.17%
Jl2-2 3410 Mudstone 7.30 0.93 1.61 0.17 0.10 0.39 0.18 0.47 0.10 36% 22% 42% 0.64 9.53% 5.01%
Jl2-3 3422 Mudstone 4.36 1.00 0.77 0.19 0.16 0.36 0.18 0.65 0.10 30% 26% 44% 0.70 6.32% 4.95%
Jl2-4 3430 Mudstone 5.02 0.93 1.62 0.20 0.18 0.37 0.18 0.58 0.10 34% 27% 39% 0.66 8.88% 4.25%
Jl2-5 3446 Mudstone 5.50 0.80 4.79 0.25 0.18 0.46 0.26 0.52 0.12 19% 37% 45% 0.81 9.42% 4.42%
Jl2-6 3450 Mudstone 5.94 0.90 0.51 0.22 0.22 0.36 0.20 0.75 0.11 29% 34% 37% 0.71 3.55% 5.33%
Jl2-7 3462 Mudstone 3.70 0.96 1.12 0.35 0.13 0.39 0.16 0.74 0.11 18% 34% 48% 0.82 7.16% 5.32%
Jl2-8 3470 Mudstone 2.83 0.88 0.77 0.22 0.36 0.37 0.18 0.66 0.11 26% 32% 42% 0.74 8.09% 5.34%
Jl2-9 3486 Mudstone 3.45 0.62 1.07 0.18 0.25 0.43 0.24 0.89 0.15 10% 36% 54% 0.90 11.60% 5.72%

Average of P2l2 4.90 0.89 1.54 0.22 0.19 0.39 0.20 0.65 0.11 26% 30% 44% 0.08 8.20% 5.06%

P2l1

Jl1-10 3498 Mudstone 6.08 0.68 2.61 0.24 0.26 0.43 0.21 0.87 0.12 11% 40% 49% 0.89 17.78% 5.96%
Jl1-11 3510 Mudstone 2.66 0.72 2.91 0.30 0.48 0.43 0.23 0.80 0.13 5% 34% 61% 0.95 18.04% 7.30%
Jl1-12 3518 Mudstone 7.55 0.63 3.29 0.18 0.42 0.43 0.21 0.88 0.12 18% 37% 45% 0.82 15.82% 5.63%
Jl1-13 3522 Mudstone 3.30 0.48 0.71 0.22 0.27 0.44 0.25 0.93 0.15 11% 35% 54% 0.89 13.65% 5.68%
Jl1-14 3538 Mudstone 3.19 0.46 0.66 0.26 0.45 0.45 0.24 0.87 0.14 8% 35% 57% 0.92 17.66% 5.67%
Jl1-15 3554 Mudstone 6.20 0.82 5.30 0.25 0.30 0.44 0.24 0.80 0.13 10% 35% 55% 0.90 14.64% 6.92%
Jl1-16 3562 Mudstone 7.58 0.85 4.10 0.26 0.25 0.45 0.26 0.72 0.13 8% 37% 55% 0.92 16.21% 6.25%
Jl1-17 3578 Mudstone 9.21 0.86 3.85 0.26 0.24 0.44 0.26 0.70 0.14 8% 37% 56% 0.92 15.00% 6.39%
Jl1-18 3582 Mudstone 5.15 0.72 0.82 0.21 0.24 0.44 0.26 0.75 0.14 10% 34% 56% 0.90 14.89% 6.05%
Jl1-19 3586 Mudstone 8.30 0.62 0.91 0.23 0.26 0.46 0.27 0.79 0.15 9% 36% 55% 0.91 16.36% 6.48%

Average of P2l1 5.92 0.69 2.52 0.24 0.32 0.44 0.24 0.81 0.14 10% 36% 54% 0.16 16.01% 6.23%

Note: TOC = Total organic carbon (wt%); Pr/Ph = Pristane/Phytane; nC21−/nC22+ = Short-chain n-alkanes (C21-)/Long-chain n-alkanes (C22+); G/H = Gammacerane/C30 hopane;
S/H = Stetane/Hopane; 20S (%) = C29sterane ααα20S/(20S + 20R); ββ (%) = C29sterane αββ/(αββ + ααα); ETR = (C28 + C29)/(C28 + C29 + Ts); C22T/C21T = C22 tricyclic terpane/C21 tri-
cyclic terpane; 27% = C27steranes/(C27steranes + C28steranes + C29steranes); 28% = C28steranes/(C27steranes + C28steranes + C29steranes); 29% = C29steranes/(C27steranes + C28steranes
+ C29steranes); (C28 + C29-St)/St = (C28 sterane + C29sterane)/(total sterane); (7- + 8-MMAs)/Cmax = (7- + 8-C18 Monomethylalkanes)/Maximum n-alkane; 2α − C32Meh/C32H =
2α − C32 methylhopanoids/C32 hopanoids (%). The data with ‘*’are adapted with permission from Ref. [24].
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3.2. Experiments

The experiments involved in this study mainly include two parts: the organic geo-
chemical analyses and the hydrocarbon generation simulation experiments.

3.2.1. Organic Geochemistry Experiments

Th organic geochemistry experiments consisted of the determination of TOC (total
organic carbon) content, Soxhlet extraction and separation, and GC–MS of saturated hy-
drocarbons. The determination of TOC was completed with a Leco CS230 carbon sulfur
analyzer, using the standard GB/19145-2003. The Soxhlet method was used to extract and
separate soluble organic matter from the samples. The purpose of extraction and separa-
tion was to obtain asphaltenes, non-hydrocarbons, aromatic hydrocarbons, and saturated
hydrocarbons of organic matter in the samples for further testing and analysis. Firstly,
more than 60 g of the sample was weighed with a balance, and it was crushed to >100 mesh.
The crushed sample was wrapped in filter paper and placed in an extractor. An excess of
the extract (methanol and dichloromethane mixture, volume ratio 1:9) was added to the
extractor for extraction for 72 h. Then, the extract was separated with a chromatographic
column (silica gel: activated alumina = 3:1). Finally, saturated hydrocarbons (non-polar),
aromatic hydrocarbons (weak polarity), resin (polarity), and asphaltenes (residues) were
obtained by washing with n-hexane, dichloromethane, and methanol, respectively.

GC–MS (gas chromatography–mass spectrometry, GCMS-AP2020NX, SHIMADZU)
was used to test the biomarkers. The GC–MS conditions were as follows: the inlet tem-
perature: 280 ◦C; carrier gas: high-purity helium; carrier gas flow: 1.2 mL/min; chromato-
graphic column: J & W.HP-5 (30 m × 0.25 mm × 0.25 µm) elastic quartz capillary column;
temperature programmed: after 80 ◦C, 4 ◦C/min rose to 290 ◦C, constant temperature for
30 min; MS ion source: EI source; ion source temperature: 230 ◦C; quadrupole temperature:
150 ◦C; ionization energy of ion source: 70 eV; and scanning mode: full scanning.

3.2.2. The Thermal Simulation Experiments

Using the temperature compensation time principle, the thermal simulation experi-
ment can effectively evaluate the hydrocarbon generation potential of source rocks [22,33].
The differences in the oil and gas generation behavior of the samples were compared,
which provided an important theoretical basis revealing the mechanism of the oil and gas
generation of source rocks and demonstrating their geochemical characteristics.

The semi-confined thermal simulation experiments were carried out using the WYMN-
3 temperature–pressure simulator. Compared with the conventional closed experimental
system, this instrument could effectively reduce the secondary cracking of heavy hydrocar-
bons and asphalt in the experimental process. It simulated the actual formation pressure
of the rock samples by two axial pressures and interjected high pressure water to recreate
the experimental simulation process under different fluid pressures. The principle of the
experimental instruments is shown in Figure 3.

Based on the burial depth of the sample, the static rock pressure was set to 30 MPa in
the experiment, and this constant value was maintained in the whole series of experiments.
The initial fluid pressure was set to 30 MPa, and a pressure threshold of hydrocarbon
expulsion fluid was set (this study was 2 MPa). When the actual fluid pressure was larger
than 32 MPa during the experiment, a two-position three-way valve of the system was
opened, and the generated hydrocarbons were discharged into a gas–liquid separator
for storage. On the contrary, when the actual fluid pressure was lower than 28 MPa, the
high-pressure pump valve was opened, and it injected deionized water. It was then closed
when the fluid pressure reached 30 MPa.

Six target temperature points (300 ◦C, 350 ◦C, 375 ◦C, 400 ◦C, 450 ◦C, and 500 ◦C)
were set in the simulation experiment. The simulation experiment at each temperature
point rose to the target temperature over 3 h, and then kept constant for 72 h at the target
temperature. After the temperature and pressure simulation experiment, the gas products
of the experiment were collected using the saturated brine drainage gas collection method.
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The non-hydrocarbon gas components of the gas products were analyzed with a MAT-271
high-resolution gas component mass spectrometer, and the hydrocarbon gas components
(mainly C1~C5) were analyzed with a GC-5890C gas chromatograph.
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pump; 13—Drainage gas gathering device; 14—Sample cell and its sealing principle.

All experiments were completed in the Oil and Gas Research Center, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences.

4. Results
4.1. Organic Matter Abundance

The TOC values of the samples (Jl1-10~Jl1-19) from the P2l1 ranged from 2.6% to 9.2%,
with an average value of 5.9%, while the TOC values of the samples (Jl2-1~Jl2-9) from the
P2l2 ranged from 2.8% to 7.3%, with an average value of 4.9%. Overall, the TOC value from
the P2l1 samples was higher than that from the P2l2 samples (Table 1; Figure 4).

4.2. Biomarkers

The biomarkers’ distributive patterns of the extracts of the samples from the P2l are
shown in Figure 5. The distributive patterns of the n-alkanes in the samples of the P2l were
unimodal and the main peak was in the front, while the main peak of the P2l1 (Jl1-10~Jl1-19)
samples was on the left side of the former. The characteristics of C29, C28, and C27 steranes
in the P2l1 and P2l2 samples were also significantly different, being “sharp rise” and “slow
rise”, respectively.

4.2.1. n-Alkanes and Isoprenoid Alkanes

The distributive patterns of the n-alkanes and isoprenoid alkanes can be obtained with
m/z 85 mass spectrometry, their related ratios and parameters can be used to analyze the
source and the formation environment of sedimentary organic matter (Table 1; Figure 5).
The (7- + 8-C18 Monomethyl alkanes)/Maximum n-alkane [(7- + 8-MMAs)/Cmax] can be
used to characterize cyanobacterial blooms [34–36]. The (7- + 8-MMAs)/Cmax ranged from
0.04 to 0.18 (mean 0.12) (Table 1; Figure 6). The 7- + 8-MMAs and Cmax were obtained
with m/z 57 mass spectrum, and Cmax represented the main peak of the n-alkanes. The
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abundance of 7- + 8-MMAs in the samples was higher than its monomethyl homologues at
6-, 5-, 4-, 3-, and 2-, respectively.
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Figure 4. Variation of biomarker compound parameters of the Lucaogou Formation
in Well J305 of the Jimusar Sag, Junggar Basin. Note: TOC = Total organic carbon
(wt%); Pr/Ph = Pristane/Phytane; nC21−/nC22+ = Short-chain n-alkanes (C21-)/Long-
chain n-alkanes (C22+); G/H = Gammacerane/C30αβ hopane; S/H = Stetane/Hopane;
ETR = (C28 + C29)/(C28 + C29 + Ts); C22T/C21T = C22tricyclic terpane/C21tricyclic ter-
pane; (7- + 8-MMAs)/Cmax = (7- + 8-C18 Monomethylalkanes)/Maximum n-alkane; 2α −
C32Meh/C32H = 2α − C32 methylhopanoids/C32 hopanoids (%); 27% = C27 steranes/(C27 steranes
+ C28 steranes + C29 steranes); 28% = C28 steranes/(C27 steranes + C28 steranes + C29 steranes);
29% = C29 steranes/(C27 steranes + C28 steranes + C29 steranes); C29/C27 = C29 steranes/C27 steranes;
(C28 + C29-St)/St = (C28 sterane + C29sterane)/(total sterane).

4.2.2. Terpanes

The relative abundance and distribution characteristics of terpanes can be obtained
with the m/z 191 mass spectrum (Table 1; Figure 4). The ETR (extended tricyclic ratio,
ETR = (C28TT + C29TT)/(C28TT + C29TT + Ts)) [37] ranged from 0.47 to 0.93 (average of
0.73), and the C22T/C21T ratio (C22 tricyclic terpanes/C21 tricyclic terpanes) ranged from
0.10 to 0.15 (average of 0.12). C30 hopane was predominant in all of the samples. The ratio
of 2α-methylhopane to hopanes (2α− C32Meh/C32H) ranged from 4.25% to 7.30% (Table 1;
Figure 5).
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Figure 5. Typical biomarker spectrum of source rocks in the Lucaogou Formation of Well J305 in
the Jimusar Sag. From left to right, the three columns show m/z 85, m/z 217, and m/z 191 distri-
butions. C27 = C27sterane 20R; C28 = C28sterane 20R; C29 = C29sterane 20R; C30H. = C30hopane;
Gam. = Gammacerane; Ts = 18α(H)-22,29,30-trisnorneohopane; Tm = 17α(H)-22,29,30-trisnorhopane;
Pr = pristine; Ph=phytane; C21T = C21tricyclic terpane.
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Figure 6. (a,b) TIC (total ion chromatograms) of samples Jl2-6 and Jl1-15, (c,d) m/z 57 mass frag-
mentograms showing the 7- + 8-C18 Monomethyl alkanes of samples Jl2-6 and Jl1-15, (e,f) m/z
191 mass fragmentograms showing the hopanes distribution of samples Jl2-6 and Jl1-15, and
(g,h) m/z 205 mass fragmentograms showing the 2α-methylhopane distributions of samples Jl2-
6 and Jl1-15. MeH = methylhopanes.

4.2.3. Steranes

The relative abundance and distribution characteristics of steranes can be obtained
with m/z 217 mass spectrum (Table 1; Figure 4). The proportion of C29 sterane was relatively
large (36.6~60.9%, average 50%), that of C28 sterane was medium (22.1~40.4%, average
33%), and that of C27 sterane was low (5.5~35.9%, average 17%). The C29 sterane/C27
sterane ratio in the P2l2 (1.2~5.4, average 2.1) was lower than that in the P2l1 (2.6~11.1,
average 6.2).

4.3. Pyrolysis Simulation Experiments

The changes in the total oil production, expelled oil, and residual oil production
rates of the samples (Jl1-15 and Jl2-6) are shown in Table 2. The gasses of the simulation
experiment were mainly composed of two kinds of products, namely hydrocarbon gasses
and non-hydrocarbon gasses. The hydrocarbon gasses mainly included alkanes such as
CH4, C2H6, and C3H8, while the non-hydrocarbon gasses were mainly N2, H2, CO2, and
CO (Table 2).
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Table 2. Liquid and gaseous hydrocarbon yields of samples Jl2-6 and Jl1-15.

Sample Pyrolysis
Temperature (◦C)

Liquid Hydrocarbon Yield (mg/g TOC) Gaseous Hydrocarbon Yield (mg/g TOC)

Residual Oil Expelled Oil Total Oil
Total

Hydrocarbon
Gasses

Total
Non-Hydrocarbon

Gasses
Total Gasses

Jl2-6

300 79.60 130.98 210.58 3.01 57.23 60.24
350 182.61 293.00 475.61 30.11 66.55 96.66
375 147.17 274.26 421.43 150.73 158.56 309.29
400 92.35 218.89 311.24 310.00 230.98 540.98
450 39.34 140.85 180.19 457.63 253.27 710.90
500 19.15 65.29 84.44 535.04 294.63 829.67

Jl1-15

300 90.43 155.26 245.69 0.80 76.58 77.38
350 158.33 285.74 444.07 6.72 78.15 84.87
375 245.13 343.21 588.34 73.57 176.50 250.07
400 107.37 280.15 387.52 244.99 259.52 504.51
450 64.60 149.22 213.82 406.00 297.93 703.93
500 13.34 153.27 166.61 451.37 356.10 807.47

5. Discussion
5.1. Biomarker Characteristics of Source Rocks
5.1.1. Maturity of Organic Matter

The sterane isomerization parameters, such as 20S (%) (namely C29ααα 20S/(20S + 20R))
and ββ (%) (namely C29αββ/(ααα + αββ)), have been widely used to characterize the
thermal evolution of sediment organic matter during geological processes [38]. The varia-
tion ranges of 20S (%) and ββ (%) in the P2l were 0.36~0.46 and 0.16~0.27, respectively, with
average values of 0.42 and 0.22, respectively (Table 1; Figure 5). From the P2l1 to the P2l2, the
20S (%) and ββ (%) values decreased gradually. The variation trend of parameters reflects
that the maturity of organic matter in the P2l1 was slightly higher than that of the P2l2. The
organic matter maturity of the samples in the P2l was basically low maturity to maturity,
while that of the P2l1 was slightly higher (Figure 7). Based on the correlation between C29
sterane isomerization parameters and Ro [39], it is evident that the P2l2 samples had a Ro
ranging from 0.6% to 0.8%, indicating that they originated from low-maturity source rocks.
On the other hand, the Ro values of the P2l1 samples were around 0.7% to 0.8%, which
suggests that they were sourced from mature rocks.
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5.1.2. Sedimentary Environment of Organic Matter

The sedimentary environment of organic matter can be distinguished by the inter-
section diagram of the Ph/nC18 ratio and the Pr/nC17 ratio [40]. As shown in Figure 8, it
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shows that the sedimentary environment of the P2l1 was more anoxic and reductive than
that of the P2l2.
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Extended tricyclic terpenoids are derived from lipids in the prokaryotes of saline
lakes [41]. Hence, in terms of organic geochemical parameters, ETR is a commonly used
indicator to determine the salinity of water bodies in sedimentary environments [37]. The
ETR values of the study samples ranged from 0.47 to 0.93, and decreased gradually from
the P2l1 to the P2l2, indicating that the salinity of the P2l1 was higher than that of the P2l2
(Table 1; Figure 5).

5.1.3. Origin of Organic Matter

The abundance and correlation ratios of steranes are usually used to characterize the
biological sources of organic matter [38]. The C27-C28-C29 sterane ternary diagram for the
samples in this study shows that most of them had an aquatic plankton area (Figure 9).
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permission from Ref. [42]).

Previous studies suggest that C29 sterane is mainly derived from terrestrial higher
plants [43,44], while C28 steranes come from some phytoplankton, such as dinoflagellates,
chlorella, diatoms, and brown algae, and may also come from green algae and higher
plants [45]. Although C28 sterane can be synthesized by many algae and higher plants, the
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above algae and higher plants only appear in large quantities after the Triassic, except for
green algae [46,47]. Therefore, the C28 sterane in the source rocks of the Permian Lucaogou
Formation (~280 Ma) was derived from green algae. C27 sterane is mainly derived from
zooplankton and Rhodophyta [43,45]. The sterane proportions of all of the samples in the
P2l were C29 sterane (37~61%, with an average of 50%), followed by C28 sterane (22~40%,
with an average of 33%), and the least was C27 sterane (5~35%, with an average of 17%),
as shown in Figure 5. From the initial analysis, terrestrial higher plants were the main
source of organic matter in the source rocks of the P2l, followed by algae and bacteria, etc.
However, C29 steroidal compounds can also be derived from cyanobacteria [48]. Taking
into account the positive effects of volcanic-hydrothermal activities, volcanic ash can enrich
surface water, and hydrothermal activities bring large amounts of nutrients that accelerate
the development of phytoplankton and bacteria [7,25]. So, was the C29 sterane in this
research primarily from terrestrial higher plants or from bacteria?

Firstly, the origin of the organic matter was analyzed by observing the peak type
and the distribution pattern of the n-alkanes (Figure 4). The relative contents of bacteria,
algae, and terrestrial higher plants in the organic matter of sediments can be analyzed by
the relative abundance and the distributive patterns of n-alkanes. The main peak carbon
number of bacteria and algae is less than nC21, while the terrestrial higher plants are
basically greater than nC27, and the mixed source is in between them [49]. The main peak of
n-alkane distribution in the source rocks of the P2l1 and P2l2 was ahead (Figure 4), reflecting
that the abundance of terrestrial higher plants was lower than that of bacteria and algae.

Secondly, the n-alkanes above nC22+ are considered to be mainly derived from terres-
trial higher plants, and the n-alkanes below nC21− are considered to be mainly derived
from plankton such as algae and bacteria [50]. In the P2l1, the nC21−/nC22+ value was
between 0.66 and 5.3, with a mean value of 2.52, while in the P2l2, the value was between
0.51 and 4.79, with a mean of 1.54 (Table 1). Obviously, the nC21−/nC22+ values of the P2l1
were higher than that of the P2l2. The nC21−/nC22+ values indicated that the organic matter
in the P2l may have mainly been derived from algae and bacteria, and the contribution
of algae and bacteria to the organic matter in the P2l1 was greater. The S/H ratio (the
ratio of steranes to hopanes) can reflect the relative ratio of algae (eukaryotes) to bacteria
(prokaryotes) [51]. The S/H ratio of all of the samples ranged from 0.09 to 0.48, with an
average of only 0.25 (Table 1). This reflects that the abundance of bacteria in organic matter,
in which bacteria and algae are the main parent materials, was higher than that of algae.

In addition, in cyanobacteria culture and natural populations, some branched-chain
monomethyl and dimethyl alkanes are often reported [52,53]. Predecessors have shown
that cultured nostoc muscorum and anabaena variabilis (modern cyanobacteria) are rich
in 7- and 8-carbon-substituted methylheptane [54]. The typical biomarker evidence of
cyanobacteria hydrocarbon-generating parent material was medium-chain monomethyl
alkanes [34], and the relative abundance can be indicated by the ratio of (7- + 8-MMAs)/Cmax.
2α-methylhopane (2α-Meh) is a derivative of bacterial hopane polyol that is only found in
cyanobacteria [55]. The ratio of 2α-methylhopane to hopanes (2α-C32Meh/C32H) repre-
sents the relative abundance of cyanobacteria compared to general bacteria [56]. As shown
in Figure 4, the change trends in (7- + 8-C18MMAs)/Cmax, 2α-C32MeH/C32H and C29
sterane content in all of the samples were basically consistent. At the same time, the change
trends in (7- + 8-C18MMAs)/Cmax, 2α-C32MeH/C32H and ETR values were also basically
consistent, indicating the existence and evolution trend of cyanobacteria. From the P2l1 to
the P2l2, with the decrease in salinity (ETR), the proportion of C29 sterane decreased, and
the content of cyanobacteria decreased gradually. The abundance of cyanobacteria in the
organic matter of the P2l1 was relatively high, while it was generally low in the P2l2.

Good exponential correlations between C29/C27 sterane and (7- + 8-MMAs)/Cmax
values were observed (R2 = 0.68) in the samples (Figure 10a). The C22T/C21T ratio (C22
tricyclic terpane/C21 tricyclic terpane) can effectively determine the contribution of bacteria
to the organic matter [49]. From the P2l1 to the P2l2, the ratio of C22T/C21T values grad-
ually decreased, and the value was positively correlated with C29 sterane (%) (R2 = 0.68;
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Figure 10b), and significantly negatively correlated with C27/(C27 + C29) sterane (R2 = 0.80;
Figure 10c). Therefore, the high proportion of C29 steranes (average 50%) in this study was
most likely mainly derived from a mixture of bacteria (cyanobacteria) and terrestrial higher
plants. The source of the C28 steranes (average 33%) was most likely green algae, and the
C27 steranes (average 17%) were mainly derived from plankton, such as Rhodophyta.
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green algae. As for the bacteria, cyanobacteria accounted for a certain proportion, and the 
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Based on the co-relation plots, it will be good to see if an estimate of the proportionate
contribution of bacteria, algae, and terrestrial higher plants can be calculated. In summary,
the overall characteristics of the biological source composition of the source rocks are that
the abundance of bacteria and algae was greater than that of higher plants. Furthermore,
the abundance of bacteria was greater than that of algae, of which the type was mainly
green algae. As for the bacteria, cyanobacteria accounted for a certain proportion, and
the proportion of cyanobacteria in the P2l1 was relatively high. From the P2l1 to the P2l2,
the abundance of bacteria (including cyanobacteria) and algae (including green algae)
decreased with the diminishing salinity.

5.1.4. Controlling Factors of Organic Matter Accumulation

Organic matter accumulation is controlled by primary productivity, the deposition
rate, and the preservation conditions of sedimentary organic matter [12,57]. Biomarker pa-
rameters (such as sterane) can be used to effectively characterize the primary producers [37].
The variation trend of C27 sterane was opposite to that of TOC, while the variation trend
of C28 sterane and C29 sterane was the same as that of TOC (Figure 5). Since C29 sterane
and C22T/C21T are related to (7- + 8-MMAs)/Cmax (Figure 10), it can be speculated that
the accumulation of organic matter during the deposition of the Lucaogou Formation was
mostly related to the prosperity of bacteria (including a certain proportion of cyanobacteria)
and algae.

In addition, G/H (gammacerane/C30αβ hopane) usually indicates the water layering,
salinity, and an anoxic sedimentary environment [58]. There was a certain correlation
between G/H and TOC (R2 = 0.61), indicating that the water layering had a certain control
effect on the organic matter accumulation (Figure 11a). The positive correlation between
nC21−/nC22+ and TOC indicates that the development of algae and plankton is beneficial
to the enrichment of organic matter (Figure 11b). The Pr/Ph values were less than 1.0, indi-
cating that the deposition process of the P2l was mostly in the reduction condition, which
is favorable for the preservation of organic matter. However, Pr/Ph has no correlation with
TOC, indicating that the strength of reduction has little relationship with the enrichment of
organic matter (Figure 11c). Through the analysis of the organic geochemical parameters
combined with the volcanic-hydrothermal activity background, it is considered that the
primary productivity heavily controls the accumulation of organic matter.
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and Pr/Ph (representing redox strength).

5.2. Synergistic Evolution of Environment—Bionts of Source Rocks

The accumulation of organic matter in source rocks is largely influenced by primary
productivity. However, the development of organic matter precursors is a crucial determi-
nant in this process. The P2l saline lake source rocks exhibited a coevolutionary relationship
between bionts and the sedimentary environment. This relationship was primarily influ-
enced by two environmental factors: salinity and water stratification. Biomarkers such as
G/H and ETR are used to reflect these factors. G/H is indicative of water stratification,
while ETR reflects the water salinity.

During the deposition period of the P2l, the synergistic response of the water en-
vironment evolution and the biological compositions manifested in the positive corre-
lation between the salinity index (ETR) and the S/H ratio (i.e., algae/bacteria ratio),
(C28 + C29 − St)/St (i.e., green algae/algae ratio), and C22T/C21T (i.e., bacterial source)
(Figure 12a–c). From the P2l1 to the P2l2, the proportion of bacteria (including a certain
proportion of cyanobacteria) decreased with the diminishing salinity. The main sources of
C27 sterane are plankton and Rhodophyta. C27 sterane is negatively correlated with ETR
(salinity), and there is a threshold. When ETR < 0.7, it is conducive to the development of
plankton and Rhodophyta (Figure 12d). With an increase in salinity, the proportion of green
algae and bacteria increases, but the proportion of plankton and Rhodophyta decreases.
Thus, it can be seen that the salinity of the water in the sedimentary period of the P2l has a
certain response to the composition of green algae, bacteria, plankton, and Rhodophyta in
the source rocks.

5.3. Hydrocarbon Generation Potential of Source Rocks
5.3.1. Liquid Hydrocarbon Yields

For the sample (Jl1-15) from the P2l1, the yields of expelled oil and residual oil were
343.21 mg/g TOC and 245.13 mg/g TOC, respectively, reaching a peak at 375 ◦C, and the
total oil yield was 588.34 mg/g TOC. Being higher than 400 ◦C, the yields of expelled oil
and residual oil showed a downward trend, but the yields of expelled oil slightly increased
at 500 ◦C, relative to 450 ◦C (from 149.22 mg/g TOC to 153.27 mg/g TOC) (Figure 13).
Meanwhile, a large amount of gas was produced, and the total hydrocarbon gas yield
reached a peak of 451.37 mg/g TOC at 500 ◦C. For the sample (Jl2-6) from the P2l2, the
yields of expelled oil and residual oil reached a peak at 350 ◦C, which were 293.00 mg/g
TOC and 182.61 mg/g TOC, respectively. In addition, the total oil yield was 475.61 mg/g
TOC. At over 350 ◦C, the yields of expelled oil and residual oil showed a downward trend,
and the yield of expelled oil did not increase compared to the upper member samples at
500 ◦C. The gas production rate increased rapidly over 375 ◦C, then, at 500 ◦C, the total
hydrocarbon gas production rate reached 535.04 mg/g TOC.
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The peak temperatures of the oil production rate and the gas production rate were
different for the samples from the P2l1 and the P2l2. The temperature points corresponding
to the oil production peaks for the samples from the P2l2 and the P2l1 were 350 ◦C and
375 ◦C, respectively. The oil production rate of the P2l1 sample was higher, and there was
a better oil-generation potential at 500 ◦C. However, the gas production rate of the P2l2
sample was higher.

5.3.2. Gaseous Hydrocarbon Yield

The total gas yields of the two samples from the P2l2 and the P2l1 increased with
the raising of the simulation temperature. At 300 ◦C, the total gas yields of the Jl2-6 and
Jl1-15 samples were 60.24 mg/g TOC and 77.38 mg/g TOC, respectively, and they reached
829.67 mg/g TOC and 807.47 mg/g TOC at 500 ◦C, respectivley, with little difference in total
gas yields (Figure 13). The change in oil and gas production was composed of the following
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two stages: (i) In the early stage of 300~350 ◦C, the hydrocarbon gas production rate of
the Jl2-6 and Jl1-15 samples had little change, and the ranges of 3.01~30.11 mg/g TOC and
0.80~6.72 mg/g TOC changed, respectively. (ii) At over 375 ◦C, the hydrocarbon gas pro-
duction rate increased rapidly, from 30.11 mg/g TOC and 6.72 mg/g TOC to 535.04 mg/g
TOC and 451.37 mg/g TOC, respectively. It can be seen that the samples from the P2l2 had
a higher hydrocarbon gas yield. The characteristics of the non-hydrocarbon gas yields of
the two samples from the P2l2 and P2l1 are similar to those of hydrocarbon gasses. With the
increase in the simulation temperature, they are also divided into two stages. Firstly, in
the 300~350 ◦C stage, the yield ranges were57.23~66.55 mg/g TOC and 76.58~78.15 mg/g
TOC, respectively. Secondly, at 375~500 ◦C, the yield ranges were 158.56~294.63 mg/g
TOC and 176.50~356.10 mg/g TOC, respectively. At the initial low-temperature stage, the
yield of the non-hydrocarbon gas was higher than that of hydrocarbon gas, and the yield of
non-hydrocarbon gas of the sample from the lower member was higher.

In summary, the biological compositions of the source rocks of the P2l were impacted
by water stratification and salinity, which reflects the co-evolution of the bionts and their
environment. During the sedimentary period of the P2l, there were frequent volcanic-
hydrothermal activities that provided nutrients for the growth of organisms. These activities
also resulted in changes in the salinity of the water body and improvements to the water
stratification (Figure 14a). From the P2l1 to the P2l2, volcanic-hydrothermal activity and
salinity decreased [7,59], the proportion of bacteria and green algae decreased, and the
proportion of plankton and Rhodophyta increased. Figure 14b displays the trend of the
ETR (salinity index) and 2α-C32Meh/C32H (cyanobacteria). Based on the differences in
these indexes, the source rocks of the P2l1 and the P2l2 are classified into two types: HS-type
(high salinity) and LS-type (low salinity).
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Figure 14. (a) Schematic diagram of the paleoenvironmental conditions during deposition of the
Lucaogou Formation in the Jimusar Sag; (b) a schematic diagram for the classification of source rock
types; and (c) differences in the hydrocarbon generation potential of source rocks.

The source rocks of the P2l1 were formed in a high-salinity environment and can be
classified as endmember HS-type. The organisms that were present in this environment
mainly include green algae and bacteria. On the other hand, the source rocks of the
P2l2 were formed in a low-salinity environment and can be classified as endmember LS-
type. The organisms that were present in this environment mainly include plankton and
Rhodophyta, and there may have been some input from higher plants (Figure 14b). The
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interdependent relationship between the sedimentary environment and the bionts resulted
in variations in the organic matter composition of the source rocks.

The source rock samples from the P2l1 and the P2l2 exhibited variations in their oil
and gas generation potential (Figure 14c). In comparison to the LS-type source rocks,
the HS-type source rocks had a higher tendency to produce oil, and the peak values of
the liquid hydrocarbon yield were 588.34 mg/g TOC and 475.61 mg/g TOC, respectively
(Table 2; Figure 7a). In comparison to the HS-type source rocks, the LS-type source rocks
are known to produce a greater amount of gas. Specifically, the peak values for the gaseous
hydrocarbon yield were 535.04 mg/g TOC for the LS-type rocks and 451.37 mg/g TOC for
the HS-type rocks. (Table 2; Figure 7b). The difference in hydrocarbon generation potential
between the P2l1 and the P2l2 may be attributed to the fact that the biological source of
organic matter is influenced by changes in paleoenvironmental factors.

6. Conclusions

(1) During the sedimentary period of the Lucaogou Formation, the level of paleopro-
ductivity played a crucial role in the enrichment of the organic matter. The biological source
also co-evolved with the paleoenvironment to a certain extent. Specifically, the salinity of
the sedimentary paleoenvironment had a significant impact on the prosperity of the algae
and the bacteria.

(2) Compared to the LS-type source rocks (P2l2), the HS-type source rocks (P2l1) have a
greater oil-generation potential, and their maximum oil generation peaks are 588.34 mg/g
TOC (375 ◦C) and 475.61 mg/g TOC (350 ◦C), respectively. The maximum total hydro-
carbon generation of the HS-type source rocks is slightly higher than that of the LS-type
source rocks.

(3) The hydrocarbon generation parent material of the Lucaogou Formation may be
controlled by the relative abundance of green algae and cyanobacteria, which is indicative
to the Salt Lake Basin and affects the hydrocarbon generation potential of its source rocks.
The source rocks that are formed in a high-salinity environment are derived from more
cyanobacteria and may have better oil-generation potential.
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