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Abstract: The premise of electric vehicles (EVs) participating in the frequency regulation (FR) of
power systems is to satisfy the charging demands of users. In view of problems such as the uncertainty
of EV users’ departure time and the increase in power supply pressure due to disordered charging in
the frequency regulation process of EV clusters, a secondary frequency regulation control strategy
with EVs considering user travel uncertainty is proposed. Firstly, EV charging history was analyzed,
a reliability parameter was introduced to describe the user travel uncertainty, and an individual EV
controllable domain model based on reliability correction was constructed. Then, EV clusters were
grouped according to charging urgency and state of charge (SOC), and the controllable capacity of
EV clusters was determined. Finally, EV frequency regulation capability parameters and charging
urgency parameters were defined to determine the EV frequency regulation priority list, combined
with the EV state grouping and priority list, and the EV cluster frequency control strategy was
proposed. The simulation results show that the proposed strategy can satisfy the charging demands
of users under uncertain travel conditions, reduce the power supply pressure of the power system
caused by EVs entering the forced charging state, and effectively suppress frequency deviation.

Keywords: electric vehicle; secondary frequency regulation; controllable capacity; EV orderly charging;
vehicle to grid

1. Introduction

With large-scale renewable energy, represented by wind power generation, being
connected to power systems, the uncertainty and low inertia of renewable energy strongly
impact the frequency stability of power systems [1]. Under the disturbance of the same
active power, when the proportion of renewable energy is higher, the performance of
maintaining the frequency stability of the power system is worse [2]. Due to the influence
of mechanical rotating parts, the traditional thermal power frequency regulation unit
has a low climbing rate, and it is difficult to stabilize the system frequency [3]. Power
systems demand a large-scale and high-quality frequency regulation resource to reduce
their frequency regulation pressure [4].

With the maturity of vehicle-to-grid (V2G) technology [5], EV charging and discharg-
ing power can be adjusted at the millisecond level through bidirectional intelligent charging
devices [6]. V2G technology can provide various supports for power systems, such as
reactive power compensation services [7], rotary standby services [8], peak regulation
services [9], and frequency regulation services [10]. Among them, EV participation in
frequency regulation services is a hot topic studied by scholars at home and abroad. Refer-
ence [11] proposes an adaptive integrated control strategy in which EV clusters participate
in power systems’ primary frequency regulation. Reference [12] proposes a primary
frequency regulation control strategy for frequency regulation signals of EV automatic
response systems. In addition to participating in primary frequency regulation, EVs can
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also participate in secondary frequency regulation of power systems [13]. In reference [14],
frequency regulation signals are filtered into high-frequency parts and low-frequency
parts, and a control strategy for EVs and units to participate in power systems’ secondary
frequency regulation is proposed. In reference [15], EVs are divided into up-and-down
frequency regulation groups according to the SOC of the EV. Considering the influence
of frequent charge–discharge conversion on EV batteries, a control strategy with EVs
participating in power systems’ secondary frequency regulation is proposed.

In terms of the frequency response control of electric vehicles, reference [12] proposes
a distributed V2G control, which enables EVs to participate in frequency regulation in
response to changes in system frequency adaptively. Reference [16] proposes a distributed
control strategy based on a consensus algorithm to optimize the charging behavior of
electric vehicles so that it can suppress the system power fluctuation caused by wind power
access. EVs under distributed control mode lack unified control center fine management,
and the correlation and restriction between devices is weak. Reference [17] proposes a
robust optimization model for EV participation in the frequency regulation market. The
model considers the response capacity and battery loss of the EV in the centralized and
unified distribution mode and can determine the provided response capacity according to
the electric energy transmission mode of the EV. This control mode is the centralized control
of EVs. Reference [18] puts forward the concept of EVA to effectively manage EV clusters.
EVA can aggregate EVs and enable EVs to indirectly participate in frequency regulation
services of power systems. EVA shares the tasks of EV data statistics, dispatchable capacity
evaluation, and EV power allocation of the power system, which can reduce power system
pressure and conduct unified and flexible management and scheduling of scattered EVs [19],
which is hierarchical control.

Under a centralized controller, an adaptive fuzzy gain scheduling proportional inte-
gral derivative controller is proposed for the load frequency control of a modern power
system with large-scale wind power penetration [20]. Reference [21] proposes a new PI/PD
dual-mode controller for regulating the frequency of a unified system of renewable and con-
ventional energy generation. In terms of model selection, reference [22] considers the power
system with deep peak regulation in the frequency regulation analysis. Reference [23] used
a white-noise signal to simulate load disturbance in a power system model.

In order to describe whether an individual EV in a cluster is controllable, the con-
trollable domain model is proposed in reference [24] to prevent EVs from overcharging
and discharging and ensure the minimum power required by the user for travel. Refer-
ence [25] further refines the controllable domain by considering the situation of charging
and discharging immediately after the EV is connected to the power system. To satisfy EV
charging demand when EVs approach departure time, a large number of EVs enter the
state of forced charging, generating a huge charging load and increasing the power supply
pressure of the power system. Setting appropriate frequency regulation control parameters
can reduce the disordered charging problem of EVs near departure time. Reference [24]
defines the state of battery (SOB) to describe the response capacity of the EV and determines
the priority of the EV response frequency regulation according to the SOB. In reference [26],
the relaxation degree was defined to describe the urgency of charging, and the priority
order of response frequency regulation was determined according to the relaxation degree.
In reference [27], the relaxation coefficient of charge and discharge is defined based on the
relaxation degree, and the priority order of response frequency regulation is determined
by considering charging urgency and battery SOC comprehensively. However, the above
control parameters ignore the factor of EVs’ historical charging habits, and EV departure
time has a certain uncertainty. Table 1 shows a comparison between the work of this paper
and some references.
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Table 1. Different reference work comparison.

Reference Individual EV Model Whether to Consider
Uncertainty

EV Classification
Parameter

EV Response Sequence
Parameter

[14] naive model No SOC SOB
[15] naive model Yes SOC Regulation unit time contribution
[24] naive model No SOC SOC
[25] complicated model No SOC Controllable coefficient
[27] complicated model Yes Relaxation parameter State-space model

this article complicated model Yes SOC and charging
urgency

FR capability parameters and
charging urgency parameters

At present, many studies on EV participation in power system frequency regulation
adopt Monte Carlo sampling to obtain EVs’ planned charging time [28], ignoring the
influence of EV departure time uncertainty on EV charging demand and EVA frequency
regulation ability. During the period approaching departure, a large number of EVs enter
the forced charging state to satisfy the charging demand, which has an impact on the power
system. To solve these problems, this paper proposes an EV secondary frequency regulation
control strategy considering the uncertainty of user travel. Firstly, EV historical charging
habits were analyzed, considering the influence of user travel uncertainty on power system
frequency regulation and charging demands of car owners; reliability parameters were
introduced to deal with EV travel uncertainty, and EV fine modeling was carried out. Then,
to satisfy the charging demands of car owners and reduce the impact on the power system
caused by EVs entering the forced charging state near the departure period, state grouping
of EVs was conducted to further predict the controllable capacity of the EV cluster in real
time. Finally, an EV cluster frequency regulation task allocation method is proposed to
realize the ordered scheduling of a single EV. The main contributions of this paper are
as follows:

1. Considering EV travel uncertainty, an individual EV controllable domain model based
on reliability correction is established in the frequency regulation strategy;

2. A state grouping method based on EV charging urgency and SOC level was proposed
to adjust the reference charging power of EVs without frequency regulation task and
quantify the frequency regulation capability of EVs;

3. The priority sequence parameters of EV participation in frequency regulation are
proposed, and the specific response sequence of EV cluster frequency regulation is
determined by combining state grouping and priority sequence parameters.

The rest of this paper is organized as follows. Section 2 describes the EV secondary
frequency regulation framework considering the uncertainty of user travel. In Section 3,
EV controllable domain model and EV state grouping model based on reliability correction
is established, and then the frequency regulation capability of the EV cluster is quantified.
Section 4 introduces the allocation method of the EV cluster frequency modulation task.
Section 5 discusses and analyzes the frequency regulation model of electric power system
including EVs. Section 6 provides concluding remarks of the entire paper.

2. Framework for EV Secondary Frequency Regulation Control Strategy Considering
Travel Uncertainty

The control strategy framework of EV participation in the secondary frequency regula-
tion of a power system is shown in Figure 1. EVA can collect EV information connected to
the power system in real time through the communication system connected to the charging
pile, including the time tin,i and SOC when connected to the power system, reliability, de-
parture time tl,I, and expected SOC. EVA establishes the individual EV controllable domain
model based on reliability correction according to the residence time on the power system
and reliability information. On this basis, EVA divides EV into strong V2G state (SV2GS),
weak V2G state (WV2GS), and forced charging state (FCS) according to the remaining time
in the power system and SOC to satisfy the frequency regulation requirements of the power
system and the charging requirements of the car owners.
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The dispatching center is responsible for the condition monitoring of the power system.
According to the system frequency deviation, thermal power frequency regulation unit
output deviation, and the predicted controllable capacity of the EVA report, the dispatching
center assigns frequency regulation tasks to EVA. Then, EVA determines the EV response
sequence and response capacity according to state grouping and frequency regulation
priority parameters to achieve the purpose of frequency regulation.

3. Individual EV Controllable Domain Model and State Grouping Strategy

Due to the mobility characteristics of EVs, they may drive away from the power system
before or after the planned departure time, which will lead to inaccurate prediction of the
controllable capacity of EVA. In extreme cases, it is difficult to complete the FR task [15],
and early departure cannot satisfy the charging demands of car owners. In order to solve
this problem, this paper introduces the reliability parameter to describe the uncertainty
of departure time, establishing the individual EV controllable domain model based on
reliability correction. On this basis, EV state grouping is carried out to satisfy the charging
demands of car owners and frequency regulation requirements of power system.

3.1. Individual EV Controllable Domain Model Based on Reliability Parameter Modification

EV participation in frequency regulation first needs to satisfy the charging demands of
car owners. Based on this premise, car owners will consider EV participation in frequency
regulation. This paper assumes that EVs that can satisfy the charging demands participate
in frequency regulation. Based on the owner’s order information, this paper simulated the
time tin,i, SOC, and reliability when EVs are connected to the power system, as well as the
departure time tl,i and expected SOC set by EVs through Monte Carlo sampling.

In order to effectively control the charging and discharge process of an EV after it is
connected to the charging pile, this paper considers the travel uncertainty of users based
on the EV controllable domain [29] and proposes an individual EV controllable domain
model based on the reliability parameter modification, as shown in Figure 2. When the ith
EV is connected to the power system at time tin,i, the SOC of the EV battery level is SOC0,i.
At the same time, EVs set the departure time tl,i and the lowest expected battery level
SOCe,i when departing. SOCmin and SOCmax are the minimum and maximum allowable
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SOC values, respectively. Each EV connected to the power system is limited by the upper
and lower boundaries of the controllable domain. When an EV touches the upper and
lower boundaries of the controllable domain, the EV switches from the current state to
the idle state, as shown by the dotted line in Figure 2, waiting for the scheduling of EVA.
The controllable domain is represented by the upper boundary A-B-C; when the EV is
connected to the power system, it will charge at the maximum charging power Pc

max until
SOCmax is reached. The lower boundary A-F segment means that the EV will discharge at
the maximum discharge power Pd

max once connected to the power system until SOCmin is
reached. The lower boundary E-D segment means the EV is in a state of forced charging to
satisfy the EV’s travel demand.
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The actual departure time of the EV is uncertain, which leads to the inaccurate pre-
diction of controllable capacity by EVA and the inability of users to satisfy their travel
demands in terms of electricity. The reliability parameter ρi [30] (ρi is a statistical parameter
measuring the reliability of electric vehicles, defined as Formula (1), mainly by analyzing
the actual residence time and set residence time of each EV) is introduced to describe the
uncertainty of EV departure time, as shown in Equation (2). Therefore, the charging cycle
of the EV becomes [tin,i, tl,i(ρi)], and the upper and lower boundaries of the controllable
domain based on reliability correction become A-B-C′ and A-F-E′-D′, respectively. Solv-
ing the uncertainty of EV departure time tf,i(ρi) can not only satisfy the travel demands
of users to the maximum extent but also improves the accuracy of EVA’s prediction of
frequency regulation reserve capacity to satisfy the frequency regulation demands of the
power system. Tf

i,t is defined as time t, the time required for the ith EV to charge to SOCe,i
with power Pc

max [15], as shown in Formula (3). The forced charging boundary E′-D′ in
Figure 2 is calculated by tf,i(ρi), as shown in Formula (4).

ρi =
Ta

i

Td
i

(1)

tl,i(ρi) = tin,i + ρi·(tl,i − tin,i) (2)

T f
i,t =

Q·(SOCe,i − SOCi(t))
ηc·Pc

max
(3)

t f ,i(ρi) = tl,i(ρi)− T f
i,t (4)

where Ta
i and Td

i represent the historical actual residence time and historical planned
residence time of the ith EV, respectively, and the value of reliability ρi can be obtained
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by calculating historical data; tl,i(ρi) represents the departure time based on the reliability
modification; Q is the battery capacity of the EV; ηc represents the charging efficiency
of the EV; and tf,i(ρi) is the time for forced charging. When t ≥ tf,i(ρi), the EV enters an
uncontrollable state to satisfy the EV’s travel demands and is charged with power Pc

max
until the EV’s departure.

The charging and discharging power of an EV should satisfy the following conditions:

−χi(t)·Pd
max ≤ Pi(t) ≤ χi(t)·Pc

max (5){
χi(t) = 1, t ∈ [tin

i , tl,i(ρi)]

χi(t) = 0, t /∈ [tin
i , tl,i(ρi)]

(6)

where χi(t) = 0 means the EV is not connected to the charging station, and χi(t) = 1 means
the EV is connected to the charging station. Pi(t) is the charging and discharging power of
the ith EV at time t, Pi(t) > 0 means the EV is in a charging state, and Pi(t) < 0 means the EV
is in a discharge state. Pd

max is the maximum discharge power of the EV connected to the
power system.

The SOC variation pattern for an EV is shown below,

SOCi(t + 1) =


SOCi(t) +

Pi(t)ηc∆t
Q , 0 < Pi(t) ≤ Pc

max

SOCi(t) , Pi(t) = 0

SOCi(t) +
Pi(t)∆t

ηdQ , −Pd
max ≤ Pi(t) < 0

(7)

where SOCi(t) and SOCi(t + 1) are the SOC values of the ith EV in time period t and time
period t + 1, ηd represents the discharge efficiency of the EV, and ∆t is the time interval of
two adjacent time periods.

3.2. EV State Grouping Based on Controllable Domain
3.2.1. EV State Grouping

To quantify the urgency of EV charging time, this paper defines the remaining de-
parture time Tl

i,t based on reliability correction, and the time condition information of the
reference power charging time Tb

i,t and t as state groups, as shown in Equations (8) and (9).

Tl
i,t = tl,i(ρi)− t (8)

Tb
i,t =

Q·(SOCe,i − SOCi(t))
ηc·Pw

b
(9)

where Tl
i,t and Tb

i,t are, respectively, the remaining network time of the ith EV at time t and
the time required to charge the EV with reference power Pw

b .
Based on the individual EV controllable domain model based on reliability correction,

the states of the EV connected to the power system are divided into FCS, WV2GS, and
SV2GS according to Tl

i,t, Tb
i,t, and SOC, as shown in Equation (10). To prevent EV overcharge

and discharge, the EV’s status is updated every 1 min. The FCS of the EV is reached with
great urgency. EVA will not assign frequency regulation tasks or initiate the FCS of an
EV with power Pd

max until controllable demands are met. The WV2GS of EVs has strong
charging urgency and weak frequency regulation ability. When EVs do not participate
in frequency regulation, they are charged with reference charging power, as shown in
Equation (11). The SV2GS of EV charging urgency is weak, and the frequency regulation
ability is very strong, which is the main part of frequency regulation. When there is no
frequency regulation task, the EV is charged with the reference charging power, as shown
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in Equation (11). Figure 3 shows the state grouping of an EV, where tb,i(ρi) is the boundary
moment, as shown in Equation (12).

FCS, Tl
i,t ≤ T f

i,t or SOCi(t) /∈ [SOCmin, SOCmax]

WV2GS, T f
i,t ≤ Tl

i,t ≤ Tb
i,t & SOCi(t) ∈ [SOCmin, SOCmax]

SV2GS, Tb
i,t ≤ Tl

i,t & SOCi(t) ∈ [SOCmin, SOCmax]

(10)

Pb,i =


Pw

b , WV2GS

Ps
b , SV2GS&SOCi(t) ≤ SOCe,i

0, SV2GS&SOCi(t) > SOCe,i

(11)

tb,i(ρi) = tl,i(ρi)− Tb
i,t (12)

where tb,i(ρi) is the transfer time of SV2GS and WV2GS for the ith EV under the cur-
rent SOC state; Ps

b is the reference power of the EV in SV2GS when it fails to satisfy the
charging demands.
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3.2.2. Determining EV Cluster Frequency Regulation

Figure 4 shows the adjustable capacity of an EV under controllable state, where the
left and right side of the coordinate axis are the upward and downward controllable
capacity of the EV under SV2GS and WV2GS, respectively, Pup

i (t) and Pdown
i (t), as shown in

Equations (13) and (14).

Pup
i (t) =

{
−Pd

max − Pb,i, SV2GS

0− Pb,i, WV2GS
(13)

Pdown
i (t) =

{
Pc

max − Pb,i, SV2GS

Pc
max − Pb,i, WV2GS

(14)

where i refers the EV number in the cluster, and Pup
i (t) and Pdown

i (t), respectively, refer to
the upward and downward controllable capacity provided by the ith EV at time t.
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According to the controllable capacity of individual EVs, EVA calculates the overall
controllable capacity Pup

t and the lower controllable capacity Pdown
t , respectively, as shown

in Equations (15) and (16). EVA reports the controllable capacity Pup
t and Pdown

t to the
power system dispatching center. The power system dispatching center allocates frequency
regulation tasks according to the frequency regulation requirements of the system and the
controllable capacity reported by EVA.

Pup
t =

Nco

∑
i=1

Pup
i (t) (15)

Pdown
t =

Nco

∑
i=1

Pdown
i (t) (16)

where Pup
t and Pdown

t , respectively, represent the overall upper and lower controllable
capacity that the EV cluster can provide at time t, and Nco is the number of EVs in a
controllable state at time t.

4. FR Power Allocation Strategy Based on State Grouping and Priority List
4.1. The FR Task of EVA

Compared with traditional thermal power frequency regulation units, EVs can re-
spond to automatic generation control (AGC) frequency regulation signals quickly and
accurately. The combined frequency regulation of EVs and thermal power units can solve
problems such as the insufficient frequency regulation accuracy of thermal power units
and insufficient frequency regulation capacity of a single EV resource [31]. In the frequency
regulation control strategy, the thermal power unit normally responds to the AGC signal,
and the EV is responsible for responding to part Pde

t of the actual output deviation from
the AGC signal of the thermal power unit [32], as shown in Formula (17). The frequency
regulation task assigned to the EV by the dispatching center will not exceed its controllable
capacity, as shown in Equation (18).

Pde
t = PG

t − PAGC
t (17)

Pres
t =


Pup

t , Pde
t < Pup

t

Pde
t , Pup

t ≤ Pde
t ≤ Pdown

t

Pdown
t , Pde

t > Pdown
t

(18)
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where Pde
t is the response deviation of the thermal power unit, and Pde

t > 0 represents
the excessive output of the unit, which requires the EV to perform downward frequency
regulation to increase the total charging power. Pde

t < 0 indicates that the output of the
frequency regulation unit is insufficient, and the EV demands to perform upward frequency
regulation to reduce the total charging power. Pde

t = 0 indicates that the EV is not required
to participate in frequency regulation. PG

t and PAGC
t are the actual output of the unit and

the frequency regulation signal of AGC at time t, respectively, and Pres
t is the frequency

regulation power that the EV demands to respond to.

4.2. Frequency Regulation Priority Parameter

After receiving frequency regulation task Pres
t , EVA obtains the sequence of the EVs

participating in frequency regulation according to frequency regulation priority parameter
Γi,t. Γi,t comprehensively considers EV frequency regulation ability, charging urgency, and
EV reliability information, which can be defined by reliability parameter ρi, frequency regu-
lation ability parameter αi,t, and charging urgency parameter βi,t, as shown in Equation (19).

Γi,t = ρi·(αi,t + βi,t) (19)

4.2.1. Frequency Regulation Capability Parameter

The frequency regulation capability parameter αi,t is used to describe the frequency
regulation capability of EV i at time t. The frequency regulation capability is characterized
by the relative position of the SOC in the controllable domain SOCe,i and the lower bound-
ary, which is defined by Equation (20). The higher the value of αi,t, the stronger the upturn
ability of the EV. On the contrary, the lower the αi,t value, the stronger the downmodulation
ability of the EV.

αi,t =
SOCi(t)− SOCmin

SOCe,i − SOCmin
(20)

4.2.2. Charging Urgency Parameter

The charging urgency parameter βi,t is used to describe the relative level of charging
urgency of the ith EV at time t among all EVs. It is defined by Equation (21), and the larger
the value of βi,t, the smaller the probability of an EV entering the forced charging state and
the stronger its upward frequency regulation ability.

βi,t =
t f ,i(ρi)− t

max
i=1···Nall

(
t f ,i(ρi)− t

) (21)

4.3. FR Power Allocation of an EV
4.3.1. FR Priority List

The numbers of all the EVs in the controllable state are arranged by Γi,t from high to
low to obtain the control priority list Lup. Sequence the numbers of all controllable EVs
from low to high according to Γi,t to obtain the control priority list Ldown [24], as shown in
Equation (22). {

Lup = (c1, · · · , ck, · · · , cNco)
Ldown = (d1, · · · , dh, · · · , dNco)

(22)

where ck is the number of the kth EV in Lup; dh is the number of EV h in Ldown. Lup and
Ldown satisfy the constraint as in the formula.{

Γc1
t ≥ · · · ≥ Γck

t ≥ · · · ≥ ΓcNco
t

Γd1
t ≤ · · · ≤ Γdh

t ≤ · · · ≤ ΓdNco
t

(23)
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4.3.2. Response Sequence and Response Capacity of EV

EVA determines the EVs participating in frequency regulation according to the priority
list, status grouping, and Pres

t , and divides frequency regulation up and frequency down
into two response levels.

(1) When Pres
t < 0 requires upward frequency regulation, that is, to reduce the total

EV charging power, EVA compares Pres
t with the boundary value of the response level

to determine the response level, as shown in Equation (24), and then responds in turn
according to priority list Lup until the number of EVs Nre in response meet the constraint of
Equation (25). 

∣∣∣Predm
t

∣∣∣ ≤ ∣∣∣Pup
t,1

∣∣∣∣∣∣Pup
t,1

∣∣∣ < ∣∣∣Predm
t

∣∣∣ ≤ ∣∣∣Pup
t

∣∣∣ (24)

Upregulated response 1: Switch the EVs of SV2GS to the idle state in turn according to
Lup, until the frequency modulation requirement is met;

Upregulated response 2: Based on the upregulation response 1, the EVs of WV2GS are
switched to the idle state in sequence according to Lup; the EVs of SV2GS are switched to
the power-Pd

max discharge state in sequence according to Lup.
Nre
∑

k=1

∣∣∣Pup
ck

∣∣∣ ≥ |Pres
t |

Nre−1
∑

k=1

∣∣∣Pup
ck

∣∣∣ < |Pres
t |

(25)

where Pup
ck is the response capacity of the kth EV, and Nre is the number of EVs participating

in the response.
(2) When the frequency demands to be adjusted downward, that is, to increase the

total EV charging power, EVA compares Pres
t with the boundary value of the response level

to determine the response level, as shown in Equation (26), and then responds in turn
according to priority list Ldown until the number of EVs in response meets the constraint
of Equation (27). The frequency regulation priority list and frequency regulation task
allocation strategy is shown below{

Pres
t ≤ Pdown

t,1

Pdown
t,1 < Pres

t ≤ Pdown
t

(26)

Downregulated response 1: Adjust the EVs of WV2GS from power to Pc
max according

to Ldown;
Downregulated response 2: Based on the first step, adjust the EVs in the SV2GS from

power Pc
b to power Pc

max. 
Nre
∑

h=1
Pdown

dh
≥ Pres

t

Nre−1
∑

h=1
Pdown

dh
< Pres

t

(27)

5. Results and Analysis
5.1. Simulation Model and Parameters

In order to verify the effectiveness of the frequency regulation control strategy pro-
posed in this paper, a power system model including EVs and conventional units is taken
as an example for simulation analysis, as shown in Figure 5. The simulation time is
10:00–22:00. The relevant parameters of the system frequency regulation model [24] and
EV model [15] are shown in Table 2. In this paper, the Monte Carlo method [28] was used
to simulate the driving behavior and SOC changes in 1000 EVs based on the driving rules
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and the Beijing Traffic Development Annual Report [33]. Considering the volatility of load
and new energy generation, the unbalanced power of the system is simulated based on a
white-noise model [23], as shown in Figure 6.
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Table 2. System model parameters [24] and EV parameters [15].

Parameter Value Parameter Value

Req(p.u.) −0.09 NEV 1000
TG(s) 0.2 Driving speed (km/h) 28.5

T1(s) 2 Energy consumption per 100 km
(kW·h) 15

T2(s) 12 Q (kW·h) 40
TT(s) 0.3 ηc/ηd 0.95

TEV(s) 0.035 Pb
w/Pb

s(kW) 4/2
Heq(s) 4.44 Pc

max, Pd
max(kW) 7

D(p.u.) 1.0 SOCmin/SOCmax 0.3/0.9
ρi N(0.9, 0.1) SOC0 (p.u.) N(0.4, 0.05)
tin N(8.5, 0.52) SOCe (p.u.) N(0.8, 0.05)
tl N(17.5, 0.52) Commuting distance lnDS (km) N(17.9, 4.9)

Energies 2023, 16, x FOR PEER REVIEW 12 of 19 
 

 

Table 2. System model parameters [24] and EV parameters [15]. 

Parameter Value Parameter Value 
Req(p.u.) −0.09 NEV 1000 

TG(s) 0.2 Driving speed (km/h) 28.5 

T1(s) 2 Energy consumption 
per 100 km (kW·h) 

15 

T2(s) 12 Q(kW·h) 40 
TT(s) 0.3 𝜂 /𝜂  0.95 
TEV(s) 0.035 Pbw/Pbs(kW) 4/2 
Heq(s) 4.44 Pcmax, Pdmax(kW) 7 

D(p.u.) 1.0 SOCmin/SOCmax 0.3/0.9 
ρi N(0.9, 0.1) SOC0(p.u.) N(0.4, 0.05) 
tin N(8.5, 0.52) SOCe(p.u.) N(0.8,0.05) 

tl N(17.5, 0.52) Commuting distance 
lnDS(km) N(17.9, 4.9) 

 
Figure 6. System unbalanced power. 

5.2. Results Analysis 
Figure 7 shows the system frequency deviation between EVs not participating in fre-

quency regulation and EVs participating in frequency regulation with the proposed con-
trol strategy. The Root Mean Square (RMS) of the system frequency deviation between 
EVs participating in frequency regulation with the proposed control strategy and EVs not 
participating in frequency regulation is 0.0359 and 0.0587 Hz, respectively. All the fre-
quencies are within the safe range of 50 ± 0.5Hz. The proposed control strategy of EV 
participation in frequency regulation can effectively improve the system frequency qual-
ity and assist thermal power units to participate in the system frequency regulation ser-
vice. 

 

10:00 12:00 14:00 16:00 18:00 20:00 22:00

-10

-5

0

5

10

Sy
ste

m
 u

nb
al

an
ce

d 
po

w
er

(M
W

)

Time

 Without EV participate FR
 With EV participate FR

10:00 12:00 14:00 16:00 18:00 20:00 22:00
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

Sy
ste

m
 fr

eq
ue

nc
y 

de
vi

at
io

n(
H

z)

Time

Figure 6. System unbalanced power.

5.2. Results Analysis

Figure 7 shows the system frequency deviation between EVs not participating in
frequency regulation and EVs participating in frequency regulation with the proposed
control strategy. The Root Mean Square (RMS) of the system frequency deviation between
EVs participating in frequency regulation with the proposed control strategy and EVs
not participating in frequency regulation is 0.0359 and 0.0587 Hz, respectively. All the
frequencies are within the safe range of 50 ± 0.5Hz. The proposed control strategy of EV
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participation in frequency regulation can effectively improve the system frequency quality
and assist thermal power units to participate in the system frequency regulation service.
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5.3. Contrastive Analysis

In order to compare the advantages of EV participation in the frequency regulation
control strategy proposed in this paper, the following three scenarios are set for compara-
tive analysis:

Scenario 1: The uncertainty of EV departure time is not taken into account, and the
remaining parts are controlled according to the control strategy proposed in this paper;

Scenario 2: Considering the uncertainty of EV departure time, EV state grouping is
not carried out, and frequency regulation is carried out for the rest of the parts according to
the control strategy in this paper;

Scenario 3: Considering the uncertainty of EV departure time, follow the control
strategy proposed in this paper.

Figure 8 shows the frequency regulation task received by EVA and the frequency
regulation capacity in different scenarios. During the period approaching the departure
time (15:30, 18:30), the downward frequency regulation of scenario 3 increased by 2.76%
and 42.73% compared with scenario 1 and scenario 2, respectively. We compare the SOC
data of EVs obtained from the simulation model with SOCe set by the car owner to obtain
EV quantity data satisfying the charging demands, as shown by the broken line section in
Figure 9. With the continuous departure of EVs, the frequency regulation of the EV cluster
decreases with the increase in the number of departing EVs. Compared with Scenario 1,
the number of EVs satisfying the charging demands of users in Scenario 3 increased by
132.75%. Considering the uncertainty of user travel, the departure time can be modified
according to the reliability parameter ρi of EV historical charging habits. The departure
time tl,i(ρi) modified by reliability parameter ρi can not only satisfy the charging demands
of users when an EV has departed in advance but also accurately calculate the real-time
controllable capacity of the EV.

The bar chart section in Figure 9 shows the number of EVs in different states during
the departure period in Scenario 2 and Scenario 3. The total number of EVs reaches the
minimum value of 640 during the 17:30–17:45 time period. In the figure, the number of
EVs switched to the state of forced charging is small, which can avoid the impact of the
increase in total EV power on the system load at the moment approaching departure. In
Scenario 3 of Figure 9, the number of EVs in the WV2GS increases with the increase in
time. As EV departure time approaches, in order to satisfy EV users’ charging demands,
EVA adjusts the strong and weak V2G states according to the EV SOC level and charging
urgency and changes the benchmark charging power Pb,i to make the frequency regulation
change. Therefore, the frequency regulation in Scenario 3 in Figure 8 is greater than that
in Scenario 2. In Scenario 2, at 15:45, 16:27, 17:00, and other times, the phenomenon that
the adjustable downward capacity cannot satisfy the frequency regulation task affects
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the frequency regulation quality, while in Scenario 3, which considers controllable state
grouping, the phenomenon that the frequency regulation cannot satisfy the frequency
regulation task does not occur, so it has high frequency regulation capability.
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Figure 8. EV controllable capacity.
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Figure 9. Number of EVs in different scenarios.

In the time period (18:30, 22:00) shown in Figure 8, the downward frequency regulation
and upward frequency regulation of Scenario 3 increased by 19.87% and decreased by
19.13%, respectively, compared with that of Scenario 2. The downward frequency regulation
decrease in this period may not satisfy the frequency regulation requirements. In Scenario
3, EVs select appropriate benchmark charging power according to state grouping of SOC
and charging urgency, thus increasing the downward frequency regulation of EVA. The
change in upward frequency regulation does not affect the frequency regulation demands
of the power system, because the upregulated capacity can satisfy the frequency regulation
demands at this time.

To compare the influence of frequency regulation sequence parameters on EV partici-
pation in frequency regulation, Scenario 4 is added to this paper.

Scenario 4: Considering the uncertainty of EV departure time, EV states are grouped
according to the method presented in this paper, frequency regulation sequence parameters
proposed in reference [24] are adopted, and frequency regulation is performed for the rest
of the parts according to the control strategy presented in this paper.

Figure 10 shows the SOC changes in EV in Scenario 3 and Scenario 4 during the first
access. It can be seen from the figure that compared with Scenario 3, the priority list of EV
participation in frequency regulation is determined according to the control parameters in
Scenario 4, which makes the SOC of an EV in the cluster tend to be consistent, ignoring
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the influence of charging urgency on EV frequency regulation priority. Compared with
Scenario 3, the number of EVs entering the state of forced charging increases by 136.26%.
In the time period of 14:00–16:30 near departure in Figure 11, the total power of the EV
cluster in Scenario 3 is reduced by 17.67% compared with Scenario 4, which can reduce the
impact of EV load on the power system.
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Figure 10. SOC curves of each EV in different scenarios.
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5.4. Sensitivity Analysis

Reliability will affect EVs’ on-network time, frequency regulation, and whether the
charging demands of users can be met, as well as change the proportional coefficient k of
the EV cluster considering the uncertainty of users’ travel. The frequency regulation of an
EV cluster when k = 25%, k = 50%, k = 75%, and k = 100%, the number of EVs in EV charging
demand, and the number of EVs in forced charging state are discussed, respectively.

Figure 12 shows the frequency regulation of an EV cluster under different proportional
coefficients. With the increase in k value, the frequency regulation of k = 50%, k = 75%, and
k = 100% increases by 3.28%, 5.96%, and 7.06%, respectively, compared with that under
k = 25%. The main reason is that the modified departure time considers the uncertainty
of user travel. Adjust the state grouping according to the charging urgency, so that EVs
can select the appropriate reference power to charge in a timely manner. When an EV can
provide the largest frequency regulation, so with an increase in k, the frequency regulation
of the EV cluster also increases.
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Figure 12. The controllable capacity of EVs under different proportional coefficient k.

Figure 13 shows how EVs satisfy users’ charging demands during departure with
different proportion coefficients. With the increase in the proportion of k, the number of
EVs satisfying users’ charging demands when k = 50%, k = 75%, and k = 100% increases
by 26.30%, 53.89%, and 82.03%, respectively, compared with that when k = 25%. The
main reason is that considering the uncertainty of users’ travel, the departure time will be
corrected, and timely adjustment of the state can satisfy the charging demands of users even
if they depart in advance. Moreover, according to the data in Figure 14, the number of EVs
in forced charging gradually decreases with the increase in proportion of how considered
the uncertainty of user travel is in the EV cluster. Considering the uncertainty of user travel
can reduce the number of EVs entering the state of forced charging and alleviate the impact
of EV disorderly charging on the power system load.
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Figure 13. The number of EVs that satisfy the charging demand of departure time with different
proportional coefficients k.
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6. Conclusions

In this paper, an EV secondary frequency regulation control strategy considering the
uncertainty of user travel is proposed. Firstly, the individual controllable EV domain model
based on reliability parameter modification is constructed. Then, the state grouping of EVs
is introduced and the frequency regulation of EVA is determined according to the state
grouping. Finally, the priority list of EV participation in frequency regulation is determined
by the EV charging urgency parameter and frequency regulation ability parameter. On
this basis, a frequency control strategy based on EV state grouping and priority list is
proposed, and a simplified frequency regulation model of a power system is used to verify
the effectiveness of the proposed frequency regulation control strategy.

The proposed frequency regulation control strategy can carry out fine modeling
of EVs and fully excavate EV frequency regulation ability according to EV information
state grouping, which can satisfy the charging demands of car owners and the frequency
regulation demands of power systems even when car owners travel with uncertainty. This
frequency regulation control strategy can improve the accuracy of EVA’s prediction of
controllable capacity, control EV charging and discharging sequence in an orderly way
according to state information when an EV is involved in frequency regulation, reduce
the impact of EVs’ disorderly charging on the power system, ease the power system’s
frequency regulation pressure, and ensure the safe and stable operation of the power system.
Future work will further study the relevant factors and correlation of EV users’ willingness
to participate in frequency regulation and analyze the economy of EV participation in
frequency regulation from the perspective of users and agents.
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