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Abstract: One of the major challenges faced by contemporary agriculture is how to achieve better
yields of crops and, consequently, higher biomass, even in unfavorable environmental conditions.
This challenge corresponds to the assumptions of sustainable development, wherein it is envisaged
that plant biomass should be used on a large scale for heat generation or conversion of biofuels.
Keeping pace with observed trends, the following study was conducted in order to determine the
effect of Cr(VI) on the net calorific value of Zea mays, to assess the impact of this element on soil
enzymatic activity, and to identify the effectiveness of compost and humic acids in alleviating possible
negative effects of Cr(VI) toxicity. These aims were pursued by setting up a pot experiment, in which
soil either uncontaminated or contaminated with increasing doses of Cr(VI) of 0, 15, 30, 45, and
60 mg Cr kg−1 d.m. was submitted to biostimulation with compost and the preparation HumiAgra,
a source of humic acids, and cropped with Zea mays. The plant height, yield, and net calorific value of
the aerial parts of maize, as well as its root yield, were determined. Additionally, the activity of seven
soil enzymes and the values of the impact indices of compost and HumiAgra relative to the analyzed
parameters were determined. It was found that Cr(VI) decreased the amount of energy obtained from
the plants by decreasing maize biomass, and additionally by distorting the biochemical balance of the
soil. Dehydrogenases, urease, and arylsulfatase proved to be particularly sensitive to this element. It
was demonstrated that HumiAgra was more effective than compost in mollifying the adverse effects
of Cr(VI) on the activity of soil enzymes and, consequently, on the biomass of Zea mays.

Keywords: energy from biomass Zea mays; soil contamination with chromium; activity of soil
enzymes; compost; humic acids

1. Introduction

Degradation of the natural environment and climate change are existential threats to
Europe and the whole world [1,2]. More and more restrictive laws on nature protection
have been instituted in the past decades. In 2021, the European Commission set the goals
for the European Union’s policy on climate and energy adaptation [3]. In compliance with
this package of legislative proposals, the EU member states are obligated to reduce their
net greenhouse gas emissions by at least 55% by the year 2030 relative to 1990. This is
conducive to the search for alternative biofuels, which should be characterized by low
emission of pollutants to the atmosphere and the highest possible energy efficiency [4,5].

Much attention is devoted to the use of plant biomass, which is a resource for produc-
tion of biofuels [6–8], and its incineration causes lesser emissions of undesirable nitrogen
and sulfur oxides to the environment [9,10]. However, rational management of arable land
resources is needed so as to produce biomass for energy purposes without compromising
the agricultural production of food and fodder [11]. Thus, the land allocated to plant
biomass production for energy purposes should be low use-value land or land excluded
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from agricultural production due to contamination caused by industrialization. In this
context, the use of biomass originating from fields polluted with heavy metals [12,13],
petroleum products [14], phenols [15], plant protection chemicals [16], etc. for energy
generation is an effective solution. Energy acquired this way is inexpensive and renewable.
In addition, it contributes to energy safety, which supports environmental production and
sustainable development [17]. These observed trends aroused the imperative to determine
the effect of Cr(VI) on the net calorific value of Zea mays and to verify soil conditions under
the pressure of this metal, determined on the basis of soil biochemical activity.

This approach aligns well with the concept of the circular economy, whose strategy
is defined in the ISO 14044 standard [18,19]. It should be emphasized that policies aimed
towards polluted biomass are becoming increasingly restrictive. Both in developing and in
developed countries, many legal acts implicate controlling the mobility of this group of
biowastes. They include “Hazardous and Other Wastes (Management and Transboundary
Movement) Rules, 2016” in Pakistan, “The Wastes Control Act” (no. 13038) in South
Korea, and the “Resource Conservation and Recovery Act” (Public Law 94-580) in the
USA. In Europe, these guidelines are constituted in Directive 2004/35/EC of the European
Parliament and the Council of 21 April 2004 on environmental liability with regard to the
prevention and remedying of environmental damage [20].

One of the circular economy strategies being implemented is the use of maize con-
taminated with heavy metals for the production of bioethanol [21]. The interest in Zea
mays as a plant with phytoremediation potential, eventually used not only for bioethanol
production but also for the production of biogas or for direct combustion, is probably
stimulated by the high potential of maize yields, which reach up to 12–15 Mg plant d.m. per
1 ha [22,23], or the fact that maize is equipped with genes which endow it with tolerance to
biotic and abiotic stresses [24]. It is not without reason that the number of farms growing
maize is predicted to reach 227 million worldwide by the year 2030 [25]. Significantly, the
intensive cultivation of energy crops, including maize, in polluted soils can contribute to
the biological improvement of soils and their remediation [26].

The implementation of the aforementioned waste management strategy is particularly
important regarding soils contaminated with chromium, including Cr(VI), whose strong
oxidizing properties make it a cancerous and mutagenic element for living organisms,
and which is therefore considered as a priority contaminant by the US Environmental
Protection Agency (USEPA) [27]. The major anthropogenic sources of this element in
nature are electroplating; steel fireproofing; the broadly understood chemical industry,
including the synthesis of chemicals for wood preservation, production of paints, textile
dyes, glues, and catalysts [28,29]; and also tanning, which interferes severely with the
natural environment [30].

In agricultural soils, the content of Cr can reach 350 mg kg−1 of soil, and its availability
in soil depends on such properties as soil pH, redox potential, types of minerals composing
the soil matrix, content of organic matter, and the structure of the soil microbiome [31].
Although this element, owing to its high redox potential, can easily transform in soil from
one oxidation state to another (from −2 to +6), it is only Cr(III) and Cr(VI) that can co-exist in
a dynamic equilibrium regulated by the processes of oxidation and reduction, precipitation
and dissolution, and adsorption and desorption [31–33]. However, both of these forms
of chromium differ in terms of bioavailability and translocation in soil [34]. Cr(III) is a
more thermodynamically stable form of this element, occurring as CrOH2

+, chromium
hydroxide, Cr(OH)3, iron chromium hydroxide ((Fe,Cr)(OH)3), and as complexes with
fluoride, sulphate, and thiocyanate [31]. In turn, oxyanions such as chromate CrO4

2− and
dichromate Cr2O7

2− are mobile in soil and highly soluble [32].
Because Cr(VI) does not undergo biodegradation in soil, it is far more toxic than

Cr(III) towards all living organisms, including plants [35]. Chromium induces changes
in plants on the phenotypic, physiological, biochemical, and ultrastructural levels [36].
Admittedly, the response of plants to exposure to Cr is manifested by growth inhibition
and decreased biomass, chlorosis, and deformation of the structure of chloroplasts through
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the peroxidation of fatty acids and lipids in their membranes induced by an increase
in lipoxygenase [37,38]. However, plants possess an antioxidant defense system which
protects and regenerates them after oxidative stress. It involves such osmolytes as proline,
cysteine, and betaine, which provide plant membranes with stability and ensure osmotic
regulation [39,40]. Proline is also a marker of stress tolerance [41]. The defense system of
plants is also composed of carotenoids and glutathione (GSH), as well as a wide array of
antioxidant enzymes, which include ascorbate peroxidase (APX), superoxide dismutase
(SOD), and catalase (Cat) [42]. The growth and development of plants are also controlled
by plant hormones. Indole-3-acetic acid (IAA) is a plant hormone of the auxin class which
plays a key role among auxins and whose activity is enhanced under the influence of the
toxicity of heavy metals, including Cr [43].

Phytoremediation helps to sustain the stability of soil by removing pollutants. Apart
from improving the soil’s quality, it also prevents soil erosion [44]. Given the limitations of
conventional soil remediation techniques and the contents of legislative motions, including
the EU Fertilizer Regulation adopted by the EU Parliament, which recommends the use
of organic products [45], biostimulation of soils with composts appears to be an effective
solution that is non-invasive to the environment [46]. A compilation of compost and biochar,
relying on the synergistic action of both substances, seems to be a promising method for
improving the condition of soil contaminated with Cr [47]. Likewise, the abundance of
carboxyl and hydroxyl functional groups contained in humic acids complexing heavy
metals also allows for the effective immobilization of this group of pollutants [26,48].

The fact that soil enzymes are early, stable, and sensitive biological indicators impli-
cating both the degree of degradation and the recovery of the functional equilibrium state
of soils contaminated with heavy metals after the application of chosen remediation tech-
niques makes it an imperative to quantify their activity [49]. It should also be highlighted
that soil enzymes catalyze reactions essential for the stabilization of the soil’s structure and
decomposition of organic matter determined on the basis of their kinetic parameters, such
as the Michaelis constant (Km), related to the strength of the enzyme–substrate complex
and maximum reaction rate (Vmax), indicating the rate of division or dispersion of this
complex [50,51].

The research hypothesis put forward assumed that Cr(VI) reduces the amount of
energy obtained from the plants by decreasing maize biomass, additionally distorting
the biochemical balance of soil. It was also assumed that both HumiAgra and compost
would be effective in mitigating the adverse effects of Cr(VI) on the activity of enzymes
and, consequently, Zea mays biomass. Considering the binding legal acts pertaining to the
issues of production of biomass on soils contaminated with heavy metals, a study was
conducted in order to determine the effect of Cr(VI) on the amounts of energy obtained
from the biomass of Zea mays. Additionally, it aimed to determine the potential of humic
acids, compost, and Zea mays to restore the balance of soil exposed to the pressure of this
element, which was defined according to changes in the activity of seven soil enzymes.

2. Materials and Methods
2.1. Experimental Design

The experiment, including four replications, was carried out in a greenhouse at the
University of Warmia and Mazury in Olsztyn, Poland in 3 dm3 pots. The experimental
factors were: I—level of soil contamination with Cr(VI): 0 mg, 15 mg, 30 mg, 45 mg, and
60 mg kg−1 d.m. and II—organic fertilization in doses: 0 mg and 3 mg C kg−1 d.m. Organic
fertilizers consisted of composted grass in one series of the trials and humic acids in the
form of the preparation HumiAgra in the other series. The trials were set up on soil with the
grain size composition of sandy loam. The test plant was Zea mays L. of the LG 32.58 variety
(a variety registered in the European Union). After emergence, four plants were left in each
pot. The soil used in the research (sand—3.61%, silt—32.68%, and clay—3.71%) came from
arable land that had not been fertilized with natural or organic fertilizers for several years.
It was characterized by a Corg to Ntot ratio of 12.05, a sum of basic exchangeable cations
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(CEC) of 8.97 cmol (+) kg−1 d.m., hydrolytic acidity (HAC) of 2.61 cmol (+) kg−1 d.m.,
sum of exchangeable base cations (EBC) of 6.36 cmol (+) kg−1 d.m., and alkaline cation
saturation (ACS) of 70.90% and pHKCl—4.40. Chemical properties of the soil per 1 kg−1 d.m.
were as follows: Ntotal—0.83 g; Corg—10.00 g; Pavailable—81.10 mg; Kavailable—145.25 mg;
Mgavailable—71.00 mg; and Crtotal—12.37 mg. The compost was characterized by a Corg
to Ntot ratio of 7.27, a sum of exchangeable base cations of 7.42 cmol (+) kg−1 d.m., and
hydrolytic acidity of 8.20 cmol (+) kg−1 d.m. HumiAgra (AgraPlant, Kielce, Poland) is an
ecological product containing 90% humous acids with a 1:1 ratio of humic acids to fulvic
acids. It is a dark brown powder with a pH of 8–10 and contains 8% K2O and 3% S.

2.2. Procedure of the Experiment

Each pot was filled with a batch of 3.5 kg of soil first passed through a 5 mm mesh
net sieve. Then, the soil was mixed with the mineral fertilizers and, according to the
experimental design, with the organic fertilizers and an aqueous solution of K2Cr2O7 in
amounts ensuring the target level of soil contamination with Cr(VI). The mineral fertiliza-
tion was adjusted to the nutritional requirements of Zea mays, that is, N—140 mg, P—50 mg,
K—140 mg and Mg—20 mg kg−1 soil d.m. Nitrogen was applied as CO(NH2)2, phospho-
rus as KH2PO4, potassium as KH2PO4 + KCl, and magnesium as MgSO4·7H2O. Once the
soil was placed in pots, its moisture content was increased to 60% of maximum moisture
by adding deionized water, and then maize was sown. The Zea mays plants were grown for
50 days, maintaining the constant moisture content throughout that time. The average air
temperature was 16.5 ◦C, and the air humidity was 77.5%. The daylight length varied from
15 h 5 min. to 17 h 5 min. At the 4th leaf development stage (BBCH 19), in 8 replicates, the
SPAD (Soil and Plant Analysis Development) leaf greenness index was determined. The
measurement was performed with a SPAD 502 Chlorophyll Meter 2900P (Konica Minolta,
Inc., Chiyoda, Tokyo, Japan). In the BBCH 51 phase, Zea mays was harvested and the height
of the aerial parts of the plants and the yield of the aerial parts of the plants and roots were
determined. The plant material was dried for 4 days at 60 ◦C and the calorific value of the
aerial parts of the plants was determined. On the day of the Zea mays harvest, soil samples
were taken to determine the activity of seven soil enzymes. The soil intended for laboratory
analysis was passed through a sieve with a mesh size of 2 mm.

2.3. Calorific Value Determination

To determine the calorific value of a material, its heat of combustion (Q) must be
determined beforehand. The Q value of the aerial parts of Zea mays was determined in a
C-2000 calorimeter produced by IKA WERKE, USA. A procedure was used in accordance
with the PN-EN ISO 18125:2017 IKA C2000 standard [52].

The calorific value (Hv) of Zea mays was calculated with a formula proposed by
Kopetz et al. [53]:

Hv =
Q (100 − Mc)

100
− Mc × 0.0244 (1)

where:

Hv—calorific value of air-dried plant biomass (MJ kg−1);
Q—heat of combustion of air-dried plant biomass;
MC—biomass moisture content (%);
0.0244—correction coefficient for water vaporization enthalpy (MJ kg−1 per 1% moisture content).

The energy yield of Zea mays biomass per 1 kg of soil was calculated with Equation (2):

YEP = Hv × Y (2)

where:

YEP—energy yield of plant biomass (MJ);
Hv—calorific value of air-dried plant biomass (MJ kg−1);
Y—aerial biomass yield of (kg) Zea mays per 1 kg of soil.
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2.4. Determination of Enzyme Activity

In the soil samples taken from all experimental objects, the activity of seven enzymes
was determined using standard methods in three replicates. The activity of the dehydro-
genases was determined using the Lenhard method modified by Öhlinger [54], and the
catalase, urease, β-glucosidase, arylsulfatase, acid phosphatase, and alkaline phosphatase
activities were determined using the method of Alef and Nannipieri [55]. Enzyme ac-
tivity was expressed in moles or their subunits of the produced product per 1 kg of soil
in the course of 1 h. The exact assay procedures have been described in our previous
publications [56,57].

2.5. Physicochemical and Chemical Analyzes of Soil

In the soil used for the study, the granulometric composition was determined using the
aerometric method [58,59], hydrolytic acidity, and cation exchange capacity using the Klute
method [60] and the total content of nitrogen [61] and organic carbon [62]. All analyses
were conducted in three replicates.

2.6. Statistical Analyzes and Calculations

The indices of the effect of chromium, compost, and HumiAgra on the tested parame-
ters were calculated using Equation (3):

IFy =
Bx
Cx

− 1 (3)

where:

IF—index of the effect;
y—chromium, compost, or HumiAgra, respectively;
B—value of the dependent variable of the tested object;
C—value of the dependent variable of the control object;
x—tested parameter, e.g., biomass, enzyme activity, etc.

These indices were plotted on thermal maps using the R v1.2.5033 software [63] with
the addition of R v3.6.2 [64] and a gplots library [65]. Additionally, “a color key and
histogram” was used to show how many times particular data appeared in the matrix used
in the thermal map. In order to determine the influence of each independent variable on
the shaping of dependent variables, a Statistica 13.3 package was employed [66] and the
η2 coefficient was calculated using analysis of variance, ANOVA. Homogenous groups
were determined for all independent variables with Tukey’s test at p = 0.05. Furthermore,
in order to highlight the relationships between the results obtained, Principal Component
Analysis (PCA) and Pearson’s simple correlation analysis were performed.

3. Results
3.1. Yields of Zea mays in Soil Contaminated with Cr(VI) and the Crop’s Energy Efficiency

Soil contamination with Cr(VI) had a negative effect on the growth and development of
Zea mays (Tables S1 and S2, Figures 1 and 2). In the experimental series without fertilization,
with compost or with HumiAgra, a level of chromium contamination in a dose higher
than 15 mg Cr(VI) kg−1 soil d.m. caused a significant decrease in the yield of the aerial
parts (Table S1) and roots of maize (Table S2). The decrease in the plant’s biomass yield
was directly proportional to the degree of soil contamination. This was also confirmed
by the coefficients of the correlation between a dose of Cr(VI) and yield of the aerial parts
(r = −0.984) and roots (r = −0.985) of maize. The coefficient of the effect of the highest
contamination level (60 mg Cr(VI) kg−1 soil d.m.) on the biomass of the aerial parts was
−0.903, and on the biomass of the roots reached −0.917, which means that in the former
case, the yield declined by 90.3%, and in the latter one, it declined by 91.7% (Figure 1). The
application of compost alleviated the negative effect of chromium at the dose of 30 mg
Cr(VI) kg−1 soil d.m. on the aerial parts and at the doses of 30–45 mg Cr(VI) kg−1 soil
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d.m. on the roots. Fertilization with the preparation HumiAgra proved to be even more
effective in mollifying the effects of chromium contamination on Zea mays as it eliminated
the toxic effect of this heavy metal on the biomass of the aerial parts and roots at all levels
of chromium contamination.
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The toxic effect of Cr(VI) on the growth and development of Zea mays was demon-
strated by the significant inhibition of the growth of the aerial organs of maize plants
(Table S3, Figure 1). Under the highest dose of Cr(VI), in the experimental series without
compost or HumiAgra, the height of Zea mays plants decreased from 138.8 cm to 70.5 cm.
The application of compost and HumiAgra effectively reduced the negative effect of Cr(VI)
on the height of Zea mays as well as the negative effect of the highest levels of contamination
(45–60 mg Cr(VI) kg−1 d.m.) on the greenness index (Table S4, Figure 1). Despite the
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negative effect of Cr(VI) on the growth and development of Zea mays, this element did not
decrease the net calorific value (Table S5) and gross calorific value of the plants (Table S6),
which is manifested by the low coefficients of the impact of Cr(VI), compost, and HumiAgra
on the mentioned parameters (Figure 1). Because both Cr(VI) contamination and compost
or HumiAgra fertilization changed the amounts of produced biomass, despite the stable
net and gross calorific value of Zea mays, the energy of the biomass harvested per 1 kg of
soil was varied (Table S7). The impact indices of Cr(VI) on the produced energy of biomass
were negative and consistently lower at higher levels of soil contamination. In the series
fertilized with compost or HumiAgra, these indices achieved positive values, which proves
that both fertilizing substances are effective in alleviating the effects of soil contamination
of Cr(VI), and as such they contribute to a higher harvest of energy from biomass.

3.2. Activity of Soil Enzymes in Soil Contaminated with Cr(VI)

Dehydrogenases demonstrated the highest activity in the soil uncontaminated with
Cr(VI), in which their average activity was 3.871 µM TFF kg−1 soil d.m. h−1 (Table S8).
As the level of chromium contamination increased (up to 60 mg Cr(VI)), their activity
decreased to 0.682 µM TFF kg−1 soil d.m. h−1. In the soil not fertilized with compost or
HumiAgra, the index of the influence of chromium as a soil pollutant on dehydrogenases
ranged from −0.595 to −0.891 (Figure 3), which means that Cr(VI) had a significant negative
impact on these enzymes.
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Deh—dehydrogenases, Cat—catalase, Pac—acid phosphatase, Pal—alkaline phosphatase, Glu—β-
glucosidase, and Aryl—arylsulfatase.

The fertilization of soil with compost alleviated the effect of Cr(VI) on dehydrogenases,
which was manifested by the positive indices of the influence of this treatment on the
activity of dehydrogenases, ranging from 0.036 to 0.406. The impact of Cr(VI) on dehydro-
genases was mollified even more distinctly by the application of HumiAgra. The value of
the index of the influence of this preparation in contaminated objects varied from 0.654 to
2.375, which corresponded to an increase in the activity of dehydrogenases by 65.4% to
237.5% in soil contaminated with chromium in doses of 15 and 45 mg Cr(VI) kg−1 soil d.m.,
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respectively. The activity of catalase was also inhibited by Cr(VI) in soil (Table S8). The aver-
age activity of this enzyme in the objects uncontaminated with Cr(VI) was 0.383 M O2 kg−1

soil d.m. h−1. It was the lowest in the soil with the highest contamination level (60 mg
Cr(VI) kg−1 soil d.m.), in which it fell to 0.345 M O2 kg−1 soil d.m. h−1. The effect of Cr(VI)
on the activity of catalase was much weaker than that on the activity of dehydrogenases
(Table S9). The value of the influence index of this element on catalase ranged from −0.043
to −0.093 (Figure 3). The indices of the influence of compost and HumiAgra alleviating
the impact of Cr(VI) achieved positive, albeit low, values, owing to the high tolerance of
catalase to the soil presence of Cr(VI).

The average activity of urease in the uncontaminated objects was 1.014 mM N–NH4
kg−1 soil d.m. h−1 (Table S10), and this decreased significantly as the Cr(VI) soil contami-
nation level increased. The lowest activity of urease (0.460 mM N–NH4 kg−1 soil d.m. h−1)
was found in soil contaminated with 60 mg Cr(VI) kg−1 soil d.m. Values of the index of
influence of Cr(VI) on the activity of urease in soil unfertilized with compost or HumiAgra
ranged from −0.327 in soil contaminated with 15 mg Cr(VI) to −0.755 in soil contaminated
with 60 mg Cr(VI) kg−1 soil d.m. (Figure 3). Comparison of the values of the index of the
influence of compost and HumiAgra mitigating the effects of Cr(VI) on the activity of this
enzyme proves that HumiAgra was more effective than compost in alleviating the adverse
impact of Cr(VI) on urease. Nevertheless, both fertilizing substances limited the inhibitory
effect of chromium on the activity of urease to the highest degree in soil contaminated with
60 mg Cr(VI) kg−1 soil d.m., in which the index of the influence of compost reached 1.083,
and that of HumiAgra was even higher, at 2.833.

The analyzed soil was characterized by a higher activity of acid phosphatase (Table S11)
than that of alkaline phosphatase (Table S12). It was nearly 6.5-fold higher in the uncon-
taminated soil and 3.9-fold higher in the soil contaminated with 60 mg Cr(VI) kg−1 soil
d.m. than the activity of alkaline phosphatase in these soils. In the unfertilized soil and
in the soil fertilized with compost, the contamination with Cr(VI) did not significantly
change the activity of acid phosphatase. In the soil fertilized with HumiAgra, Cr(VI) did
not significantly change the activity of acid phosphatase, but it did depress the activity of
alkaline phosphatase. These dependences were confirmed by the indices of the influence of
Cr(VI) and compost as well as HumiAgra on the activity of phosphatases (Figure 3).

A relatively weak effect, compared to that observed in dehydrogenases and urease,
was produced by Cr(VI) on the activity of β-glucosidase (Table S13). The activity of β-
glucosidase decreased, although much less than the activity of the aforementioned enzymes,
in the control series and in the soil fertilized with compost. No significant effect of Cr(VI)
on the activity of β-glucosidase was observed in the soil treated with HumiAgra. However,
the average results, regardless of the experimental series, indicate that the highest activity
of β-glucosidase (0.637 mM PNP kg−1 soil d.m. h−1) was achieved in the uncontaminated
series, while the lowest one (0.575 mM PNP kg−1 soil d.m. h−1) was found in the series
contaminated with 60 mg Cr(VI) kg−1 soil d.m.. The indices of the influence of Cr(VI) on
the activity of β-glucosidase ranged from −0.078 to −0.132, those of compost from 0.083 to
0.152, and of HumiAgra from −0.121 to 0.216 (Figure 3).

Arylsulfatase proved to be sensitive to the influence of Cr(VI) in both the control
and the fertilized series (Table S14). The negative effect of this metal on arylsulfatase was
detected already at the lowest contamination level of 15 mg Cr(VI) kg−1 soil d.m., while
in the soil treated with HumiAgra, the activity of arylsulfatase was inhibited only by the
higher concentrations of the pollutant, i.e., 45 and 60 mg Cr(VI) kg−1 of soil. The index of
the influence of Cr(VI) on the activity of arylsulfatase scored negative values, lower as the
level of chromium contamination of the soil increased (Figure 3), and ranged from −0.232 to
−0.585. Both compost and HumiAgra added to soil improved the activity of arylsulfatase,
which is evidenced by the index of the influence equaling 0.207 for compost and 0.756 for
HumiAgra. The invariably positive effect of compost of the activity of arylsulfatase was
determined in the soil contaminated with 45 and 60 mg Cr(VI) kg−1 of soil. The index of
the influence of this compost scored 0.483 and 0.824, respectively. HumiAgra had an even
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more beneficial effect on the activity of this enzyme. The index of its influence tended to
reach higher values as the level of soil contamination with Cr(VI) increased and ranged
from 1.270 to 1.794.

3.3. Interactions between the Yield of Zea mays and its Energy Yield and Soil Enzyme Activity

In the above experiment, a significantly higher impact on the dependent variable
was produced by the fertilization of soil with compost and HumiAgra than by the soil
contamination with Cr(VI) (Figure 4).
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F—fertilization, Cr—Cr(VI) contamination, Ya—yield of aerial parts, Yr—yield of roots, H—plant
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glucosidase, and Aryl—arylsulfatase.

The load of the impact of the fertilization was very high and varied from 7.77% of
the effect on dehydrogenases to 73.14% on arylsulfatase. The impact of the fertilization
on the parameters assigned to the growth and development of plants varied from 27.07%
(yield of roots) to 60.18% (yield of aerial parts). Fertilization of soil affected the net calorific
value, gross calorific value, and energy production in the range of 60.44% to 61.01%.
Fertilization also had a significant effect on the activity of alkaline phosphatase (68.43%),
β-glucosidase (65.6%), urease (50.96%), and catalase (41.64%). While the considerable
impact of soil fertilization with compost and HumiAgra on the analyzed parameters should
be considered as a positive finding, the high impact of Cr(VI) on dehydrogenases (88.75%),
acid phosphatase (61.96%), catalase (52.07%), urease (45.65), and the yield of Zea mays
(42.33%) is an undesirable outcome. The interaction of the two independent variables (F
and Cr) was the highest with respect to the growth and development of Zea mays, ranging
from 16.55% on the yield of the aerial parts to 52.62% on the SPAD greenness index. The
F × Cr interaction had a relatively strong effect on the net and gross calorific value of Zea
mays (24.63%) and on the production of energy from biomass (17.41%).

The gross calorific value and the net calorific value of Zea mays (Figure 5) were not
significantly correlated with the level of soil contamination with Cr(VI), while the biomass
of maize, quantity of energy obtained from biomass, and the activity of all soil enzymes
were significantly negatively correlated with the soil contamination of this metal.
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combustion, Hv—calorific value, YEP—energy yield, Deh—dehydrogenases, Cat—catalase, Pac—acid
phosphatase, Pal—alkaline phosphatase, Glu—β-glucosidase, and Aryl—arylsulfatase.

There was also a negative correlation between the gross and net calorific values and the
biomass of Zea mays as well as the activity of dehydrogenases, urease, alkaline phosphatase,
β-glucosidase, and arylsulfatase. The positive correlation between the energy acquired from
the biomass of Zea mays and the activity of all analyzed soil enzymes is a valuable finding.
This correlation value resulted from the positive effect of soil enzymatic activity on the
growth and development of Zea mays. The PCA results (Figure 6) show that the strongest
correlation appeared between the activities of: β-glucosidase and alkaline phosphatase;
dehydrogenases, urease, and arylsulfatase; and acid and alkaline phosphatase.
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more complex process, dependent on the species and varieties of plants as well as the
temperature, moisture, content of organic matter, and pH of the soil [68]. Thus, despite
numerous reports on the toxicity of Cr(VI) towards plants, it is worthwhile to estimate the
extent of the negative impact of this element on Zea mays through the prism of a wider array
of parameters. The inhibited production of the aerial and root yields of maize, evidenced
by the coefficients of the correlation between the dose of Cr(VI) and the yield of aerial
organs (r = −0.984) and roots (r = −0.985), has been verified by other scholars, for example
Mohammed et al. [69], who observed that oxyanions not only diminished the biomass of
the plant’s roots but also decreased the rate of its germination, or Poltis [70], who showed
that exposure to Cr(VI) contributed to a decrease in the length of roots and aerial parts of
the plant by 25% and 75%, respectively. Wyszkowska et al. [26] demonstrated in their study
that Cr(VI) was just as toxic to Zea mays. The inhibitory effect of this element escalated
when supplied at a dose of 60 mg Cr kg−1 soil d.m., which depressed the yield of aerial
parts by 90% and that of roots by 92%. Several mechanisms are responsible, and many are
activated already at the stage of Cr translocation from the endoderm to the xylem of the
roots. This is when Cr ions undergo chelation, a translocation jest process facilitated by the
CPx-ATPase trans-porters [71]. In our study, the response of the Zea mays aerial parts was
similar to that of its roots, which may seem puzzling because Shanker et al. [72] maintain
that—as part of the plant’s protection mechanism—Cr is accumulated to a greater extent
in the vacuoles of root cells, thereby retarding the root growth by inhibiting the mitotic
divisions of cells due to chromosome aberrations [73]. In our experiment, there was also a
significant retardation of the growth and development of Zea mays aerial parts. This can be
attributed to the overproduction of reactive oxygen species (ROS), causing such oxidative
damage as retardation of the growth of plants due to the decreased content of pigment,
promoting genetic mutations and DNA fragmentation [74]. They include hydroxyl radicals
(OH−), hydrogen peroxide (H2O2), peroxynitrite ion (OONO−), or paramagnetic singlet
oxygen (1O2) [75,76]. The negative effects of this phenomenon arise from the Haber–Weis
reaction and the Fenton reaction, both of which induce an increase in ROS [77]. The
accumulation of H2O2 in maize roots is particularly tightly connected with the toxicity of
Cr [39]. This compound is synthesized in the process of dismutation of the superoxide
ion in the presence of superoxide dismutase (SOD), whose potential lies in the location
of the enzyme in chloroplasts, cytosol, apoplasts, mitochondria, and peroxisomes [78]. A
significant increase in ROS is additionally positively correlated with the content of malonic
dialdehyde (MDA) [79]. However, it was reasonable to expect a milder negative impact of
Cr(VI) in light of several facts. First, there is a high probability that the conversion of Cr(VI)
into Cr(III) has occurred, which binds to cell walls, thereby hindering the transport of Cr in
plant cells. Cr(III) is transported from the roots to the shoots or aerial parts of plants. This
process results from the reduction of Cr(VI) to Cr(III) induced during the transport of this
metal to the xylem. Although there is a small concentration of Cr(III) in the aerial parts
of plants, which is the result of precipitation of its excess in the cell and the formation of
complexes with ligands, it does not protect the plant against chromium toxicity. It leads to
DNA strand breaks, excessive ROS production, or disturbances in chromosome aberrations
that ultimately reduce the yield of crops [80,81]. Secondly, there is competition between
the metals Fe and Cr during the translocation of Cr(VI) from the roots to aerial organs
of plants [82,83]. Noteworthy is the role of glutathione, both in its reduced (GSH) and
oxidized (GSSG) forms, in the ascorbate–glutathione cycle, where it eliminates harmful
peroxides [84]. Interestingly, the defense strategies were not reinforced by the interaction of
the ABA gene biosynthesis (OsNCED2 and OsNCED3) with salicylic acid [85].

It is also worth considering the response of Zea mays to the toxicity of Cr(VI) as
reflected by a decline in the greenness index under the pressure of the highest Cr(VI) doses
(45–60 mg kg−1 soil d.m.). The results reported by Wyszkowska et al. [26], which showed
that chromium decreased the SPAD greenness index by 47% and 28% in the 4th and 7th leaf
development stages, respectively, attest to the tendencies observed in our study. Complete
membranes of chloroplasts are necessary to maintain the photosynthetic activity of plants.
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Changes in their ultrastructure include a decrease in the amount of such lipid components
as monogalactosylglycerol or phosphatidylglycerol [86], disorder in the development of
the lamellar system, and disorganization of the mesophyll cells. Moreover, a decreased
conductivity of stomata has been observed in plants exposed to Cr, which is due to the
modification of the cellular structure of spongy parenchyma, and leads to a smaller size
of the mesophyll stomata, ultimately inhibiting photosynthesis, transpiration, and gas
exchange [31,87]. The disturbance of chlorophyll synthesis is also explained by Cr(VI)
inhibiting the activity of δ-aminolevulinate dehydratase (ALAD), which catalyzes this
process [87].

In this experiment, the application of compost or HumiAgra alleviated the toxic
effect of Cr(VI) on the aerial parts and roots of maize, and on the greenness index of Zea
mays, although humic acid proved to be more effective. The reason was that it is humic
acids that are responsible for the diminishing of the content of extractable heavy metals
in compost [88]. Such satisfying effects of the application of either biostimulant tested
were to be expected because compost, as a source of dissolved organic carbon (DOC),
has a decisive influence on the soil’s sorption capacity and retention of heavy metals [89].
Owing to this, both compost and HumiAgra could improve the synthesis of chlorophyll,
and the activity of the PS1 and PS2 photosystems [90], by regulating the activity of such
antioxidants as glutathione (GSH), peroxidase (POD), and superoxide dismutase (SOD), or
by eliminating the risk of lipid peroxidation [91]. The stability and maturity of the compost
are also evidenced by the percentage gain in total nitrogen or the loss in the carbon content
during the progress of composting. A valuable indicator of compost maturity is thus a
C/N ratio of 10–15:1. The decreasing C/N ratio is the result of the consumption of organic
compounds by microorganisms [92]. In our research, the compost was characterized by
a Corg to Ntot ratio of 7.27, which probably contributed to the lower effectiveness of the
compost in alleviating the adverse impact of Cr(VI) on Zea mays biomass.

Diversification of the energy matrix is also achievable by selecting plant biomass that
has been produced in unfavorable natural conditions [93]. However, the results of this study
do not seem to support this option, as one of the findings was that the decreasing biomass
of Zea mays due to Cr(VI) soil contamination entailed lower energy harvest. Nonetheless,
chromium did not have a negative effect on the net calorific value or the gross calorific
value of the dry matter of maize straw. It also needs to be emphasized that the calorific
value of the dry matter of maize straw (18.2 MJ kg−1) [94] and (18.5 MJ kg−1) [95] is higher
than that of oilseed rape straw (15.3 MJ kg−1) [96] or barley straw (15.7 MJ kg−1) [97].
Calorific value of various biomass types is presented in Table 1.

Table 1. Calorific values of various biomass types.

Plant Calorific Value MJ kg−1 Reference

Bromus inermis Leyss. 17.231 [98]
Calamagrostis epigejos L. (Roth) 18.037 [98]
Camelina sativa 18.500 [99]
Crambe abyssinica 17.940 [99]
Euphorbia nerrifolia 21.487 [100]
Elymus elongatus 15.052 [12]
Festuca rubra 16.306 [13]
Holcus lanatus L. 16.029 [98]
Mimusops elengi L. 19.217 [100]
Miscanthus sinensis 17.840 [101]
Nerium indicum 18.443 [100]
Populus × euramericana 17.980 [102]
Robinia pseudoacacia L. 17.550 [102]
Salix trianda L. × Salis viminalis L. 17.930 [102]
Salix viminalis L. * 8.600–19.500 [103]
Sida hermaphrodita 17.430 [101]
Silphium perfoliatum L. 16.610 [104]
Zea mays—corn cob cores 16.190–16.530 [105]
Zea mays—BBCH 51 phase 14.799 Own research

* Three varieties and three clones of willow (Salix spp.) cultivated in the Eco-Salix system.
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To raise the energy value by increasing the biomass of plants grown in soils contami-
nated with Cr(VI), humic acids should be applied to the soil, as suggested by this study.
Other important techniques regulating the production of plant biomass grown under the
pressure of heavy metals are the manipulation of the content of plant hormones [106] or
phytomining, which consists of the recovery of the target metal after harvesting, drying,
and incinerating the plant biomass [107].

4.2. Activity of Soil Enzymes in Soil Contaminated with Cr(VI)

The biggest challenge in research on the activity of soil enzymes is to gain an in-depth
understanding how they overcome the inhibitory and competitive properties of the soil
matrix [108]. The first step in diagnosing the response of soil enzymes to the increase
in soil contaminated with Cr(VI) is to achieve a better insight into the complexity of the
forms in which enzymes occur in soil, which was reflected by the diverse responses of
the seven enzymes analyzed in this study. While it was true that the activity of all these
enzymes was inhibited, dehydrogenases, urease, and arylsulfatase proved to be the most
sensitive to Cr(VI). It would be rather difficult to question these results as they are con-
firmed by reports from many other studies [26,109,110]. However, the response of alkaline
phosphatase, which was determined in this study as the most tolerant to Cr(VI), seems
puzzling because it is contrary to the research results showing that chromium inhibited
the activity of hydrolase as effectively as the activity of the other enzymes [111,112]. It is
known that, apart from the type and speciation of metals, soil enzymatic activity is signifi-
cantly affected by the bioavailability of metals, which depends on the soil pH and organic
matter (OM) content [113,114]. Extracellular enzymes are complexed with organic matter
through copolymerization or adsorption, which reduces the availability of the substrate
and causes their conformation modifications [115], while simultaneously turning them
into signal molecules for the microbial community [116]. In our study, the response of
dehydrogenases to Cr(VI) toxicity can be explained by the fact that they are an integral
element of the enzymatic system of all living microorganisms, responsible for the transport
of electrons in oxygen metabolism [117]. Cr(III) may also be responsible for inhibiting
the activity of enzymes, mainly that of dehydrogenases. The effects of the pressure of
this form of chromium in the amount of 80 mg Cr(III) kg−1 soil d.m. on the activity of
dehydrogenases and the value of the biochemical soil fertility index, which also accounts
for the activity of urease, acid phosphatase, and alkaline phosphatase, was observed by
Wyszkowska et al. [111]. Chromium is cytotoxic and genotoxic towards microorganisms
by binding thiol groups of proteins or inhibiting DNA transcription and replication, which
leads to the loss of their functionality and hence the inhibition of dehydrogenases [118,119].
Interestingly, Schimel and Weintrub [120] maintain that microorganisms use 2% of their
assimilated carbon to synthesize enzymes.

The moderating effect of soil pH is also significant because higher pH is responsible for
breaking down the ionic and hydrogen bonds in the active center of dehydrogenases [121],
while catalase is active in a broad range of pH levels above the value of 3.5 [122]. The reason
why the activity of urease is inhibited can be sought in some changes in the enzyme’s
molecular structure under the pressure of Cr(VI). The toxicity of this element may have
resulted from Cr(VI) forming bonds with sulfhydryl groups (SH), cysteines, and carbonyl
groups [123,124]. The fact that the contribution of intracellular urease to the total activity of
this enzyme in soil varies from 37.1% to 73.1% should not be neglected [125]. Similarly to
phosphatase, urease is not, strictly speaking, an extracellular enzyme, but rather assumes its
status as a result of lysis and eventually the death of a maternal cell [107]. In our study, both
compost and HumiAgra were effective in alleviating the negative effect of Cr(VI) on the
activity of soil enzymes, but humic acids unquestionably had primacy in the biostimulation
of dehydrogenases, urease, β-glucosidase, and arylsulfatase. The tendencies detected
in this study most probably arose from the fact that metals, including Cr(VI), undergo
chelation via the functional groups of humic substances [48]. Although fulvic acids have
more carboxyl groups, humate acids, which make up 50% of the composition of HumiAgra,
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are more effective in the formation of metal–humate complexes because they provide
more binding sites owing to their more complex structure and larger molecules [126].
Nevertheless, compost is also an attractive biostimulating substance, which, in another
study by Wyszkowska et al. [13], induced the activity of dehydrogenases, catalase, urease,
acid phosphatase, and alkaline phosphatase. It is worth underlining that the application of
compost stimulates the release of exudates from plant roots, mainly organic acids, amino
acids, and fatty acids [127] and—similarly to humic acids—changes the chemical speciation
of Cr(VI) through adsorption and complexing [128].

5. Conclusions

Excessively large quantities of chromium (VI) distort the biochemical balance of soil,
which results in decreased biomass production by Zea mays and, consequently, lower energy
output. Energy crops, for example Zea mays, can be grown in soil contaminated with Cr(VI)
provided that the soil enzyme activity is compensated for by fertilization with compost
or HumiAgra. The preparation HumiAgra proved to be more effective than compost
in alleviating the adverse impact of Cr(VI) on Zea mays biomass. Thus, the preparation
HumiAgra or other treatments contributing to the increase in the content of humic acids in
soils should be recommended if an adequate amount of biomass is to be harvested from
energy crops cultivated on soil contaminated with Cr(VI).
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