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Abstract: The application of fuzzy hybrid methods has significantly increased in recent years across
various sectors. However, the application of fuzzy hybrid methods for modeling systems or processes,
such as fuzzy machine learning, fuzzy simulation, and fuzzy decision-making, has been relatively
limited in the energy sector. Moreover, compared to standard methods, the benefits of fuzzy-hybrid
methods for capturing complex problems are not adequately explored for the solar energy sector,
which is one of the most important renewable energy sources in electric grids. This paper investigates
the application of fuzzy hybrid systems in the solar energy sector compared to other sectors through
a systematic review of journal articles published from 2012 to 2022. Selection criteria for choosing an
appropriate method in each investigated fuzzy hybrid method are also presented and discussed. This
study contributes to the existing literature in the solar energy domain by providing a state-of-the-art
review of existing fuzzy hybrid techniques to (1) demonstrate their capability for capturing complex
problems while overcoming limitations inherent in standard modeling methods, (2) recommend
criteria for selecting an appropriate fuzzy hybrid technique for applications in solar energy research,
and (3) assess the applicability of fuzzy hybrid techniques for solving practical problems in the solar
energy sector.

Keywords: fuzzy hybrid methods; fuzzy machine learning; fuzzy decision-making; fuzzy simulation;
renewable energy; solar energy

1. Introduction

Solar energy has been effectively used as a valuable energy source in the energy sector
in response to the rising global energy demand for housing and industrial production. The
advantages of solar energy use have become more pronounced because of the rising energy
demand across industries and the infeasibility and environmental impact of alternative energy
sources such as fuel. According to Pérez et al. [1], the photovoltaic (PV) solar system lifecycle
can be divided into four main stages: evaluation/diagnosis, installation, operation, and
disposal. In the evaluation/diagnosis stage, the technical and economic feasibility of the
project is analyzed, and the elements that will make up the system are also decided, taking
into account the technical and social needs of the project. In the installation stage, the elements
chosen during evaluation are mounted. The operation stage refers mainly to the functioning of
the system, considering its maintenance and monitoring. Finally, the disposal stage marks the
end of the system’s lifecycle. In this last stage, all elements are analyzed in terms of whether
they can be reused or recycled, and those that cannot must be disposed of according to current
regulations in order to guarantee correct waste management.

This breakdown of the lifecycle of PV solar systems is important in this study because,
as will be demonstrated in this paper, there are fuzzy hybrid methods that can be applied
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for one or several specific stages. Problems studied in the solar energy literature can
include (1) simulation of manufacturing processes or system modeling; (2) prediction or
forecasting of elements such as energy demand, maintenance, or system output; and (3)
decision-making, such as selecting a suitable energy source, assessing an energy source’s
or infrastructure’s performance, and identifying the optimal location of the energy facility.
Other challenges to the adoption of renewable energy technologies were identified by Saraji
et al. [2], including financial issues, governmental support, local engagement, underde-
veloped business models, land use, a lack of regulations, technical issues, and awareness
and knowledge.

Zadeh first introduced fuzzy set theory in 1965 [3]. This concept transformed the
perception of modeling uncertainties, as fuzzy sets extended the notion of classical sets and
Boolean logic. Hence, the fuzzy logic approach is capable of handling natural language
and approximate reasoning by mathematically translating linguistic variables into numeric
form, allowing the user to draw definite conclusions from ambiguous information and
incomplete data [3]. Fuzzy sets are represented using membership functions. In fuzzy
hybrid models, it is crucial to appropriately represent linguistic variables and fuzzy rules,
employ the correct fuzzy arithmetic method, and select the most suitable defuzzification
methods [4].

Fuzzy hybrid systems have been applied to solve different types of problems in the
literature. This is achieved by integrating fuzzy logic with standard techniques to produce
hybrid systems, such as fuzzy machine learning, fuzzy simulation, and fuzzy decision-
making, which combines the advantages of fuzzy and standard methods. In the renewable
energy sector, fuzzy simulation methods are used to capture the behavior of systems
and processes to predict or forecast critical variables such as energy load, energy usage,
and so on. Moreover, fuzzy decision-making methods entail a combination of evaluating
alternative policies, identifying the optimal energy source, identifying the optimal location
of an energy facility, and/or selecting the optimal type of renewable energy source [5].

Despite the presence of extensive research on the use of fuzzy hybrid techniques
in other sectors, the literature on fuzzy hybrid techniques in the solar energy sector is
lacking. Moreover, no detailed systematic review or content analysis exists that synthesizes
the existing limited literature to guide researchers in selecting appropriate fuzzy hybrid
techniques to apply to their specific problems. This study has three objectives: (1) investi-
gate the application of fuzzy hybrid systems in the solar energy sector in comparison to
other sectors, and demonstrate the capability of these methods in comparison to standard
modeling/simulation; (2) recommend selection criteria for applying a suitable fuzzy hybrid
method in solar energy research; and (3) provide a systematic review of fuzzy hybrid
methods to assess the applicability of fuzzy hybrid techniques in the solar energy sector.

This paper contributes significantly to the literature review on applying fuzzy hybrid
techniques in solar PV systems. The insights provided in this paper can help advance
research and development in this field and ultimately lead to more effective and efficient
use of solar energy on electric grids. The main contributions are as follows:

1. State-of-the-art review of existing fuzzy hybrid techniques: This paper provides a
comprehensive review of existing fuzzy hybrid techniques, including fuzzy machine
learning, fuzzy simulation, and fuzzy decision-making, as they are applied in the solar
energy sector. This review helps identify each technique’s strengths and weaknesses
and provides guidance for selecting the appropriate technique for specific applications
in solar PV systems;

2. Showing the capability of fuzzy hybrid techniques: This paper shows the capability
of fuzzy hybrid techniques that could be implemented to capture complex problems
in solar PV systems that standard modeling methods cannot adequately address. The
use of fuzzy hybrid techniques can help overcome standard methods’ limitations and
provide more accurate and reliable results;

3. Criteria for selecting appropriate fuzzy hybrid techniques: This paper provides criteria
for selecting the appropriate fuzzy hybrid technique for specific applications in the
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solar energy sector. These criteria consider factors such as the type of problem, data
availability, and complexity level;

4. Assessment of the applicability of fuzzy hybrid techniques: This paper assesses the
applicability of fuzzy hybrid techniques for solving practical problems in the solar
energy sector. The results of this assessment can help researchers identify areas where
fuzzy hybrid techniques can be most effective, and they can be used to guide future
research in this field.

The rest of this paper is organized as follows: After a brief introduction to fuzzy logic
and the application of fuzzy hybrid methods in the solar energy sector, an overview of
fuzzy logic applications in different sectors (e.g., construction, mining, and electronics) is
presented. Next, the methodology is discussed, which details the steps used to perform a
systematic review of articles with fuzzy hybrid applications in the solar energy domain.
Then, the results of the content analysis of the literature are presented for three main cate-
gories of fuzzy hybrid systems: fuzzy machine learning, fuzzy decision-making, and fuzzy
simulation. Then, a checklist for selection criteria for fuzzy hybrid methods for solving
problems in the solar energy sector is presented. The last section provides conclusions and
recommendations for future work.

2. Methodology

This paper presents a systematic analysis of the extensive literature on fuzzy hybrid
methods used in solar energy research that has been published in high-ranking journals.
Figure 1 illustrates the methodology used, which consists of two main steps: (1) a review
of the literature on fuzzy logic application across different sectors (e.g., construction,
automotive, and mining), and (2) a content analysis of existing literature on the applications
of fuzzy hybrid techniques to solve problems in the solar energy sector.

This study used the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) method to conduct the systematic review. A description of the PRISMA
methodology can be synthesized into two main steps [6]:

1. Identification and screening: This step involves identifying the research question,
creating a protocol, searching multiple databases and sources, and screening the
titles, abstracts, and full texts of potentially relevant studies to determine inclusion or
exclusion;

2. Data extraction and synthesis: This step involves extracting relevant data using a
standardized data extraction form, managing and organizing the data for analysis,
and synthesizing the findings across the included studies through statistical analysis,
meta-analysis, or a narrative synthesis.

These two steps ensure that the systematic review or meta-analysis is conducted
rigorously and transparently, focusing on identifying all relevant studies and synthesizing
the findings in a reproducible and replicable way.

The research questions for the systematic review using the PRISMA methodology for
this study were:

• What are the existing fuzzy hybrid techniques used in the solar energy sector for
modeling systems or processes, such as fuzzy machine learning, fuzzy simulation, and
fuzzy decision-making?

• How do fuzzy hybrid techniques compare to standard methods for capturing complex
problems in the solar energy sector?

• What criteria can be used to select an appropriate fuzzy hybrid technique for applica-
tions in solar energy research?

• What are the practical problems in the solar energy sector that can be solved using
fuzzy hybrid techniques?

• How does applying fuzzy hybrid techniques in the solar energy sector compare to
their application in other sectors?
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Figure 1. Methodology for the systematic literature search and content analysis used in this study.

One limitation of the methodology is that only published studies are considered, so
it might not capture all relevant research in the field. Reliance on published studies can
introduce a risk of publication bias, which occurs when only studies with statistically
significant findings are published while non-significant findings are not reported.

2.1. Literature Review Process

The literature review began with six searches in Scopus with a filter for articles
published from 2012 to 2022 (the last ten years as of this writing). Each search included the
relevant set of words with AND as the Boolean operator. The resulting list of articles from
each search was analyzed using Bibliometrix software version 4.1.2 [7]. The Bibliometrix
analysis was conducted to obtain the number of fuzzy-related articles across various sectors,
or specifically within the solar energy sector, for each of three areas of study: fuzzy machine
learning, fuzzy decision-making, and fuzzy simulation. Each search resulted in a list
of articles, and the analysis of each list gives the number of different sources (journals)
and authors involved, the annual scientific production (in articles per year), the annual
average growth rate in the number of articles, and the average number of times the articles
were cited.

In addition, a keyword co-occurrence network (KCN) was generated for each Scopus
search using VOSviewer software version 1.6.18. KCN is a method that aims to comprehend
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the constituents and arrangement of knowledge in scientific or technical fields through the
analysis of connections between keywords in the relevant literature. In a KCN, keywords
are represented as nodes and links that connect pairs of words that co-occur. The strength of
the link between a pair of words is determined by the frequency with which they co-occur
in multiple articles and is represented as the weight of the link. This network allows for the
identification of meaningful knowledge components and insights by analyzing the patterns
and strength of links between keywords that appear in the literature [8].

2.2. Selecting an Appropriate Fuzzy Application

Identified criteria can be used to assess the capabilities of various fuzzy applications
by identifying their advantages and disadvantages. This study followed two basic steps to
select a fuzzy hybrid method for modeling solar energy processes. First, the advantages
and disadvantages of each possible fuzzy hybrid method were listed. Then, detailed
selection criteria were listed based on various categories (e.g., accuracy, computational
complexity, and data availability). Researchers and practitioners can utilize the content
analysis offered in this paper and the listed advantages, disadvantages, and criteria to
choose an appropriate fuzzy hybrid machine learning, decision-making, or simulation
method to resolve a particular PV solar problem. This analysis allows them to select
a methodology that best meets their needs while considering the possible drawbacks
associated with each one.

3. Results and Discussion
3.1. Literature Search and Content Analysis Results
3.1.1. Fuzzy Hybrid Machine Learning

A Scopus search carried out for “fuzzy AND hybrid AND machine AND learning”
(fuzzy-hybrid-machine-learning) yielded 1409 articles. These articles were published in 678 dif-
ferent sources by 3253 authors. Figure 2 shows the annual scientific production (articles
per year) of the articles analyzed. Significant growth in the publication of articles on this
topic has occurred, with an average annual growth rate of 19.83%. The year with the most
articles published was 2022, and the average number of citations per article is 12.4.
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Table 1 presents the most relevant sources, according to the number of articles pub-
lished on fuzzy-hybrid-machine-learning.

The countries with the greatest scientific production (i.e., number of articles) for fuzzy-
hybrid-machine-learning were India (with 794 articles), China (155), Iran (95), Malaysia (38),
Saudi Arabia (28), Türkiye (28), Korea (23), the United Kingdom (19), Canada (17), and
the USA (17). The countries that produced articles with the most citations for fuzzy-hybrid-
machine-learning were China (2836 citations), India (2220), Iran (1940), Norway (803), the
United Kingdom (660), Malaysia (569), Australia (527), the USA (476), Canada (345), and
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Korea (315). India, China, and Iran rank highest in both cases, and only three countries
from the Americas appear (Canada, the USA, and Brazil).

Table 1. The most relevant sources are based on the number of articles published for fuzzy-hybrid-
machine-learning.

Rank Source Publisher No. of Articles

1
Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics)

Springer 72

2 Advances in Intelligent Systems and Computing Springer Science and Business Media 67

3 Communications in Computer and Information Science Springer Science and Business Media 35

4 IEEE Access IEEE 25

5 Lecture Notes in Electrical Engineering Springer 22

Table 2 presents the most globally cited articles for fuzzy-hybrid-machine-learning. These
articles primarily focus on water, electric vehicles, and health. The most-cited article has
502 citations and was published in 2018 in the journal Water.

Table 2. Most globally cited articles for fuzzy-hybrid-machine-learning.

Authors, Year Title Total Citations Source

Mosavi et al., 2018 [9]
Flood prediction using machine
learning models:
Literature review

502 Water

Liu et al., 2017 [10]
Reinforcement learning optimized
look-ahead energy management
of a parallel hybrid electric vehicle

249 IEEE/ASME Transactions on
Mechatronics

Seera and Lim 2014 [11] A hybrid intelligent system for
medical data classification 232 Expert Systems with Applications

Mohan and Subashini 2018 [12]
MRI based medical image
analysis: Survey on brain tumor
grade classification

220 Biomedical Signal Processing and Control

Bui et al., 2017 [13]

A hybrid artificial intelligence
approach using GIS-based
neural-fuzzy inference system
and particle swarm optimization
for forest fire susceptibility
modeling at a tropical area

203 Agricultural and Forest Meteorology

The most frequent keywords that occurred as a result of the keyword search for fuzzy-
hybrid-machine-learning were machine learning (appearing in 395 articles), fuzzy inference
(324), learning systems (308), fuzzy neural networks (289), fuzzy systems (267), fuzzy logic
(240), forecasting (237), learning algorithms (183), support vector machines (166), and artificial
intelligence (162). A KCN was created with these keywords in order to analyze the links
between them. As Figure 3 shows, four main clusters were found for fuzzy hybrid machine
learning, and the term machine learning had the most links; this node is also the largest,
which means it is the term with the highest frequency. Fuzzy inference, fuzzy neural networks,
and learning systems are terms with higher frequency, which matches the previous keyword
analysis. This KCN also shows a closer relationship between some keywords, such as
machine learning, fuzzy systems, forecasting, fuzzy inference, learning, systems, and artificial
intelligence, as represented by the thicker lines joining them. On the other hand, small nodes,
such as GIS, groundwater, computer crime, and semantics, represent keywords with lower
frequency, and the lack of a link connecting them to other nodes indicates these keywords
are in the margins of this field of research.
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Table 3 shows the most frequently addressed types of problems across various sectors
and the fuzzy hybrid methods applied to them.

Table 3. Fuzzy hybrid machine learning applications across industry sectors.

Industry Sector No. of Fuzzy Articles * Problems Addressed Fuzzy Hybrid Method (s)
Applied

Information technology 5855 Performance, decision-making,
prediction, and evaluation/assessment ANFIS

Mining 3723
Evaluation/assessment, process
modeling, decision-making, and

prediction
ANFIS

Electronics 3190
Prediction, optimization, system

modeling, assessment, and
decision-making

ANFIS, fuzzy clustering

Chemical 2442
Evaluation/assessment,

planning/management, prediction, and
optimization

Fuzzy ANNs

Construction 1856
Prediction, evaluation/assessment,

planning/management, process and
system modeling, and performance

ANFIS, fuzzy clustering, and
fuzzy fault tree analysis

Finance 1420
Decision-making, prediction,
evaluation/assessment, and

planning/management
ANFIS, fuzzy clustering

Automotive 1250
Prediction, evaluation, process

modeling, and system modeling, and
optimization, decision-making

Fuzzy ANNs, ANFIS

Aerospace 1041 Planning, performance, prediction, and
decision-making ANFIS

Energy 997
Decision-making, optimization,

prediction, and simulation
(process/system)

Fuzzy ANNs

Petroleum 718
Process modeling, and system modeling,
planning, evaluation/assessment, and

decision-making
ANFIS

* Sources: SpringerLink, Wiley Online Library, Taylor & Francis Online, Elsevier, IEEE Xplore, and Emerald.
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3.1.2. Fuzzy Logic in the Solar Energy Sector

A Scopus search of “fuzzy AND solar AND energy” (fuzzy-solar-energy) for articles
related to solar energy that implement fuzzy methods yielded a total of 2934 articles
published between 2012 and 2022. The average number of citations per article is 11.90.
These articles were published in 1200 sources by 6830 authors. Figure 4 shows the number
of articles published annually, with an average annual growth rate of 19.33%.

Energies 2023, 16, x FOR PEER REVIEW 8 of 44 
 

 

3.1.2. Fuzzy Logic in the Solar Energy Sector 
A Scopus search of “fuzzy AND solar AND energy” (fuzzy-solar-energy) for articles 

related to solar energy that implement fuzzy methods yielded a total of 2934 articles pub-
lished between 2012 and 2022. The average number of citations per article is 11.90. These 
articles were published in 1200 sources by 6830 authors. Figure 4 shows the number of 
articles published annually, with an average annual growth rate of 19.33%. 

 
Figure 4. Annual scientific production (in articles per year) for fuzzy-solar-energy. 

Table 4 presents the most relevant sources, according to the number of articles pub-
lished on fuzzy-solar-energy. 

Table 4. Most relevant sources are based on the number of articles published for fuzzy-solar-energy. 

Rank Source Publisher No. of Articles 
1 Energies MDPI 86 
2 Lecture Notes in Electrical Engineering Springer 64 
3 IEEE Access IEEE 55 
4 Applied Mechanics and Materials Trans Tech Publications 52 
5 Advances in Intelligent Systems and Computing Springer 44 

The countries with the greatest scientific production for fuzzy-solar-energy were India 
(with 1742 articles), China (305), Iran (136), Türkiye (95), Algeria (69), Indonesia (44), 
Egypt (30), Malaysia (30), Morocco (27), and Saudi Arabia (26). The countries that pro-
duced articles with the most citations for fuzzy-solar-energy were China (4661 citations), 
India (4523), Iran (3544), Türkiye (1959), the USA (1406), Algeria (980), Egypt (835), Aus-
tralia (663), the United Kingdom (642), and Japan (500). In short, most of the articles pub-
lished and cited are from countries in the Middle East and Asia. India, China, Iran, and 
Türkiye are the countries with the most published articles and therefore the most citations 
by country for this search. India and China are by far the countries with the most articles 
published about fuzzy methods applied to solar energy. The USA is the only country in 
the Americas that appears in these two analyses. 

Table 5 presents the most influential articles from 2012 to 2022 based on the number 
of citations they have received. The one with the most citations was published in 2013 in 
the journal IEEE Transactions in Industrial Electronics, with 384 citations. 

  

Figure 4. Annual scientific production (in articles per year) for fuzzy-solar-energy.

Table 4 presents the most relevant sources, according to the number of articles pub-
lished on fuzzy-solar-energy.

Table 4. Most relevant sources are based on the number of articles published for fuzzy-solar-energy.

Rank Source Publisher No. of Articles

1 Energies MDPI 86

2 Lecture Notes in Electrical Engineering Springer 64

3 IEEE Access IEEE 55

4 Applied Mechanics and Materials Trans Tech Publications 52

5 Advances in Intelligent Systems and Computing Springer 44

The countries with the greatest scientific production for fuzzy-solar-energy were India
(with 1742 articles), China (305), Iran (136), Türkiye (95), Algeria (69), Indonesia (44), Egypt
(30), Malaysia (30), Morocco (27), and Saudi Arabia (26). The countries that produced
articles with the most citations for fuzzy-solar-energy were China (4661 citations), India
(4523), Iran (3544), Türkiye (1959), the USA (1406), Algeria (980), Egypt (835), Australia
(663), the United Kingdom (642), and Japan (500). In short, most of the articles published
and cited are from countries in the Middle East and Asia. India, China, Iran, and Türkiye
are the countries with the most published articles and therefore the most citations by
country for this search. India and China are by far the countries with the most articles
published about fuzzy methods applied to solar energy. The USA is the only country in the
Americas that appears in these two analyses.

Table 5 presents the most influential articles from 2012 to 2022 based on the number of
citations they have received. The one with the most citations was published in 2013 in the
journal IEEE Transactions in Industrial Electronics, with 384 citations.
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Table 5. Most globally cited articles for fuzzy-solar-energy.

Authors, Year Title Total Citations Source

Njoya Motapon et al., 2013 [14]
A comparative study of energy management
schemes for a fuel-cell hybrid emergency
power system of more-electric aircraft

384 IEEE Transactions in
Industrial Electronics

Eltawil and Zhao 2013 [15] MPPT techniques for
photovoltaic applications 359 Renewable and Sustainable

Energy Reviews

Suganthi et al., 2015 [16] Applications of fuzzy logic in renewable
energy systems—A review 353 Renewable and Sustainable

Energy Reviews

Yang et al., 2014 [17] A weather-based hybrid method for 1-day
ahead hourly forecasting of PV power output 349 IEEE Transactions on

Sustainable Energy

The most frequent keywords for the fuzzy-solar-energy search results are fuzzy logic
(appearing in 1097 articles), solar energy (1077), solar power generation (729), photovoltaic
cells (545), controllers (540), computer circuits (517), maximum power point trackers (469), fuzzy
inference (414), maximum power point tracking (362), and MATLAB (345). Figure 5 presents the
KCN for fuzzy solar energy, showing five main clusters. The largest nodes in this KCN, and
thus the keywords with the highest frequency, are fuzzy logic, solar energy, and solar power
generation. The terms with the closest relationship, represented by the thickest lines, are
solar energy, fuzzy logic, photovoltaic cells, decision-making, renewable energy sources, and fuzzy
inference. Conversely, the keywords located in the margins of this field of research, based on
their size and the lack of a link connecting them to other nodes, are press load control, biogas,
carbon, backpropagation, P&O (perturbation and observation), and electric current control.
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3.1.3. Fuzzy Decision-Making in Different Sectors

According to a Scopus search carried out for “fuzzy AND decision AND making”
(fuzzy-decision-making), a total of 30,561 articles on this topic were published between 2012
and 2022. However, Scopus only allows downloading the bibliographical information
for a maximum of 20,000 items. Therefore, the analysis covers 20,000 articles on fuzzy-
decision-making fuzzy decision-making that were published between 2017 and 2022. These
articles were written by 28,872 authors and published in 3694 sources, with an annual
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growth rate of 19.02% and an average number of citations of 11.53 per document. Figure 6
summarizes these results and shows significant growth in the number of publications on
fuzzy-decision-making during this period.
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Table 6 shows the sources with the highest number of articles published about fuzzy-
decision-making. The Journal of Intelligent and Fuzzy Systems is the journal with the most
articles (721) published on this topic.

Table 6. Most relevant sources based on the number of articles published for fuzzy-decision-making.

Rank No. of Articles Source Publisher

1 721 Journal of Intelligent and Fuzzy Systems IOS Press BV

2 632 Advances in Intelligent Systems and Computing Springer

3 433 Soft Computing Springer

4 382 IEEE Access IEEE

5 329 Sustainability (Switzerland) MDPI

The countries with the greatest scientific production for fuzzy-decision-making were
China (9672), India (2288), Iran (1189), Türkiye (1144), Pakistan (581), Spain (367), Malaysia
(300), USA (287), Poland (270), and the United Kingdom (210). The countries that produced
articles with the most citations for fuzzy-decision-making were China (87,990), India (29,144),
Iran (14,614), Türkiye (14,266), Pakistan (8511), Spain (6031), the United Kingdom (3719),
the USA (3670), Malaysia (3610), and Australia (2994). In both cases, China has the highest
rank by far, followed by India, Iran, and Türkiye.

Table 7 contains the five articles most frequently cited worldwide for fuzzy-decision-
making. The article with the most citations was cited 463 times and published in 2017 in the
International Journal of Intelligent Systems.

Table 7. Most globally cited articles for fuzzy-decision-making.

Authors, Year Title Total
Citations Source

Liu and Wang 2018 [18] Some q-rung orthopair fuzzy aggregation operators and their
applications to multi-attribute decision-making 463 International Journal of

Intelligent Systems

Guo and Zhao 2017 [19] Fuzzy best-worst multi-criteria decision-making method and
its applications 450 Knowledge-Based Systems

Qin et al., 2017 [20]
An extended TODIM multi-criteria group decision-making
method for green supplier selection in interval type-2
fuzzy environment

439 European Journal of
Operational Research

Si et al., 2018 [21] DEMATEL technique: A systematic review of the
state-of-the-art literature on methodologies and applications 405 Mathematical Problems

in Engineering

Kutlu Gündoğdu and Kahraman
2019 [22] Spherical fuzzy sets and spherical fuzzy TOPSIS method 351 Journal of Intelligent and

Fuzzy Systems
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For the fuzzy decision-making search, the keywords with the highest number of appear-
ances are decision-making (13,964), fuzzy sets (4257), fuzzy logic (2965), linguistics (1243), decision
theory (1223), fuzzy mathematics (1147), fuzzy inference (1145), mathematical operators (1082), fuzzy
rules (1075), and risk assessment (1038). Figure 7 shows the KCN for the articles analyzed.
There are four main clusters of words, with decision-making having the greatest number of
appearances, followed by fuzzy logic, as shown by the size of their node. The thickest links
indicate a closer relationship between decision-making, fuzzy logic, fuzzy sets, and decision theory.
On the other hand, some of the words located in the margins of this field of research are city,
landfill, river, energy resource, image analysis, and diagnostic accuracy.
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Table 8 shows the fuzzy hybrid decision-making problems addressed in the greatest
number of articles across various industry sectors, including the fuzzy hybrid methods
applied to solve them.

Table 8. Fuzzy hybrid decision-making applications across industry sectors.

Industry Sector No. of Fuzzy Articles * Problems Addressed Fuzzy Hybrid Methods Applied

Mining 1382 Multi-objective optimization, decision
support systems, and sustainability

Fuzzy AHP, fuzzy decision trees, and fuzzy
expert systems

Construction 783 Construction management, planning, risk
analysis, and assessment

Fuzzy AHP, fuzzy ANP, and fuzzy
DEMATEL

Information technology 578 Risk evaluation Fuzzy cognitive mapping, fuzzy AHP

Chemical 483 Environmental impact, risk assessment Fuzzy AHP

Energy 447
Energy management, multi-objective

optimization, energy policy, decision support
systems, and planning

Fuzzy VIKOR, fuzzy MCDM, fuzzy AHP,
and neuro fuzzy inference systems

Finance 371 Investment evaluation, risk assessment Fuzzy AHP

Petroleum 292 Petroleum reserve evaluation, quality control,
risk assessment, and cost effectiveness Fuzzy AHP

Automotive 274
Supplier selection, material selection, supply

chain management, and environmental
management

Fuzzy MCDM, fuzzy TOPSIS

Electronics 217 Performance evaluation, optimization Fuzzy AHP, fuzzy ANP

Aerospace 92 Decision support systems, performance
assessment Fuzzy MCDM, ANFIS

* Sources: SpringerLink, Wiley Online Library, Taylor & Francis Online, Elsevier, IEEE Xplore, and Emerald.
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3.1.4. Fuzzy Decision-Making in the Solar Energy Sector

A Scopus search on “fuzzy AND decision AND making AND solar AND energy”
(fuzzy-decision-making-solar-energy) and the corresponding Bibliometrix analysis yielded
346 articles published between 2012 and 2022 by 930 authors in 179 sources, with an annual
growth rate of 25.25% and an average of 16.85 citations per article. Figure 8 shows the
scientific production of articles over this period.
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Table 9 shows the five journals with the highest number of publications. The journal
Renewable Energy published the most articles related to fuzzy-decision-making-solar-energy.
It is essential to mention that no substantial difference exists between the number of
publications in the journals shown in the ranking, with a three-way tie for second place.

Table 9. Most relevant sources based on the number of articles published for fuzzy-decision-making-
solar-energy.

Rank Source Publisher No. of Articles

1 Renewable Energy Elsevier 16

2 Energies MDPI 15

2 Energy Elsevier 15

2 Journal of Cleaner Production Elsevier 15

5 Sustainability (Switzerland) MDPI 11

The countries with the greatest scientific production for fuzzy-decision-making-solar-
energy were China (160), Türkiye (40), Iran (35), India (28), Spain (6), the USA (6), Italy (5),
Morocco (5), Thailand (5), and Australia (4). The countries that produced articles with the
most citations for fuzzy-decision-making-solar-energy were China (1676 citations), Türkiye
(1008), Iran (841), India (269), France (154), Spain (112), Australia (103), Denmark (88),
Colombia (82), and Italy (66). Note that China leads by far in both groups, with 160 articles
published and more than 1670 citations.

Table 10 shows the five articles most cited worldwide for fuzzy-decision-making-solar-
energy. The article with the most citations was published in 2013 in the journal Energy
Conversion and Management and was cited 216 times.
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Table 10. Most globally cited articles for fuzzy-decision-making-solar-energy.

Authors, Year Title Total Citations Source

Ahmadi et al., 2013 [23]
Designing a solar powered Stirling heat engine
based on multiple criteria: Maximized thermal
efficiency and power

216 Energy Conversion and Management

Aydin et al., 2013 [24]
GIS-based site selection methodology for hybrid
renewable energy systems: A case study from
western Turkey

206 Energy Conversion and Management

Wu et al., 2018 [25]
Evaluation of renewable power sources using a
fuzzy MCDM based on cumulative prospect
theory: A case in China

166 Energy

Ahmadi et al., 2013 [26]
Multi-objective thermodynamic-based
optimization of output power of Solar Dish-Stirling
engine by implementing an evolutionary algorithm

154 Energy Conversion and Management

Zoghi et al., 2017 [27]

Optimization solar site selection by fuzzy logic
model and weighted linear combination method in
arid and semi-arid region: A case study
Isfahan-IRAN

119 Renewable and Sustainable Energy
Reviews

The most frequent keywords of the articles analyzed for fuzzy-decision-making-solar-
energy are decision-making (in 286 articles), solar energy (144), solar power generation (73), fuzzy
logic (68), renewable energies (60), sustainable development (60), energy policy (56), investments
(51), fuzzy sets (47), and wind power (46). Figure 9 presents the KCN and the four main
clusters of words for this search, which show that the nodes with the greatest number of
occurrences are decision-making and solar energy. There is a closer relationship between
the terms decision-making, solar energy, and solar power generation, as represented by the
thicker link that joins them. In this case, there are no terms in the margins of this field of
research, since all the words are connected between them, but the less frequent terms can
be identified by the smallest nodes.
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3.1.5. Fuzzy Simulation in Different Sectors

A Scopus search using the words “fuzzy AND simulation” (fuzzy-simulation) yielded a
list of 42,585 articles published between 2012 and 2022. As noted previously, because of
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Scopus limitations, bibliographic information was downloaded and analyzed for 20,000 ar-
ticles. The articles analyzed were published from 2018 to 2022, written by 29,301 authors,
published in 4120 sources, and had an annual publication growth rate of 18.59%, as shown
in Figure 10. The average number of citations per document is 6.57.
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Figure 10. Annual scientific production (in articles per year) for fuzzy-simulation.

The countries with the greatest scientific production for fuzzy-simulation were China
(12,986), India (1663), Iran (1001), Algeria (315), Korea (303), the USA (193), Morocco (192),
Türkiye (183), Egypt (182), and Malaysia (174). The countries that produced articles with
the most citations for fuzzy-simulation were China (57,172), Iran (10,305), India (10,266),
Korea (3217), the USA (2248), the United Kingdom (1909), Algeria (1820), Canada (1779),
Egypt (1778), and Türkiye (1586).

Table 11 shows the most relevant sources that have published the greatest number of
articles related to fuzzy-simulation.

Table 11. Most relevant sources based on the number of articles published for fuzzy-simulation.

Rank No. of Articles Source Publisher

1 496 IEEE Transactions on Fuzzy Systems IEEE

2 482 IEEE Access IEEE

3 308 Journal of Physics: Conference Series IOP Publishing

4 270 Advances in Intelligent Systems and Computing Springer Science and Business Media

5 262 Lecture Notes in Electrical Engineering Springer

Table 12 shows the five articles most frequently cited worldwide for fuzzy-simulation.
The article with the most citations has 527 and was published in 2018 in the journal Water.

Table 12. Most globally cited articles for fuzzy-simulation.

Authors, Year Title Total Citations Source

Mosavi et al., 2018 [9] Flood prediction using machine learning models:
Literature review 527 Water (MDPI)

He and Dong 2017 [28] Adaptative fuzzy neural network control for a constrained robot
using impedance learning 446 IEEE Transactions on Neural

Networks and Learning Systems

Qiu et al., 2019 [29] Observer-based fuzzy adaptative event-triggered control for
pure-feedback nonlinear systems with prescribed performance 367 IEEE Transaction on Fuzzy Systems

Tong et al., 2020 [30]
Observer-based adaptive fuzzy tracking control for
strict-feedback nonlinear systems with unknown control
gain functions

312 IEEE Transactions on Cybernetics

Bai et al., 2020 [31] Industry 4.0 technologies assessment: A
sustainability perspective 302 International Journal of

Production Economics
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The keywords with the greatest number of appearances are fuzzy logic (5886), controllers
(4210), fuzzy inference (2863), fuzzy control (2855), computer circuits (2585), MATLAB (2386),
adaptative control systems (2113), fuzzy systems (2101), fuzzy neural networks (1849), and three-
term control systems (1297). Figure 11 presents the KCN of the keywords from the articles
analyzed for this search. As shown, there are four main clusters, and the largest nodes
match the most frequent keywords of fuzzy logic, controllers, fuzzy inference, fuzzy control,
and computer circuits. In this case, the words with the thickest link, and thus the closest
relationship, are fuzzy logic, computer circuits, controllers, MATLAB, and adaptative control
systems. On the other hand, the keywords in the margin of this field of research, because
they are not connected to other words and have the smallest nodes, are diagnostic imaging,
female, stochastic model, validity, chattering phenomenon, and smart grid.
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Table 13 shows the types of problems most frequently addressed across various
industry sectors and the fuzzy methods applied to solve them.

Table 13. Fuzzy hybrid simulation applications across industry sectors.

Industry Sector No. of Fuzzy Articles * Problems Addressed Fuzzy Hybrid Methods Applied

Energy 2150 Energy efficiency, energy management,
and system modeling AI-fuzzy controllers

Electronics 1753 System control, process modeling, and
system modeling Fuzzy controllers, NN

Construction 1746 Process modeling, system modeling Fuzzy system dynamics, FCM-SD

Mining 1403 Planning and scheduling, process
modeling, and system modeling

Fuzzy inference systems, neural
networks

Chemical 1039 Process modeling, process engineering Fuzzy control systems, neural network

Information technology 606 System control, process modeling Fuzzy control systems, neural networks,
and fuzzy PID

Automotive 584 Process modeling, system modeling Fuzzy controllers, NN

Petroleum 391 Process modeling, process engineering Fuzzy control systems, neural network

Aerospace 328 Process modeling, system modeling Fuzzy controllers, NN

Finance 149 Process modeling, budget control Fuzzy simulation, ANFIS

* Sources: SpringerLink, Wiley Online Library, Taylor & Francis Online, Elsevier, IEEE Xplore, and Emerald.
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3.1.6. Fuzzy Simulation in the Solar Energy Sector

The bibliographic information of 1025 articles based on the Scopus search for “fuzzy
AND simulation AND solar AND energy” (fuzzy-simulation-solar-energy) listed 2586 authors.
These articles were published in 534 sources, had an average annual publication growth rate
of 22.29% (see Figure 12), and had an average of 9.82 citations per article. The publication
of articles on this topic has grown significantly over the period investigated, with decreases
in 2015 and 2020.

Energies 2023, 16, x FOR PEER REVIEW 17 of 44 
 

 

publication of articles on this topic has grown significantly over the period investigated, 
with decreases in 2015 and 2020. 

 
Figure 12. Annual scientific production (in articles per year) for fuzzy-simulation-solar-energy. 

Table 14 presents the five sources with the largest number of articles published re-
lated to fuzzy-simulation-solar-energy. The journal Applied Mechanics and Materials had 
the most articles published related to this topic. 

Table 14. Most relevant sources based on the number of articles published for fuzzy-simulation-solar-
energy. 

Rank No. of Articles Source Publisher 
1 47 Applied Mechanics and Materials Trans Tech Publications 
2 34 Advanced Materials Research Trans Tech Publications 
3 31 Energies MDPI 
4 21 IEEE Access IEEE 
5 18 Lecture Notes in Electrical Engineering Springer 

The countries with the greatest scientific production for fuzzy-simulation-solar-energy 
were India (599), China (109), Algeria (45), Iran (38), Tunisia (19), Indonesia (17), Türkiye 
(17), Egypt (15), Morocco (14), and Saudi Arabia (13). The countries that produced articles 
with the most citations for fuzzy-simulation-solar-energy were India (1170), China (1158), 
Iran (1103), Algeria (608), Türkiye (395), Japan (353), Egypt (247), Saudi Arabia (218), Den-
mark (181), and Spain (174). India and China had the greatest number of articles published 
and citations by country for this topic. 

The five articles most cited worldwide for fuzzy-simulation-solar-energy are presented 
in Table 15. The top article has been cited 382 times and was published in 2013 in the 
journal IEEE Transactions on Industrial Electronics. 

Table 15. Most globally cited articles for fuzzy-simulation-solar-energy. 

Authors, Date Title Total Citations Source 

Njoya Motapon et al., 
2013 [14] 

A comparative study of energy management schemes 
for a fuel-cell hybrid emergency power system of more-
electric aircraft 

382 
IEEE Transactions 
on Industrial Elec-
tronics 

García et al., 2013 [32] 
ANFIS-based control of a grid-connected hybrid system 
integrating renewable energies, hydrogen, and batteries 192 

IEEE Transactions 
on Industrial Infor-
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IEEE Transactions 
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Figure 12. Annual scientific production (in articles per year) for fuzzy-simulation-solar-energy.

Table 14 presents the five sources with the largest number of articles published related
to fuzzy-simulation-solar-energy. The journal Applied Mechanics and Materials had the most
articles published related to this topic.

Table 14. Most relevant sources based on the number of articles published for fuzzy-simulation-solar-energy.

Rank No. of Articles Source Publisher

1 47 Applied Mechanics and Materials Trans Tech Publications

2 34 Advanced Materials Research Trans Tech Publications

3 31 Energies MDPI

4 21 IEEE Access IEEE

5 18 Lecture Notes in Electrical Engineering Springer

The countries with the greatest scientific production for fuzzy-simulation-solar-energy
were India (599), China (109), Algeria (45), Iran (38), Tunisia (19), Indonesia (17), Türkiye
(17), Egypt (15), Morocco (14), and Saudi Arabia (13). The countries that produced articles
with the most citations for fuzzy-simulation-solar-energy were India (1170), China (1158), Iran
(1103), Algeria (608), Türkiye (395), Japan (353), Egypt (247), Saudi Arabia (218), Denmark
(181), and Spain (174). India and China had the greatest number of articles published and
citations by country for this topic.

The five articles most cited worldwide for fuzzy-simulation-solar-energy are presented in
Table 15. The top article has been cited 382 times and was published in 2013 in the journal
IEEE Transactions on Industrial Electronics.

The most frequently appearing keywords for fuzzy simulation solar energy are fuzzy
logic (396 articles), solar energy (336), MATLAB (268), solar power generation (268), controllers
(240), photovoltaic cells (234), maximum power point trackers (228), computer circuits (209),
maximum power point tracking (172), and DC–DC converters (159). The KCN for these articles
is presented in Figure 13, which shows that the most frequent keywords for this search are
fuzzy logic, solar energy, and MATLAB, since they have the biggest nodes. The thickest links
show that the closest relationship is between fuzzy logic, fuzzy logic controllers, MATLAB,
computer circuits, and solar energy. The lack of links indicates that the keywords in the
margin of this field of research are harmonic distortion, efficiency, P&O, FLC, DC motors, neural
networks, Monte Carlo methods, and scheduling.
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Table 15. Most globally cited articles for fuzzy-simulation-solar-energy.

Authors, Date Title Total Citations Source

Njoya Motapon et al., 2013 [14]
A comparative study of energy management schemes
for a fuel-cell hybrid emergency power system of
more-electric aircraft

382 IEEE Transactions on Industrial Electronics

García et al., 2013 [32]
ANFIS-based control of a grid-connected hybrid
system integrating renewable energies, hydrogen,
and batteries

192 IEEE Transactions on Industrial
Informatics

Yin et al., 2016 [33]
An adaptative fuzzy logic-based energy management
strategy on battery/ultracapacitor hybrid
electric vehicles

163 IEEE Transactions on
Transportation Electrification

García et al., 2013 [34]
Optimal energy management system for stand-alone
wind turbine/photovoltaic/hydrogen/battery hybrid
system with supervisory control based on fuzzy logic

155 International Journal of Hydrogen Energy

Yi and Etemadi, 2017 [35]
Fault detection for photovoltaic systems based on
multi-resolution signal decomposition and fuzzy
inference systems

145 IEEE Transactions on Smart Grid
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3.1.7. Content Analysis and Discussion

Table 16 presents the total number of publications analyzed and their classification
per application category of the articles published in 2012–2022 that were analyzed for the
applications of fuzzy hybrid machine learning, decision-making, and simulation in the
solar energy sector. Table 17 gives more details on these articles.
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Table 16. Application of fuzzy hybrid machine learning, decision-making, and simulation categories
(2012–2022).

Rank Application Category Fuzzy Hybrid
Machine Learning Decision-Making Simulation

1 Prediction/forecasting 32 8 4

2 System modeling 4 2 50

3 Evaluation/assessment 5 55 8

4 Maintenance 3 0 0

Total 44 65 62

Table 17. Application categories for fuzzy hybrid method articles (2012–2022).

Application
Category Year Author (s) Application Area Method Journal/Book

Machine learning

System modeling 2022 Fahim and Vaezi [36] Systems operation Fuzzy ANN Handbook of Smart
Energy Systems

Maintenance 2022 Gao et al. [37] Operational optimization Deep learning, reinforcement
learning Applied Energy

Prediction/forecasting 2022 Mostafa et al. [38] Renewable energy, smart grid Fuzzy clustering, random
forest, and decision tree

Machine Learning with
Applications

Evaluation/assessment 2021 Ahmad et al. [39] Renewable energy demand
and digitalization Neuro-fuzzy models Journal of Cleaner Production

Prediction/forecasting 2021 Alkhayat and
Mehmood [40] Renewable energy forecasting Deep learning Energy and AI

Prediction/forecasting 2021 Bakay et al. [41] Electricity production Deep learning, SVM, and ANN Journal of Cleaner Production

Evaluation/assessment 2021 Chen et al. [42] Energy management Reinforcement learning arXiv

Prediction/forecasting 2021 Devaraj et al. [43] Energy demand Deep learning International Journal of Energy
Research

System modeling 2021 Garud et al. [44] Photovoltaic systems Fuzzy ANN, genetic algorithm International Journal of Energy
Research

Prediction/forecasting 2021 Jamil et al. [45] Energy prediction ANN IEEE Systems Journal

Prediction/forecasting 2021 Jebli et al. [46] Solar energy prediction
Linear regression, random

forest, support vector
regression, and ANN

Energy

Prediction/forecasting 2021 Malik et al. [47] Energy prediction Fuzzy reinforcement learning Sustainable Energy
Technologies and Assessments

Prediction/forecasting 2021 Perera et al. [48] Building energy systems Reinforcement learning, fuzzy
logic

Renewable and Sustainable
Energy Reviews

Evaluation/assessment 2021 Rangel-Martinez
et al. [49] Energy efficiency ANFIS, ANN Chemical Engineering

Research and Design

Prediction/forecasting 2021 Severiano et al. [50] Solar energy forecasting Fuzzy time series Renewable Energy

Prediction/forecasting 2021 Zhou et al. [51] Energy forecasting Deep learning, long-short-term
memory

Wireless Communications and
Mobile Computing

Prediction/forecasting 2021 Zulkifly et al. [52] Energy forecasting SVM, GPR, linear regression,
and decision tree

International Journal of
Renewable Energy Research

Prediction/forecasting 2020 Ahmad et al. [53] Energy planning and
forecasting Fuzzy ANN Sustainable Cities and Society

Maintenance 2020 Ali and Choi. [54] Distributed energy resources,
demand response ANFIS, ANN Electronics

Evaluation/assessment 2020 Antonopoulos et al. [55] Demand response Fuzzy ANN Renewable and Sustainable
Energy Reviews

Prediction/forecasting 2020 Çınar et al. [56] Maintenance Fuzzy c-means Sustainability

Prediction/forecasting 2020 Ibrahim et al. [57] Smart energy systems Deep learning, ANN Applied Energy

Prediction/forecasting 2020 Lai et al. [58] Renewable energy Adaptive neuro-fuzzy
inference system Applied Sciences

Prediction/forecasting 2020 Li et al. [59] PV power forecasting Deep learning, long short-term
memory networks Applied Energy

Prediction/forecasting 2020 Nam et al. [60] Renewable energy forecasting Deep learning Renewable and Sustainable
Energy Reviews

Prediction/forecasting 2020 Solyali [61] Energy forecasting ANFIS, ANN, SVM Sustainability

Prediction/forecasting 2020 Stefenon et al. [62] Solar trackers Deep learning, long-short-term
memory

IET Generation, Transmission
and Distribution

Prediction/forecasting 2020 Xu et al. [63] Demand response Reinforcement learning, ANN IEEE Systems Journal



Energies 2023, 16, 3795 19 of 38

Table 17. Cont.

Application
Category Year Author (s) Application Area Method Journal/Book

Prediction/forecasting 2020 Zhang et al. [64] Smart grids Deep learning, reinforcement
learning

CSEE Journal of Power and
Energy Systems

Prediction/forecasting 2019 Carvalho et al. [65] Maintenance Fuzzy c-means Computers and Industrial
Engineering

Prediction/forecasting 2019 Chou et al. [66] Electricity consumption Hybrid
ARIMA–MetaFA–LSSVR IEEE Systems Journal

Prediction/forecasting 2019 Hong and Rioflorido [67] Power forecasting Deep learning Applied Energy

Prediction/forecasting 2019 Mosavi et al. [68] Energy demand and
forecasting

Deep learning, ANFIS, ANN,
and decision tree Energies

Prediction/forecasting 2019 Phan et al. [69] Energy prediction Reinforcement learning, fuzzy
logic Applied Sciences

Prediction/forecasting 2019 Shamshirband et al. [70] Solar energy optimizing Deep learning IEEE Systems Journal

Prediction/forecasting 2019 Sharifzadeh et al. [71] Electricity demand ANFIS, ANN, SVR, and GPR Renewable and Sustainable
Energy Reviews

Prediction/forecasting 2019 Wang et al. [72] Renewable energy forecasting ANFIS, fuzzy time series Energy Conversion and
Management

Maintenance 2019 Weichert et al. [73] Manufacturing optimization ANFIS, fuzzy clustering
International Journal of
Advanced Manufacturing
Technology

Prediction/forecasting 2018 Cheng and Yu. [74] Smart energy and electric
power systems

Reinforcement learning, deep
learning

International Journal of Energy
Research

Prediction/forecasting 2018 Fallah et al. [75] Demand response, load
forecasting

Deep learning and fuzzy
rule-based Energies

Prediction/forecasting 2017 Voyant et al. [76] Energy forecasting ANFIS, ANN, SVM, and
regression Renewable Energy

System modeling 2016 Zahraee et al. [77] Hybrid energy system ANFIS Renewable and Sustainable
Energy Reviews

Prediction/forecasting 2015 Faquir et al. [78] Energy forecasting Fuzzy logic control International Journal of Fuzzy
System Applications

Prediction/forecasting 2015 Jurado et al. [79] Building electricity forecasting Fuzzy inductive reasoning,
ANN, and random forest Energy

Prediction/forecasting 2015 Osório et al. [80] Energy prediction Neuro-fuzzy system,
evolutionary PSO Renewable Energy

Evaluation/assessment 2015 Suganthi et al. [16] Renewable energy Fuzzy logic, neural networks,
and genetic algorithms

Renewable and Sustainable
Energy Reviews

Decision-making

Evaluation/assessment 2022 Akram et al. [81] Performance evaluation Fuzzy sets, multi-attribute
group decision-making Energies

Evaluation/assessment 2022 Asakereh et al. [82]
Renewable energy

selection/ranking of
alternatives

MCDM, FAHP Sustainable Energy
Technologies and Assessments

Evaluation/assessment 2022 Atwongyeire et al. [83] Optimal site selection GIS, FAHP, and MCDM Energies

Evaluation/assessment 2022 Azmi et al. [84] Financial analysis and
sustainability MCDM, FAHP International Journal of Energy

Research

Evaluation/assessment 2022 Fard et al. [85] Financial analysis and
sustainability

Hybrid fuzzy best-worst
method, geographic
information system

Renewable and Sustainable
Energy Reviews

Evaluation/assessment 2022 Bilgili et al. [86]
Renewable energy

selection/ranking of
alternatives

Intuitionistic fuzzy TOPSIS Renewable Energy

Evaluation/assessment 2022 Dinçer et al. [87] Cost management Pythagorean fuzzy DEMATEL,
TOPSIS, and Shapley value Energy Reports

Evaluation/assessment 2022 Guo and Gong [88] Optimal energy management Deep reinforcement learning
International Journal of
Electrical Power and Energy
Systems

Evaluation/assessment 2022 Khorshidi et al. [89] Optimal site selection Hybrid fuzzy DEMATEL,
fuzzy MOORA

International Journal of
Ambient Energy

Evaluation/assessment 2022 Li et al. [90] Multi-objective optimization Scenario-based stochastic
optimization Sustainable Cities and Society

Evaluation/assessment 2022 Memari and
Mohammadi [91] Optimal site selection Fuzzy ANP, Z-number VIKOR

International Journal of
Information and Decision
Sciences

Evaluation/assessment 2022 Naeem and Ali [92] Criteria evaluation and
selection

MCGDM, Aczel–Alsina
spherical fuzzy aggregation Physica Scripta

Evaluation/assessment 2022 Narayanamoorthy
et al. [93] Renewable energy selection MEREC, MULTIMOORA Sustainable Energy

Technologies and Assessments

Evaluation/assessment 2022 Nhi et al. [94] Optimal site selection FANP, TOPSIS, and FMCDM Computers, Materials and
Continua

Evaluation/assessment 2022 Noorollahi et al. [95] Optimal location selection GIS, fuzzy Boolean logic, AHP,
and MCDM Renewable Energy
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Table 17. Cont.

Application
Category Year Author (s) Application Area Method Journal/Book

Evaluation/assessment 2022 Pandya and Jariwala [96] Multi-objective optimization Moth flame optimization
algorithm Smart Science

Evaluation/assessment 2022 Ponce et al. [5] Systems operation
Multi-criteria decision-making

fuzzy TOPSIS and S4
framework

Energies

Evaluation/assessment 2022 Shah and Longsheng [97] Sustainability analysis Fuzzy Delphi, grey AHP Sustainable Energy
Technologies and Assessments

Evaluation/assessment 2022 Singh [98] Optimal site selection MADM, DHFs Granular Computing

Evaluation/assessment 2022 Subba and
Shabbiruddin [99] Optimal material selection Fuzzy COPRAS

International Journal of
Management Science and
Engineering Management

Evaluation/assessment 2022 Sun et al. [100] Renewable energy selection q-ROF DEMATEL Energy

Evaluation/assessment 2022 Thanh and Lan [101] Optimal site selection SWOC-FAHP-WASPAS
analysis Energies

Evaluation/assessment 2022 Tufail and Shabir [102] Optimal site selection VIKOR, MCDM Journal of Intelligent and
Fuzzy Systems

Evaluation/assessment 2022 Xu et al. [103] Financial analysis Fuzzy, ELECTRE International Journal of Fuzzy
Systems

Prediction/forecasting 2021 Behera et al. [104] Multi-objective optimization PSO World Journal of Engineering

Evaluation/assessment 2021 Ezbakhe and
Pérez-Foguet [105]

Renewable energy
selection/ranking of

alternatives
MCDA, ELECTRE III European Journal of

Operational Research

Evaluation/assessment 2021 Hsueh et al. [106]
Criteria identification and

selection/sustainable system
development

AI-MCDM, analytic hierarchy
process, and Delphi method Sustainability (Switzerland)

Evaluation/assessment 2021 Mostafaeipour et al. [107]
Criteria identification and

selection/sustainable system
development

Fuzzy best-worst method Energy

Evaluation/assessment 2021 Pang et al. [108]
Criteria identification and

selection, sustainable system
development

Fuzzy MCDM, intuitionistic
uncertain language Choquet

ordered weighted aggregation
operator (IULCWA)

IEEE Access

Evaluation/assessment 2021 Pour et al. [109] Optimal site selection GIS-FFDEA Journal of Renewable Energy
and Environment

Evaluation/assessment 2021 Ramezanzade et al. [110]
Renewable energy

selection/ranking of
alternatives

Fuzzy MCDM, fuzzy
Shannon’s entropy Sustainability (Switzerland)

Evaluation/assessment 2021 Saraswat and
Digalwar [111]

Renewable energy
selection/ranking of

alternatives

Integrated Shannon’s entropy,
FMCDM Renewable Energy

Evaluation/assessment 2021 Türk et al. [112] Optimal site selection GIS-intuitionistic fuzzy based
approach Scientific Reports

Evaluation/assessment 2020 Chen et al. [113]
Renewable energy

selection/ranking of criteria
and alternatives

MCDM, PROMETHEE II International Journal of Fuzzy
Systems

Evaluation/assessment 2020 Çoban [114]
Renewable energy

selection/ranking of
alternatives

MCDM, FAHP Complex and Intelligent
Systems

Evaluation/assessment 2020 Mokarram et al. [115] Optimal site selection Fuzzy AHP, fuzzy ANP, and
GIS Journal of Cleaner Production

Prediction/forecasting 2020 Papageorgiou et al. [116] Scenario analysis Fuzzy cognitive maps Energies

Evaluation/assessment 2020 Rani et al. [117] Performance evaluation Pythagorean fuzzy
SWARA-VIKOR Sustainability (Switzerland)

Evaluation/assessment 2020 Sitorus and
Brito-Parada [118]

Renewable energy
selection/ranking of criteria

and alternatives

Integrated constrained fuzzy
Shannon entropy (IC-FSE)

Renewable and Sustainable
Energy Reviews

Evaluation/assessment 2019 Aktas and Kabak [119] Optimal site selection AHP-hesitant fuzzy sets Arabian Journal for Science
and Engineering

Evaluation/assessment 2019 Dinçer and Yüksel [120]
Criteria identification and

selection/evaluation of
alternatives

Hesitant fuzzy DEMATEL,
hesitant fuzzy TOPSIS

International Journal of Energy
Research

Evaluation/assessment 2019 Gnanasekaran and
Venkatachalam [121]

Solar panel
selection/evaluation of

alternatives

Analytical hierarchy process,
fuzzy AHP, solar panel,

TOPSIS, and VIKOR

International Journal of
Mechanical and Production
Engineering Research and
Development

Evaluation/assessment 2019 Issa et al. [122] Evaluation of alternatives Fuzzy TOPSIS, AHP, and
MCDM

Journal of Civil Engineering
and Management

Evaluation/assessment 2019 Mohamad et al. [123] Multi-objective optimization Monte Carlo, GA, and fuzzy IEEE Access

Prediction/forecasting 2019 Ren et al. [124] Multi-objective optimization

Non-dominated sorting
genetic algorithm-II (NSGA-II),

random walk, directional
exploitation (RWDE) algorithm

Journal of Cleaner Production
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Table 17. Cont.

Application
Category Year Author (s) Application Area Method Journal/Book

Evaluation/assessment 2019 Sasikumar and
Ayyappan [125]

Solar panel
selection/evaluation of

alternatives
FAHP-TOPSIS Journal of The Institution of

Engineers (India): Series C

Prediction/forecasting 2019 Serrano-Gomez and
Munoz-Hernandez [126] Risk analysis Monte Carlo-FAHP PLoS ONE

Evaluation/assessment 2019 Solangi et al. [127] Optimal site selection AHP-fuzzy VIKOR Environmental Science and
Pollution Research

Evaluation/assessment 2019 Wu et al. [128] Optimal site selection PROMETHEE Renewable Energy

Evaluation/assessment 2019 Xie et al. [129]
Criteria identification and

selection/evaluation of
alternatives

Interval fuzzy programming Energies

Evaluation/assessment 2019 Zeng et al. [130] Selection of solar cells FMADM Energies

Prediction/forecasting 2018 Çoban and Onar [131] Financial analysis Fuzzy logic Soft Computing

System modeling 2018 Dettori et al. [132] System control Fuzzy logic Applied Energy

Evaluation/assessment 2018 Otay and Kahraman [133] Optimal site selection Fuzzy AHP International Journal of the
Analytic Hierarchy Process

Evaluation/assessment 2018 Wang et al. [134] Optimal site selection DEA, FAHP, and FMCDM Energies

Evaluation/assessment 2018 Wang and Tsai [135]
Criteria identification and

selection/evaluation of
alternatives

DEA, FAHP, and FMCDM Energies

Evaluation/assessment 2018 Yuan et al. [136]
Renewable energy

selection/ranking of criteria
and alternatives

Fuzzy logic Journal of Cleaner Production

Evaluation/assessment 2017 Abdullah and Najib [137] Sustainable energy sources
selection FAHP International Journal of Fuzzy

System Applications

Prediction/forecasting 2017 Ahmadi et al. [138] Multi-objective optimization Fuzzy TOPSIS, fuzzy LINMAP Thermal Science and
Engineering Progress

System modeling 2017 Gangothri and
Kiranmayi [139] System control Fuzzy logic

Journal of Advanced Research
in Dynamical and Control
Systems

Evaluation/assessment 2017 Lee et al. [140] Optimal site selection
Fuzzy analytic network

process (FANP), interpretive
structural modeling (ISM)

Sustainability (Switzerland)

Evaluation/assessment 2015 Lee et al. [141] Optimal site selection

Analytic hierarchy process
(AHP), data envelopment
analysis (DEA), and fuzzy

logic

Sustainability (Switzerland)

Evaluation/assessment 2017 Samanlioglu and
Aya [142] Optimal site selection

AHP, fuzzy logic,
multiple-criteria

decision-making, and
PROMETHEE II

Journal of Intelligent and
Fuzzy Systems

Prediction/forecasting 2013 Ahmadi et al. [23] Multi-objective optimization Evolutionary algorithms Energy Conversion and
Management

Prediction/forecasting 2013 Ahmadi et al. [26] Multi-objective optimization Evolutionary algorithms Energy Conversion and
Management

Evaluation/assessment 2012 Boran et al. [143] Policy evaluation and analysis Multi-criteria axiomatic design
Energy Sources, Part B:
Economics, Planning and
Policy

Fuzzy Simulation

System modeling 2022 Kader et al. [144] Renewable energy grid,
systems control Type-2 fuzzy logic system, PSO Energies

System modeling 2022 Bouhouta et al. [145] Renewable energy grid Fuzzy M5P, fuzzy logic
controller

Energy Sources, Part A:
Recovery, Utilization and
Environmental Effects

Prediction/forecasting 2022 Cao et al. [146] Energy management

Deep learned type-2 (T2) fuzzy
logic system (FLS),

singular-value decomposition
(SVD)

Energy Reports

System modeling 2022 Zhu and Chen [147] Renewable energy grid Fuzzy logic controller Frontiers in Energy Research

Evaluation/assessment 2022 Giurgi et al. [148] Energy management Fuzzy logic controller Applied Sciences (Switzerland)

System modeling 2022 Guo and Gong [88] Energy management Deep reinforcement learning,
fuzzy logic controller

International Journal of
Electrical Power and Energy
Systems

System modeling 2022 Hemalatha and
Seyezhai [149] Systems operation Fuzzy MPPT controller Applied Nanoscience

(Switzerland)

System modeling 2022 Kurian et al. [150] Renewable energy
performance Fuzzy logic controller Sustainable Energy

Technologies and Assessments

Evaluation/assessment 2022 Salman et al. [151] Renewable energy
performance Fuzzy logic controller Bulletin of Electrical

Engineering and Informatics

System modeling 2022 Septiarini et al. [152] Systems operation Fuzzy logic controller
International Journal of
Computational Vision and
Robotics
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Table 17. Cont.

Application
Category Year Author (s) Application Area Method Journal/Book

System modeling 2022 Vaibhav and
Srikanthan [153]

Hybrid renewable energy
systems

Fuzzy logic-based GPSO PR
Controller

International Journal of
Renewable Energy Research

System modeling 2022 Yahiaoui et al. [154] Renewable energy conversion AI, fuzzy logic controller Frontiers in Energy Research

System modeling 2021 Abdellatif et al. [155] Energy management Fuzzy logic controller
International Journal on
Electrical Engineering and
Informatics

System modeling 2021 Ali et al. [156] Renewable energy grid Fuzzy logic controller IEEE Access

System modeling 2021 Cioccolanti et al. [157] Energy management Fuzzy logic controller Applied Sciences (Switzerland)

System modeling 2021 Palacios et al. [158] Systems control Fuzzy logic controller, PSO International Review of
Automatic Control

System modeling 2021 Ramakrishna et al. [159] Systems operation Fuzzy logic controller Journal of Green Engineering

System modeling 2021 Şahin and Okumuş [160] Systems control Fuzzy logic controller Electric Power Components
and Systems

System modeling 2021 Yussif et al. [161] Systems control Fuzzy logic controller Energies

System modeling 2020 Thakur et al. [162] Systems control, renewable
energy

Fuzzy set theory, fuzzy logic,
neural networks, ANN, ANFIS,

FES, RSM, and SVM

Applied Soft Computing
Techniques for Renewable
Energy

System modeling 2020 Chouksey et al. [163] Operational optimization Fuzzy logic controller,
ANN-based PSO Fuzzy Sets and Systems

Evaluation/assessment 2020 El Hichami et al. [164] Systems control Fuzzy logic controller
Journal of Advanced Research
in Dynamical and Control
Systems

System modeling 2020 Hamdi et al. [165] Systems control
Adaptive neuro-fuzzy

inference systems (ANFIS),
fuzzy logic controller

Protection and Control of
Modern Power Systems

System modeling 2020 Mohapatra et al. [166] Systems operation Adaptive fuzzy MPPT Journal of The Institution of
Engineers (India): Series B

Evaluation/assessment 2020 Ontiveros et al. [167] Systems control Fuzzy logic controller International Journal of
Photoenergy

System modeling 2019 Choudhury and
Rout [168]

Photovoltaic system, systems
control

Mamdani-based fuzzy logic
controller

International Journal of
Intelligent Systems
Technologies and Applications

System modeling 2019 Bansal [169] Renewable energy grid Fuzzy logic controller
International Journal of
Engineering and Advanced
Technology

System modeling 2019 Farajdadian and
Hosseini [170] Systems control Firefly algorithm, fuzzy logic

controller, and PSO Solar Energy

Prediction/forecasting 2019 Perveen et al. [171] Energy forecasting Fuzzy logic, ANN, and ANFIS IET Energy Systems
Integration

System modeling 2019 Ramya et al. [172] Demand response Fuzzy logic controller Journal of Intelligent and
Fuzzy Systems

System modeling 2019 Sutar and Butale [173] Systems control Fuzzy logic controller
International Journal of
Engineering and Advanced
Technology

System modeling 2018 Assahout et al. [174] Photovoltaic system Fuzzy logic, ANN International Journal of Power
Electronics and Drive Systems

System modeling 2018 Benaissa et al. [175] Operational optimization ANFIS

Revue Roumaine des Sciences
Techniques Serie
Electrotechnique et
Energetique

System modeling 2018 Jemaa et al. [176] Systems control Fuzzy logic controller International Journal of
Photoenergy

System modeling 2018 Kanagasakthivel
et al. [177] Systems control ANFIS-based MPPT controller Journal of Intelligent and

Fuzzy Systems

Prediction/forecasting 2018 Perveen et al. [178] Energy forecasting Fuzzy logic Journal of Renewable and
Sustainable Energy

System modeling 2018 Shah et al. [179] Operational optimization Fuzzy logic-based FOGI-FLL
algorithm

IEEE Transactions on
Industrial Informatics

Prediction/forecasting 2017 Almaraashi [180] Energy demand Fuzzy logic PLoS ONE

System modeling 2017 Andigounder et al. [181] Systems control ANFIS controller Ecology, Environment and
Conservation

System modeling 2017 Gangothri and
Kiranmayi [139] Renewable energy Fuzzy logic, MPPT

Journal of Advanced Research
in Dynamical and Control
Systems

System modeling 2017 Goh et al. [182] Photovoltaic systems Fuzzy logic controller
Journal of Telecommunication,
Electronic and Computer
Engineering

System modeling 2017 Hariprabhu and
Sundararaju [183] Renewable energy grid Sophisticated fuzzy rule set

(SFRS) based MPPT

Journal of Advanced Research
in Dynamical and Control
Systems

System modeling 2017 Mayilvahanan et al. [184] Performance enhancement Dynamic rule soft switching
algorithm, fuzzy logic

Journal of Computational and
Theoretical Nanoscience
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Table 17. Cont.

Application
Category Year Author (s) Application Area Method Journal/Book

System modeling 2017 Sukumar et al. [185] Systems control Fuzzy logic controller Energies

Evaluation/assessment 2016 Ben Smida and
Sakly [186] Renewable energy grid Fuzzy logic controller, MLI,

and MPPT
International Journal of
Renewable Energy Research

System modeling 2016 Bouzeria et al. [187] Systems control Fuzzy logic controller
International Journal of
Simulation and
Process Modelling

System modeling 2016 El Filali et al. [188] Photovoltaic systems Fuzzy logic, MPPT
Journal of Theoretical and
Applied
Information Technology

System modeling 2016 Nader and
Abderrahmane [189] Renewable energy grid Electrical grid, fuzzy logic

control; MPPT

Revue Roumaine des Sciences
Techniques Serie
Electrotechnique
et Energetique

System modeling 2016 Wang et al. [190] Renewable energy grid Fuzzy logic KSII Transactions on Internet
and Information Systems

System modeling 2015 Arulmurugan and
Suthanthiravanitha [191] Photovoltaic systems

Hopfield neural network,
MPPT, and optimized

fuzzy rule

Electric Power Systems
Research

System modeling 2015 Kang et al. [192] Systems control Fuzzy logic controller Applied Energy

Evaluation/assessment 2015 Muthuramalingam and
Manoharan [193] Photovoltaic systems Fuzzy logic controller, genetic

algorithm
World Journal of Modelling
and Simulation

System modeling 2015 Prakash and Sahoo [194] Photovoltaic systems Fuzzy logic controller
Research Journal of Applied
Sciences, Engineering and
Technology

Evaluation/assessment 2015 Shiau et al. [195] Energy demand Fuzzy MPPT algorithms Algorithms

System modeling 2015 Shiau et al. [196] Systems control Fuzzy logic controller Energies

System modeling 2014 Chakraborty et al. [197] Photovoltaic systems Fuzzy logic, advanced
quantum evolutionary method

IET Generation, Transmission
and Distribution

System modeling 2014 Othman et al. [198] Systems operation Fuzzy logic controller, MPPT WSEAS Transactions on
Power Systems

System modeling 2014 Shiau et al. [199] Systems operation Fuzzy logic controller Energies

System modeling 2013 Chakraborty et al. [200] Systems operation, renewable
energy smart grid

Fuzzy logic, advanced
quantum evolutionary method

IEEE Transactions on
Sustainable Energy

The results of the literature review and analysis illustrate a lack of scientific production
based on designing, implementing, and deploying hybrid fuzzy logic methods in the solar
energy sector, which is extremely important in the effort to reduce CO2 and greenhouse
emissions worldwide.

The analysis of articles indicated that between 2012 and 2022, more than 2900 articles
related to fuzzy solar energy were published in 1200 different sources. Moreover, two
countries dominate the scientific production on this topic: India and China. The data
presented in this paper support the possibility of implementing hybrid fuzzy logic systems
in solar energy because the countries leading PV solar energy installations are also leading
research in hybrid fuzzy logic systems [201].

On the topic of fuzzy hybrid machine learning, the publication of articles increased
substantially during 2012–2022, with 1409 articles in all. The greatest number of these
articles are from India and are primarily focused on the information technology, mining,
electronics, chemical, and construction sectors. In contrast, the application of fuzzy hybrid
machine learning in the energy sector is still low and mainly centered on decision-making,
optimization, prediction, and simulation problems.

With respect to fuzzy decision-making, more extensive scientific production is ob-
served for 2012–2022, with more than 30,500 articles published. This analysis considered
20,000 articles published from 3694 different sources for 2017–2022, of which almost 30%
were from China and focused on the mining sector. With respect to the energy sector,
fuzzy hybrid decision-making is mainly applied in energy management, multi-objective
optimization, energy policy, decision support systems, and planning problems. Focusing
only on solar energy and decision-making, only 346 articles were published, most of them
in China.

During 2012–2022, more than 42,500 articles were published related to fuzzy simu-
lation, although this study analyzed only 20,000 articles published in 2018–2022 due to
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Scopus’s limitation of only being able to download bibliographical information for that
maximum number of articles. For this topic, scientific production has remained almost
linear since 2019, with China publishing 65% of the total articles published, and more
articles were published on the energy sector, focusing on energy efficiency, energy man-
agement, and system modeling. Other sectors dominating the fuzzy simulation articles
publication are electronics, construction, and mining. Between 2012 and 2022, 1025 articles
related to “fuzzy simulation and solar energy” were published in 534 sources. India led the
publication of these works, followed by China.

As Figure 14 and Table 17 show, out of the four stages of solar system lifecycles (evalu-
ation/diagnosis, installation, operation, and disposal), most applications of fuzzy hybrid
machine learning, decision-making, and simulation focused on prediction/forecasting,
manufacturing process/system modeling, and evaluation/assessment, and therefore ad-
dressed the evaluation/diagnosis stage. Just a few focus on the operation stage, and thus
all focus on maintenance.
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3.2. Selecting Fuzzy Hybrid Applications

As discussed above, there is a considerable lack of applications of fuzzy hybrid ma-
chine learning, decision-making, and simulation in research on the installation, operation,
and disposal stages of solar energy systems. No application has been explored for solving
problems in the installation and disposal stages, and just a few applications have been
explored for the operation stage. For these three stages, methods of modeling, prediction,
and control are proposed here.

Numerous hybrid fuzzy logic methods have been effectively designed and imple-
mented in several areas, but hybrid fuzzy logic methods regarding solar energy are poorly
implemented. Hybrid fuzzy logic methods can be used to help improve solar energy
generation and operation at specific stages. This review presents how methodologies using
fuzzy logic can be deployed in the solar energy sector, especially when combined with some
conventional methodologies to improve their performance. Table 18 presents the advan-
tages (pros) and disadvantages (cons) of fuzzy hybrid machine learning, decision-making,
and simulation methods.

Table 18. Advantages and disadvantages of fuzzy hybrid machine learning, decision-making, and
simulation methods.

Category/Method Advantages Disadvantages References

Fuzzy Machine Learning

ANFIS, ANN, and deep learning

• Provides accelerated learning capacity and
adaptive interpretation capabilities to
model complex patterns and apprehend
nonlinear relationships;

• Knowledge representation and
automated learning;

• Ability to use linguistic variables to model
the input–output relationships of a given
system;

• Represent qualitative, vague, and
imprecise concepts;

• Learning capabilities and
pattern matching;

• Ability to solve both linear and
nonlinear problems.

• High computational expense and
complexity depend on algorithm
mathematics and the number of iterations;

• Loss of interpretability in larger inputs;
• Curse of dimensionality;
• Need to select appropriate

membership functions;
• Can easily converge to local minima;
• Trade-off between interpretability

and accuracy;
• High processing time for large neural

networks, and highly relying on the
training process.

[202–209]

Fuzzy clustering
• Flexibility to express that data points can

belong to more than one cluster;
• Clusters can be characterized by a small

number of parameters.

• Computationally expensive and high
likelihood of complexity;

• Need large data sets;
• Sensitive to initialization of the

weight matrix.

[16,204–206]

Fuzzy inductive reasoning

• Handle subjective variables
and judgements;

• Allow to make an observation and then
apply it to a variety of similar and
sometimes unlike instances
with probability;

• Deal with dynamical systems.

• Inferences are limited in scope and
are inaccurate.

[207,208,210]

Fuzzy reinforcement learning

• Does not require large labeled datasets;
• Highly adaptable and goal-oriented;
• Can correct the errors that occurred during

the training process;
• Achieves the ideal behavior of a model

within a specific context, to maximize
its performance.

• Can lead to an overload of states if too
many iterations;

• Needs a lot of data and a lot of
computation;

• Curse of dimensionality limits
reinforcement learning heavily for real
physical systems.

[211–214]

Fuzzy Decision-making

Fuzzy AHP
• Can be easily understood;
• Easy to use compared to other methods;
• Easier to structure problems

systematically.

• Consistency of results with expert
judgements can depend on the way the
problem is structured (e.g., one-level
hierarchy vs two-level hierarchy);

• Some methods in the fuzzy component of
the method are not straightforward to use
for establishing priorities or weights;

• Interdependence between criteria
and alternatives;

• Can be subject to inconsistencies in
judgement and ranking criteria;

• Addition of alternatives at the end could
cause reversal of final rankings.

[215,216]
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Table 18. Cont.

Category/Method Advantages Disadvantages References

Fuzzy ANP

• Is capable of capturing relationships
belonging to different categories;

• Can capture subjective and objective
measurements of variables;

• Can be easily understood.

• Can become computationally complex
to implement;

• Involves pairwise comparison process,
which can become cumbersome;

• Problem with updating the system if
(when) new information arises.

[217–219]

Fuzzy ELECTRE

• Takes into account vagueness
and uncertainty;

• More stable as it is less sensitive to changes
in data as compared to other methods.

• More difficult to comprehend;
• Strength and weakness of alternatives

cannot be directly identified;
• Verification of results and impacts

is difficult;
• Threshold needs to be defined, whose size

impacts ranking of alternatives.

[216,220,221]

Fuzzy genetic algorithms

• Successfully applied to a range
of problems;

• No specific requirement on the problem
before using GA, can be used to solve
any problem;

• Cover larger space of the search space per
iteration (as compared with other
comparative approaches);

• Uses operators which enable it to mix
good attributes from different solutions
(subsequent exploitation enables finding
of optimal solutions);

• No definite mathematical restrictions on
properties of fitness function;

• Can handle noisy functions well;
• More resistant to becoming trapped in

local optimum solutions.

• Selection of initial population affects
quality of solution;

• Solution may take more computational
time if large population is considered; and
small population may lead to
poor solution;

• Premature convergence can lead to
suboptimal solution;

• Selection of efficient fitness functions;
• No general method for selection of

particular encoding scheme for
specific problems;

• Needs to be coupled with a local search
technique;

• Can have issues with finding exact
global minimum;

• Identifying fitness function can be
a problem.

[222–225]

Fuzzy PSO
• There are few parameters to adjust;
• Can work for applications with both

specific and wide range of applications;
• Good for multi-objective optimization.

• Solution can become of low quality;
• Needs memory to update;
• Possibility of early coverage.

[226,227]

Fuzzy PROMETHEE

• Easy to use;
• Normalization of scores not needed;
• Does not require the assumption of

proportionate criteria;
• More powerful in different problem

contexts.

• No clear method for weight assignment. [216,220]

Fuzzy TOPSIS

• Basic idea behind its formulation is simple
and intuitive;

• Easy and useful method with extensive
applications;

• The methodology is easily programmable;
• Number of steps is same irrespective of

number of attributes

• Distance function does not consider
correlation between attributes.

[216,219,228]

Fuzzy VIKOR

• Can solve discrete decision problems that
are conflicting and with criteria consisting
of different units;

• Can process problems with higher number
of alternatives and attributes;

• Can be used for complex systems;
• Has fewer factors to consider and is

relatively simpler to implement;
• Can rank alternatives to determine best

solution accurately.

• Cannot elicit the weights and check the
consistency of the decision-making.

[216,219,229,230]

Fuzzy Simulation

Fuzzy discrete event simulation

• Capable of modeling processes that
involve number of activities;

• Capable of simulating a process to predict
the duration of an activity or performance
of resources;

• Can process fuzzy numbers, deterministic
and probabilistic values;

• Allows users to interact with the model
and observe the model’s changes as the
simulation clock advances;

• Useful for performing processes-based
simulation.

• Difficulty in implementing classical
arithmetic operations when fuzzy
numbers are involved;

• Time paradox phenomenon can occur,
where time decreases instead of increasing;

• More details are necessary to represent the
system;

• Cannot capture dynamic feedback
relationships between system variables
[204].

[204,231–234]
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Table 18. Cont.

Category/Method Advantages Disadvantages References

Fuzzy system dynamics

• Ideal for simulating systems that are
continuous in behavior, broad in details,
and qualitative and quantitative in nature;

• Captures the system at a higher level to
identify variables that affect the state of
the system;

• Can capture interdependencies between
variables, that also involve non-linear
relationships with multiple feedback
processes that are able to change
through time.

• Proper system representation, including
defining model boundaries and
aggregation level can become difficult;

• Identifying causal relationships can
become difficult in some systems;

• Identifying feedback loops can
become difficult;

• Capturing system variables having
qualitative data can make the model
computationally cumbersome;

• Verification and validation process can
become difficult.

[232–239]

Fuzzy agent-based modeling

• Can capture complex systems and
emerging behaviors (i.e., where the system
can be abstracted interacting objects
whose behavior lead to a global behavior);

• Can model systems even when the overall
behavior of the system is not
known initially;

• Can handle large amount of goal-driven,
autonomous, and adapting agents;

• Can easily capture behaviors of numerous
activities, each with differing attributes
and complex interrelationships, and
changing conditions during simulation.

• Not best suited for modeling high-level
aggregated systems;

• Not suited for investigating which
processes dominate in aggregated systems;

• Not suited for modeling systems with
feedback relationships.

[233,234,240,241]

Fuzzy Monte Carlo simulation

• Is able to account for both random
uncertainty and subjective uncertainty of
the system;

• Can account for both variability and
uncertainty of information;

• Has the ability to generate multiple
scenarios while sampling of each
probability distribution of the input
variables exhibiting uncertainty.

• Requires intensive computation;
• Requires known probability density

functions for input parameters;
• Ignores time dependency of

systems behavior.

[242–245]

After the advantages and disadvantages of each method are reviewed, criteria for
selecting an appropriate method must be considered. Table 19 summarizes the criteria for
selecting fuzzy hybrid techniques and the characteristics of each based on the literature
review and content analysis.

This study offers a wider view of all the fuzzy hybrid methods available in the litera-
ture, with their advantages, disadvantages, and applications in fuzzy machine learning,
fuzzy decision-making, and fuzzy simulation. The goal of this study is to enable practition-
ers to make more informed and complete decisions about what method to use, and they
must also consider appropriate selection criteria depending on the solar energy problem to
be solved. This method can be applied to problems presented at any stage of the PV system
lifecycle, from analysis to installation, operation, and disposal. The method selected will
depend on the complexity of the problem and the selected category criteria.

After the fuzzy hybrid methods available in the solar energy literature were reviewed,
it was observed that there are several areas in which the performance of solar PV panels
could be improved so the main and local grids can provide a better quality of energy.
Hybrid fuzzy systems can be implemented in the following areas:

• Fault Detection and Diagnosis: This is an area in which hybrid fuzzy systems can be
deployed to detect and diagnose faults in solar PV systems. The information from
sensors and hybrid fuzzy systems can detect potential fault conditions and recommend
maintenance or repairs;

• System Controls: Hybrid fuzzy systems can also be implemented to enhance the
performance of MPPT control techniques in solar PV systems through the analysis of
data from sensors and other sources. Hybrid fuzzy systems can be employed to adjust
the voltage and current of a PV system to increase efficiency;

• Energy Management: This is an important area in which hybrid fuzzy systems can be
used to incrementally improve the efficiency of electric systems, reduce CO2 emissions,
and thus enhance the energy management of solar PV systems. Since hybrid fuzzy
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systems can adjust the system’s energy consumption to maximize its efficiency and
reduce costs, they are an excellent alternative to be implemented in solar PV systems;

• Prediction and Forecasting Systems: In systems used to predict and forecast the
performance of solar PV systems and weather conditions, hybrid fuzzy systems can be
used to analyze data from weather patterns, solar irradiance, and other factors. They
can generate an accurate prediction of the amount of energy produced by the solar
PV system. Thus, fuzzy hybrid systems can help utilities better manage the main and
local grids.

Table 19. Selection criteria for fuzzy hybrid techniques in solar energy systems research.

Selection Criteria
Category Specified Selection Criteria

Application Category

Evaluation/
Assessment Maintenance Prediction/Forecasting System

Modeling

Accuracy

• Ability to achieve high optimization effectiveness
and efficiency;

• Ability to capture uncertainty and vagueness of model outputs;
• Ability to obtain high validity;
• Ability to produce low training and testing errors

(classification accuracy);
• Ability to produce the least root-mean-square error and/or

mean absolute error between the target values and the values
predicted by fuzzy hybrid model (prediction accuracy).

Fuzzy
machine learning

Fuzzy
machine learning

Fuzzy
machine learning Fuzzy simulation

Computational
complexity

• Ability to avoid local minima trapping;
• Ability to capture dynamic systems and relationships;
• Ability to model a large number of parameters

(high dimensionality);
• Ability to perform need analysis;
• Ability to perform trend analysis and pattern recognition in

predictive models (e.g., time series);
• Ability to perform scenario and sensitivity analyses.

Fuzzy simulation Fuzzy simulation Fuzzy simulation Fuzzy simulation

Data
availability

• Ability to accommodate a mix of quantitative and
qualitative inputs;

• Ability to capture subjectivity and vagueness;
• Ability to model highly dimensional and complex data.

Fuzzy
decision-making

Fuzzy
decision-making

Fuzzy
decision-making

Fuzzy machine
learning

Implementation
complexity

• Availability of commercial software packages, open-source
coding, and self-coding.

Fuzzy simulation Fuzzy simulation Fuzzy simulation Fuzzy simulation

Interpretability
• Ability to prioritize available alternatives for determining the

optimal option;
• Transparency.

Fuzzy
decision-making

Fuzzy
decision-making

Fuzzy
decision-making

Fuzzy
decision-making

Processing ability • Fast convergence and computational speeds.
Fuzzy machine

learning
Fuzzy machine

learning
Fuzzy machine

learning
Fuzzy machine

learning

The results of this study highlight the potential benefits of adopting fuzzy hybrid
systems in the PV solar energy sector. The implementation of such systems could lead to
improvements in the analysis, installation, operation, and disposal stages of solar energy
projects. In light of these findings, it is recommended that development policies be put in
place to promote the adoption of fuzzy hybrid systems in the sector.

One proposed policy is the development of pilot projects to demonstrate the effective-
ness and feasibility of fuzzy hybrid systems in the PV solar energy sector. These projects
could be funded by the government or industries and involve collaborations between
researchers, industry professionals, and end users. Another policy proposal is the establish-
ment of standards and guidelines to guide the implementation of fuzzy hybrid systems in
the sector. These guidelines could cover various areas, such as the evaluation, operation,
installation, and disposal stages of solar energy projects. Additionally, standards could
be established for performance metrics of fuzzy hybrid systems and best practices for
selecting appropriate systems. Incentives such as tax credits or subsidies could be provided
to encourage the adoption of fuzzy hybrid systems in the PV solar energy sector. This could
include incentives for research and development, pilot projects, and the implementation
of these systems in commercial projects. Furthermore, public-private partnerships could
be fostered by the government to promote the adoption of fuzzy hybrid systems in the
sector. Such partnerships could involve collaborations between academic researchers,
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industry professionals, and government agencies to develop and implement these systems
in the field.

Training programs should be established to educate stakeholders in the PV solar
energy sector about the benefits of fuzzy hybrid systems. These programs could target
policymakers, industry professionals, and end users, covering areas such as fuzzy machine
learning, fuzzy simulation, and fuzzy decision-making. In addition, it is recommended that
the government and industry fund research and development to promote the use of fuzzy
hybrid systems in the PV solar energy sector. This could include funding for academic
research and industry-academic collaborations.

Finally, the results of studies on fuzzy hybrid systems in the PV solar energy sector
should be disseminated to stakeholders such as installers, operators, and disposal teams
to promote the adoption of these systems. Workshops and training programs could also
be organized to educate stakeholders about the benefits of these systems. These proposed
policies could accelerate the adoption of fuzzy hybrid systems in the PV solar energy sector
and help improve solar energy projects’ efficiency and effectiveness.

4. Conclusions

This paper presents a review of fuzzy hybrid systems implemented in several sectors
as well as the possibility of using them in PV systems. Additionally, this paper describes
the trends in using hybrid fuzzy logic in PV solar energy applications, including the
low number of published research papers using hybrid fuzzy logic methods in PV solar
energy compared to other sectors. Thus, it promotes the use of well-known hybrid fuzzy
logic methodologies in solar energy. Since fuzzy hybrid systems have been designed
and deployed successfully in several applications, an excellent opportunity exists for
implementing those methodologies in the PV solar sector. Further, by presenting the main
advantages and disadvantages of several fuzzy logic hybrid systems, the information
provided in this paper can be used as a guide for selecting and implementing hybrid fuzzy
logic systems in the solar energy sector to improve the analysis, installation, operation, and
disposal stages of solar energy projects. This paper also demonstrates that hybrid fuzzy
logic systems could be used in the solar energy sector to improve performance by applying
specific fuzzy techniques in the evaluation, operation, installation, and disposal stages.
Finally, the methodology presented in this study can be used to support research on other
renewable energy sources, such as wind energy.
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