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Abstract: As social and environmental issues become increasingly serious, both fuel costs and envi-
ronmental impacts should be considered in the cogeneration process. In recent years, combined heat
and power economic emission dispatch (CHPEED) has become a crucial optimization problem in
power system management. In this paper, a novel reinforcement-learning-based multi-objective dif-
ferential evolution (RLMODE) algorithm is suggested to deal with the CHPEED problem considering
large-scale systems. In RLMODE, a Q-learning-based technique is adopted to automatically adjust the
control parameters of the multi-objective algorithm. Specifically, the Pareto domination relationship
between the offspring solution and the parent solution is used to determine the action reward, and
the most-suitable algorithm parameter values for the environment model are adjusted through the
Q-learning process. The proposed RLMODE was applied to solve four CHPEED problems: 5, 7, 100,
and 140 generating units. The simulation results showed that, compared with four well-established
multi-objective algorithms, the RLMODE algorithm achieved the smallest cost and smallest emission
values for all four CHPEED problems. In addition, the RLMODE algorithm acquired better Pareto-
optimal frontiers in terms of convergence and diversity. The superiority of RLMODE was particularly
significant for two large-scale CHPEED problems.

Keywords: economic emission dispatch; combined heat and power; multi-objective differential
evolution; reinforcement learning; large-scale system

1. Introduction

Traditional thermal power plants cannot efficiently convert thermal energy into elec-
trical energy, and a large amount of thermal energy is wasted as heat [1]. Today, heat
supply is an indispensable part of our lives, and therefore, utilizing waste heat has become
a new production trend. Combined heat and power (CHP) generation technology collects
and utilizes the waste heat for heat supply in the power generation process. Compared
with the pure power generation plants, the energy utilization efficiency of CHP plants is
more than 90% and can save 10% to 40% of the power generation costs. In addition, CHP
plants can reduce the pollutant gas emissions by nearly 13∼18% [2]. In order to realize
the sustainable development of the power industry, the application of CHP in the power
system has become a global development trend [3].

Combined heat and power economic dispatch (CHPED) is an effective way to achieve
optimal production in the CHP production system. CHPED refers to the optimization of
electrical and heat production for three types of generating units, i.e., power-only (PO) units,
CHP units, and heat-only (HO) units, with the goal of minimizing fuel costs. CHPED is a
quite complex optimization task, which should be solved by efficient optimization methods.

1.1. Literature Review

Early methods for the CHPED problem included dual-quadratic programming
(DQP) [4], Lagrange relaxation programming (LRP) [5], and the branch-and-bound method
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(BABM) [6]. However, these methods have the limitations of high initial sensitivity and
low solution accuracy for non-convex problems.

Swarm and evolutionary optimization algorithms (SEOAs) are global optimizers that
do not require the optimization problem to be convex or differentiable. Therefore, many
SEOAs have been devised to solve the CHPED problem during the past ten years, such
as the improved genetic algorithm [7], multi-player-based harmony search [2], Kho–Kho
optimizer [8], niching differential evolution [9], migrating-variables-based differential
evolution [10], collective information particle swarm optimization [11], the amalgamated
heap and jellyfish optimizer [12], the hybrid chameleon swarm algorithm [13], hybrid
grasshopper optimization [14], hybrid crow search [15], and adaptive cuckoo search [16].
However, all the above works only considered the economic production objective while
ignoring the environmental pollution objective, and CHPED was solved using a single
objective optimization framework.

With the increasingly serious social and environmental problems, both fuel costs
and environmental impacts should be considered in the production process. As a result,
combined heat and power economic emission dispatch (CHPEED) [17] is established with
two conflicting goals, i.e., minimizing the fuel costs and reducing pollutant gas emissions.
CHPEED is a non-linear, non-convex, and multi-objective optimization problem with
multiple constraints. Recently, the research on CHPEED has become a hot topic in academia
and industry.

Elaiw et al. [18] presented a hybrid DE-SQP method to solve the dynamic CHPEED
problem. In the hybrid algorithm, DE acts as a global optimizer for the base-level search
and SQP is used for fine-tuning of the final solution. Ahmadi et al. [19] used the normal
boundary intersection (NBI) method to handle the CHPEED problem. The NBI was applied
to find the Pareto-optimal solutions, and the TOPSIS decision-making approach was adopted
to obtain the tradeoff solution Anand et al. [20] put forward a civilized swarm optimization
(CSO) algorithm to solve the CHPEED problem. CSO is a synthetic technique based on
particle swarm optimization and the society civilization algorithm. Sadeghian et al. [21]
solved the CHPEED problem based on double-Benders decomposition (DBD). The DBD
method consists of the external BD and the internal BD. For the external BD, the on/off
state of generation units is determined by the master problem, and for the internal BD, the
economic dispatch is solved through the sub-problem. Alomoush [22] applied stochastic
fractal search (SFS) to solve the CHPEED problem. By using a compromise programming
method, the fuel cost and gas emission were coupled into an aggregate objective function, and
the approximate global optimal solution was obtained by the SFS algorithm. Jdoun et al. [23]
proposed a dynamic control whale optimization (DCWOA) algorithm to solve the CHPEED
problem. DCWOA adds the dynamically controlled constriction function into the traditional
WOA. Note that most of these works transform the multi-objective CHPEED problem into a
single-objective optimization problem, solve the problem by executing the single-objective
optimization algorithm many times, and obtain the Pareto-optimal solutions.

Pareto-based multi-objective optimization algorithms have also been proposed for the
CHPEED problem, which can obtain the Pareto-optimal solutions in one run. Niknam et al. [24]
solved the reserve constrained dynamic CHPEED problem based on a multi-objective-
enhanced firefly algorithm. Basu [25] recommended the nondominated sorting genetic
algorithm-II (NSGA-II) to solve the CHPEED problem. NSGA-II employs fast nondomi-
nated sorting (FNS) and crowding distance (CD) comparison to select better individuals.
Shi et al. [26] developed a multi-objective line-up competition algorithm (MLCA) to deal
with the CHPEED problem with power transmission loss. An efficient diversity preserva-
tion mechanism was employed in the MLCA to produce the uniformly distributed Pareto-
optimal solutions. Shaabani et al. [27] introduced a time-varying accelerated multi-objective
particle swarm optimization (TV-MOPSO) algorithm to optimize the CHPEED solution. In
TV-MOPSO, the acceleration coefficients are dynamically changed during the optimization
process. Li et al. [17] proposed a two-stage approach to solve the CHPEED problem, which
combines the multi-objective optimization algorithm θ-DEA and an integrated decision-
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making strategy. Sun et al. [28] put forward an indicator- and crowding-distance-based
evolutionary algorithm (IDBEA) for the CHPEED problem. Sundaram [29] proposed a
hybrid multi-objective algorithm based on NSGA-II and MOPSO (NSGAII-MOPSO) for the
CHPEED problem. Sundaram [30] implemented a multi-objective multi-verse optimization
(MOMVO) algorithm for the solution of the CHPEED problem. In MOMVO, a chaotic
opposition strategy is used for the initial population generation, and it explores the search
space extensively. Xiong et al. [31] proposed an improved bare bones MOPSO (IMOBBPSO)
algorithm to solve three CHPEED problems. In IBBMOPSO, the adaptive particle update
strategy is added to automatically adjust the weight of the personal and global best position,
and an external archiving strategy is established to improve the swarm diversity.

1.2. Contributions of This Work

Despite the above research works, there are still two limitations in the existing CH-
PEED research. Firstly, the existing CHPEED methods do not introduce advanced machine
learning technology, and integrating machine learning techniques into multi-objective
optimization algorithms may improve their efficiency at solving the CHPEED problem.
Secondly, most of the existing works only considered the small-scale CHPEED problem
with less than 10 units, and the large-scale CHPEED problem with more than 100 units has
not been considered. Based on these considerations, this paper devised a reinforcement-
learning-based multi-objective differential evolution (RLMODE) algorithm to deal with the
CHPEED problem considering a large-scale system.

Multi-objective differential evolution (MODE) is a multi-objective evolutionary opti-
mization technique. Due to its advantages of simple implementation, good stability, and
robustness [32,33], MODE has been applied to solve the many real-world multi-objective
problems including power dispatch problems [34,35]. On the other hand, reinforcement
learning (RL) is an important machine learning technique. RL studies how an agent learns
through interaction with the external environment. RL does not need any prior data, but
only needs to accumulate rewards based on the information of the agent learned from the
external environment and finally obtains the maximum reward [36].

In this paper, using the RL technique, a novel reinforcement-learning-based multi-
objective differential evolution (RLMODE) algorithm is proposed to solve the
CHPEED problem.

The main contributions of this paper are listed as follows:

• A novel reinforcement-learning-based multi-objective differential evolution (RLMODE)
algorithm is developed.

• The RLMODE algorithm uses RL to automatically adjust the control parameters, which
enhances the search ability and stability.

• The RLMODE algorithm was utilized to solve four CHPEED problems including two
large-scale CHPEED problems with more than 100 generating units.

• The superiority of the RLMODE algorithm was verified by comparing with well-
established multi-objective optimization algorithms.

The rest of the article is structured as follows. Section 2 introduces the mathematical
model of CHPEED. Section 3 describes the proposed RLMODE algorithm in detail. Section 4
states the implementation of RLMODE for solving CHPEED. In Section 5, RLMODE is
applied to solve four CHPEED problems and compared with other algorithms. Section 6
draws the conclusions.
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2. Mathematical Formulation of CHPEED Problem
2.1. Objective Function
2.1.1. Fuel Cost

The total fuel cost FC is composed of the fuel cost of the PO, CHP, and HO units [25].
The fuel cost objective function is described as follows:

min FC =
NP

∑
i=1

Ci(Pi) +
NC

∑
j=1

Cj

(
PC

j , HC
j

)
+

NH

∑
k=1

Ck(Hk) (1)

where Ci(Pi), Cj

(
PC

j , HC
j

)
, and Ck(Hk) represent the fuel cost of the ith PO unit, jth CHP

unit, and kth HO unit, respectively; Pi, PC
j , HC

j , and Hk are the power and heat output of
three types of units; NP, NC, and NH represent the three types of units.

The fuel costs function of the PO, CHP, and HO units are formulated as follows:

Ci(Pi) = ai(Pi)
2 + biPi + ci +

∣∣∣di sin
(

ei

(
Pmin

i − Pi

))∣∣∣ (2)

Cj

(
PC

j , HC
j

)
= f j

(
PC

j

)2
+ gjPC

j + lj + hj

(
HC

j

)2
+ mj HC

j + njPC
j HC

j (3)

Ck(Hk) = ok(Hk)
2 + pk Hk + qk (4)

where ai, bi, ci, di, ei, f j, gj, hj, lj, mj, nj, ok, pk, qk represent the cost coefficients of the PO,
CHP, and HO units. The sinusoidal function in Equation (2) represents the valve point
effect [37] of the PO unit, which is shown in Figure 1.

Figure 1. Cost curve with valve point effect.

2.1.2. Gas Emissions

The pollutant gases generated during power generation include NOx, SO2, and CO2.
The gas emission objective function FE is composed of the gas emission of the PO, CHP,
and HO units [22], which is described as follows:

min FE =
NP

∑
i=1

Ei(Pi) +
NC

∑
j=1

Ej

(
PC

j

)
+

NH

∑
k=1

Ek(Hk) (5)
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where Ei(Pi), Ej

(
PC

j

)
, and Ek(Hk) represent the gas emission of the ith PO unit, jth CHP

unit, and kth HO unit, respectively.
The gas emission functions of the PO, CHP, and HO units are formulated as follows:

Ei(Pi) = αi(Pi)
2 + βiPi + γi + δieεi Pi (6)

Ej

(
PC

j

)
= ζ jPC

j (7)

Ek(Hk) = ηk Hk (8)

where αi, βi, γi, δi, εi, ζ j, and ηk represent the emission coefficients of the PO, CHP, and
HO units.

2.2. Constraints
2.2.1. Power Balance Constraint

The total power generated by all PO and CHP units should be equal to the total power
demand PD plus the transmission loss PL:

NP

∑
i=1

Pi +
NC

∑
j=1

PC
j = PD + PL (9)

Transmission loss PL can be calculated by Kron’s loss formula:

PL =
NP+NC

∑
i=1

NP+NC

∑
j=1

P̄iBij P̄j +
NP+NC

∑
i=1

P̄iB0i + B00 (10)

where Bij, B0i, B00 are the coefficients of the B -matrix.

2.2.2. Heat Balance Constraint

The total heat generated by all CHP and HO units should be equal to the total heat
demand HD:

NC

∑
j=1

HC
j +

NH

∑
k=1

Hk = HD (11)

2.2.3. Capacity Constraint of the PO Units

The capacity constraint of the PO units is:

Pmin
i ≤ Pi ≤ Pmax

i i = 1, · · · , NP (12)

where Pmin
i and Pmax

i are the lower and upper limits of the ith PO unit, respectively.

2.2.4. Capacity Constraint of the CHP Units

The power and heat produced by the CHP units are coupled to each other and confined
to a polygonal region called feasible operation regions, as illustrated in Figure 2. Therefore,
the upper and lower power of the jth CHP unit are determined by its heat HC

j , and the

upper and lower heat of the jth CHP unit are determined by its power PC
j :

PC,min
j

(
HC

j

)
≤ PC

j ≤ PC,max
j

(
HC

j

)
, j = 1, · · · , NC

HC,min
j

(
PC

j

)
≤ PC

j ≤ HC,max
j

(
PC

j

)
, j = 1, · · · , NC

(13)
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where PC,min
j

(
HC

j

)
and PC,max

j

(
HC

j

)
are the functions of the lower and upper power limits

in the CHP unit. Similarly, HC,min
j

(
PC

j

)
and HC,max

j

(
PC

j

)
are the functions of the lower

and upper heat limits in the CHP unit, which is shown in Figure 2.

 

Figure 2. Capacity constraint of two typical CHP units.

2.2.5. Capacity Constraint of the HO Units

The capacity constraint of the HO units is:

Hmin
k ≤ Hk ≤ Hmax

k , k = 1, · · · , NH (14)

where Hmin
k and Hmax

k are the lower and upper limits of the kth HO unit, respectively.

3. Proposed RLMODE Algorithm
3.1. MODE Algorithm
3.1.1. Initialization

At the beginning, MODE randomly initializes N candidate solutions {X0
i , i = 1, . . . , N}

as follows:
X0

i = XL + rand ·
(

XU −XL
)

(15)

where XL and XU are the lower and upper bounds, respectively; rand ∈ [0, 1]D are random
real values; D is the number of optimization variables.

3.1.2. Mutation

The differential mutation is the key production operator, which is used to generate the
mutant solutions. The classic mutation strategy DE/rand/1 is described as follows:

VG
i = XG

r1 + Fi ·
(

XG
r2 −XG

r3

)
, (16)

where VG
i =

(
VG

i,1, VG
i,2, · · · , VG

i,D

)
is the mutant solution; G is the generation number;

r1, r2, r3 ∈ {1, 2, · · · , N} are three random numbers and r1 6= r2 6= r3 6= i; Fi is the scale
factor for the ith individual, which is used for scaling the difference vector.

3.1.3. Crossover

The crossover operator aims at increasing the population diversity of the algorithm.
The binary crossover operator is described as follows:

UG
i,j =

{
VG

i,j if rand(0, 1) ≤ CR or j = jrand

XG
i,j otherwise

(17)
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where UG
i =

(
UG

i,1, · · · , UG
i,j, · · · , UG

i,D

)
is the offspring solution; rand(0, 1) ∈ [0, 1] is a ran-

dom real number; jrand ∈ [1, D] is a random integer; CR is the crossover rate within [0, 1].

3.1.4. Selection

After the crossover operator, the offspring solutions and parent solutions are merged
into one large group. Then, the fast nondominated sorting (FNS) and crowding distance
(CD) operators are used to select better solutions in the next generation [25]. The FNS
approach is shown in Figure 3a. The FNS approach divides the merged population into
several frontiers according to the dominance relationship, where the solutions in the frontier
S1 are the best level, the solutions in the frontier S2 are the second-best level, and so on.
To estimate the density of the individuals in the same frontier, the CD operator is used, as
shown in Figure 3b. For the boundary solutions, the CD value was set to infinite ∞; for the
other solutions, the CD value of the ith solution is the mean side length of the rectangle
consisting of the (i− 1)th and (i + 1)th solutions.

（a）Fast nondominated sorting （b）Crowding distance

Figure 3. Fast nondominated sorting and crowding distance.

3.2. RLMODE Algorithm
3.2.1. Reinforcement Learning Technique

RL is an important machine learning technique mainly including five elements, namely
the environment, agent, state, action, and reward [36]. After the agent executes an action,
the environment will turn into a new state. For the impact (positive or negative) caused
by the new environmental state, a reward (positive or negative) will be sent to the agent.
Then, the agent performs a new action based on the reward and the new state from the
environmental feedback, as shown in Figure 4.

 

Figure 4. Agent–environment interaction of learning.

The Q-learning technique is a representative value-based RL model [38]. Q-learning
is simple in structure and does not require any prior knowledge. It can be learned in the
process of performing tasks. The Q-learning framework is shown in Algorithm 1.

The formula for updating the Q value is:

Q(st, at) = Q(st, at) + α[rt + γ max
a

Q(st+1, a)−Q(st, at)] (18)
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where Q(st, at) is the Q value for state st and action at, rt is the reward of the current
generation, and max

a
Q(st+1, a) is the maximum Q value of the action in the next state st+1.

Algorithm 1 Pseudocode for Q-learning.

Require: State st, action at, discount factor γ, learning rate α, reward R.
Ensure: Final state s.
1: Initialize the Q table.
2: Randomly initialize the current state st.
3: while FES ≤ maxFES do
4: Choose the best action at based on the Q table;
5: Perform action at, and obtain a reward rt;
6: Obtain the maximum Q value of the next state st+1;
7: Update the Q table by Equation (18);
8: Set the current state st = st+1;
9: FES = FES + 1

10: end while

3.2.2. Q-Learning Parameter Adjustment

In the proposed RLMODE algorithm, Q-learning is employed to adjust the control
parameter (i.e., scale factor Fi). The Q table is used to record the values of pairs (state,
action). As shown in Figure 5, for each individual, the agent has three types of states and
three types of actions for each state. The probability of the agent to select different actions
in different states is determined according to the values in the Q table.

Three states are defined in RLMODE, i.e.:

• State S = 1: the offspring solution dominates its own parent solution, indicating that
the mutation operator achieves success, and a positive reward value is assigned R = 1;

• State S = 2: the offspring solution does not dominate its own parent solution, but
dominates one of the other parent solutions, indicating that the mutation operator is
relatively successful, and a middle reward value is assigned R = 0.5;

• State S = 3: the offspring solution does not dominate its own parent solution or the
other parent solutions, which indicates that the mutation operator fails, and no reward
value is assigned R = 0.

Three actions used to adjust the scale factor are: (1) dF = 0.1; (2) dF = 0; and
(3) dF = −0.1.

The probability of each agent selects action aj in state si is determined by the soft-
Max strategy:

π(si, aj) =
eQ(si ,aj)/T

n
∑

j=1
eQ(si ,aj)/T

(19)

where π(si, aj) is the selection probability for the agent.

 
Figure 5. Q table for one agent.
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After selecting the action, the agent adjusts its scale factor Fi as follows:

Fi = Fi + dFi (20)

In the RLMODE, each individual has an independent Q table, and therefore, there
are in total N Q tables. Each individual updates its Q table independently during the
iterative process.

3.2.3. Elite-Guided Mutation

In order to enhance the convergence speed, an elite-guided mutation operator is em-
ployed in the RLMODE algorithm. The elite guided mutation operator is shown as follows:

VG
i = XG

i + Fi ·
(

pBesti −XG
i

)
+ Fi ·

(
XG

r1 −XG
r2

)
, (21)

where pBesti is one of the top 10% of individuals in the population after the fast nondomi-
nated sorting and crowding distance operators.

3.2.4. Pseudocode of RLMODE Algorithm

By using the reinforcement learning technique, the detailed pseudocode of RLMODE
is shown in Algorithm 2.

Algorithm 2 Pseudocode of the RLMODE algorithm.
Require: Population size N, crossover rate CR, discount factor γ, learning rate α.
Ensure: The Pareto-optimal solutions.
1: // == == == Initialization == == == //
2: Initialize action matrix a0, state matrix s0, reward matrix R, Q tables;
3: Set FES = 0, G = 0;
4: Initialize the population X0

i , i = 1, · · · , N according to Equation (15);
5: Evaluate the fitness of the population;
6: Sort the population using fast nondominated sorting (FNS) and crowding distance (CD) operators;
7: FES = FES + N;
8: while FES < maxFES do
9: // == == == Mutation and crossover == == == //

10: for i = 1 to N do
11: Generate VG

i using the elite-guided mutation operator according to Equation (21);
12: Generate UG

i using the crossover operator according to Equation (17);
13: end for
14: // == == == Q-learning-based parameter adjustment == == == //
15: for i = 1 to N do
16: Calculate the action selection probability for the ith agent according to Equation (19);
17: Choose the action to adjust the value dFi ;
18: Update the action of the ith agent;
19: Evaluate the fitness of offspring UG

i ;
20: if UG

i ≺ XG
i then

21: Set the reward Ri = 1, and state Si = 1;
22: else if UG

i ≺ otherXG
j (j 6= i) then

23: Set the reward Ri = 0.5, and state Si = 2;
24: else
25: Set the reward Ri = 0, and state Si = 3;
26: end if
27: Update the Q table for the ith agent;
28: Adjust the scale factor Fi for Xi according to Equation (20);
29: end for
30: // == == == Pareto selection == == == //
31: Merge the parent and offspring into a large population with 2N solutions;
32: Sort the population using FNS and CD operators and choose the best N solutions in the next generation;
33: FES = FES + N; G = G + 1
34: end while

4. Implementation of RLMODE for Solving CHPEED

The individual Xi is composed of the power and heat output of the PO, CHP, and
HO units:
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Xi =
[

Pi,1, · · · , Pi,NP , PC
i,1, · · · , PC

i,NC
, HC

i,1, · · · , HC
i,NC

, Hi,1, · · · , Hi,NH

]
, i = 1, · · · · · · , N (22)

The constraint repair techniques are as follows:
(1) For the power balance constraint, the power output vector is composed of the

PO and CHP units, i.e., XP
i = [Pi,1, · · · , Pi,Np , PC

i,1, · · · , PC
i,NC

]. The difference value between
power production and power demand is defined as:

di fP = PD + PL −
NP

∑
j=1

Pi,j −
NC

∑
j=1

PC
i,j (23)

If |di fP| > ep (ep is a very small positive value), then randomly select a dimension
variable Xi,j from XP

i , and Xi,j is repaired as follows:

Xi,j =


min

{
Xi,j + di fP , Pmax

j

}
, if di fP > 0 and Xi,j 6= Pmax

j

max
{

Xi,j − di fP , Pmin
j

}
, if di fP < 0 and Xi,j 6= Pmin

j

Xi,j, otherwise

(24)

After repairing Xi,j, re-calculate the value of di fP. If |di fP| > ep, then select another
dimension variable Xk,j from XP

i that was not previously selected and continue to repair
Xk,j using Equation (24). The above repair process is repeated until |di fP| 6 ep.

(2) For the heat balance constraint, the heat output vector is composed of CHP and
HO units, i.e., XH

i = [HC
i,1, · · · , HC

i,NC
, Hi,1, · · · , Hi,NH ]. The difference value between heat

production and heat demand is defined as:

di fH = HD −
NC

∑
j=1

HC
i,j −

NH

∑
j=1

Hi,j (25)

if |di fH | > ep, then randomly select a dimension variable Xi,j from XP
i , and Xi,j is repaired

as follows:

Xi,j =


min

{
Xi,j + di fH, Hmax

j

}
, if di fH > 0 and Xi,j 6= Hmax

j

max
{

Xi,j − di fH , Hmin
j

}
, if di fH < 0 and Xi,j 6= Hmin

j

Xi,j, otherwise

(26)

After repairing Xi,j, re-calculate the value of di fH . If |di fH | > ep, then select another
dimension variable Xk,j from XH

i that was not previously selected, and continue to repair
Xk,j using Equation (26). The above repair process is repeated until |di fH | 6 ep.

(3) The power output of the PO units is repaired as:

Pi,j =


Pmin

j , if Pi,j ≤ Pmin
j

Pmax
j , if Pi,j ≥ Pmax

j
Pi,j, otherwise

(27)

(4) The output of the CHP units is repaired as:

PC
i,j =


PC,min

j

(
HC

i,j

)
, if PC

i,j ≤ PC,min
j

(
HC

i,j

)
PC,max

j

(
HC

i,j

)
, if PC

i,j ≥ PC,max
j

(
HC

i,j

)
PC

i,j, otherwise

(28)



Energies 2023, 16, 3753 11 of 23

HC
i,j =


HC,min

j

(
PC

i,j

)
, if HC

i,j ≤ HC,min
j

(
PC

i,j

)
HC,max

j

(
PC

i,j

)
, if HC

i,j ≥ HC,max
j

(
PC

i,j

)
HC

i,j, otherwise

(29)

(5) The heat output of the HO units is repaired as:

Hi,j =


Hmin

j , if Hi,j ≤ Hmin
j

Hmax
j , if Hi,j ≥ Hmax

j
Hi,j, otherwise

(30)

In total, the constraint repair process is shown in Figure 6.

（23）

(24)(25)

(26) (27)

(28) (29)

(30)

Figure 6. Constraint repair process for individual Xi.

Not all constraints were strictly satisfied after using the constraint repair technique.
Therefore, the total constraint violation degree of each individual Xi is calculated as follows:

V(X i) = VPB + VHB + VP + VCHP + VH

=

∣∣∣∣∣PD + PL −
(

NP

∑
j=1

Pi,j +
NC

∑
j=1

PC
i,j

)∣∣∣∣∣
+

∣∣∣∣∣HD −
NC

∑
j=1

HC
i,j −

NH

∑
j=1

Hi,j

∣∣∣∣∣
+

NP

∑
j=1

[
max

(
Pi,j − Pmax

j , 0
)
+ max

(
Pmin

j − Pi,j, 0
)]

+
NC

∑
j=1

[
max

(
PC

i,j − PC,max
j

(
HC

i,j

)
, 0
)
+ max

(
PC,min

j

(
HC

i,j

)
− PC

i,j, 0
)]

+
NC

∑
j=1

[
max

(
HC

i,j − HC,max
j

(
PC

i,j

)
, 0
)
+ max

(
HC,min

j

(
PC

i,j

)
− HC

i,j, 0
)]

+
NH

∑
j=1

[
max

(
Hi,j − Hmax

j , 0
)
+ max

(
Hmin

j − Hi,j, 0
)]

(31)
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where VPB and VHB are the violation degree of the power balance and heat balance con-
straints, respectively; VP, VCHP, and VH are the violation degree for the PO, CHP, and HO
capacity constraints, respectively.

Now, both the objective function and constraint violation degree are obtained. When
applying the RLMODE algorithm to handle the CHPEED problem, the constraint domina-
tion principle (CDP) [39] is also adopted.

The flowchart of RLMODE for handling CHPEED is shown in Figure 7.

Figure 7. Flowchart of RLMODE for solving CHPEED.
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5. Simulation Results

The RLMODE algorithm was utilized to solve four CHPEED problems: 5, 7, 100,
and 140 generating units. The effectiveness of the RLMODE algorithm was verified by
comparing with four representative multi-objective optimization algorithms, namely TV-
MOPSO [27], GDE3 [40], NSGA-II-DE [41], and MODE-RMO [42]. The parameter settings
of these multi-objective algorithms are given in Table 1. All the multi-objective algorithms
were implemented 30 times independently.

Table 1. Parameter settings for the multi-objective algorithms.

Algorithm Parameters

TV-MOPSO [27] Population size N = 100, weight coefficient ωmin = 0.1, ωmax = 0.9,
acceleration coefficient C1 f = C2i = 0.5, C1i = C2 f = 2

GDE3 [40] N = 100, scale factor F = 0.5, crossover rate CR = 0.5
NSGA-II-DE [41] N = 100, polynomial mutation rate η = 20, F = 0.5, CR = 0.5
MODE-RMO [42] N = 100, F = 0.5, CR = 0.5
RLMODE N = 100, CR = 0.5, α = 0.1, γ = 0.5

5.1. Case 1: Five-Unit CHPEED Problem

The first case was a five-unit CHPEED problem chosen from [25]. It consists of 1 PO
unit, 3 CHP units, and 1 HO unit. The power requirement and heat requirement were
300 MW and 150 MWth, respectively. The computational resource, i.e., maximum functional
evaluations maxFES = 1000 was used.

Table 2 presents the results of economic dispatch (EcD), emission dispatch (EmD), and
economic emission dispatch (EED) for Case 1. From Table 2, it can be seen that:

• In the case of EcD, the costs of TV-MOPSO, GDE3, NSGA-II-DE, MODE-RMO, and
RLMDOE were USD 13,686.49, 13,712.33, 13,700.49, 13,675.28, and 13,674.70, respec-
tively. Therefore, RLMDOE achieved the smallest cost among the five algorithms.

• In case of EmD, the emissions of TV-MOPSO, GDE3, NSGA-II-DE, MODE-RMO, and
RLMDOE were 1.21 kg, 1.24 kg, 1.23 kg, 1.23 kg, and 1.21 kg, respectively. Therefore,
RLMDOE and TV-MOPSO achieved the smallest emission.

• In the case of EED, the results of the best compromise solutions of the five algorithms
were given. The cost and emission of RLMDOE were USD 14,856.36 and 6.09 kg,
which were smaller than those of TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO.
Therefore, RLMODE achieved the best compromise solution. Due to the complexity
of the RLMODE algorithm, its simulation time and computational memory were
not dominant.

The Pareto-optimal frontier (POF) obtained by TV-MOPSO, GDE3, NSGA-II-DE,
MODE-RMO, and RLMODE is plotted in Figure 8.

To quantifiably compare the POF obtained by these algorithms, three performance
metrics, i.e., diversity metric (DM) [43], hypervolume (HV) [44], and inverted genera-
tional distance (IGD) [45], were further employed to compare the POF obtained by these
algorithms. DM measures the diversity of the POF, and a larger DM value means better
diversity of the algorithm. HV measures both the convergence and diversity of the POF.
A larger HV value indicates the better performance of the algorithm. IGD also measures
both convergence and diversity. A smaller IGD value indicates the better performance of
the algorithm.
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Figure 8. Comparison of Pareto-optimal frontier for the 5-unit CHPEED problem.

Table 2. Results of EcD, EmD, and EED for the 5-unit CHPEED problem.

Output TV-MOPSO GDE3 NSGA-II-DE MODE-RMO RLMODE

P1(MW) 135 135 135 135 135
PC

1 (MW) 44.92 48.15 51.53 40.48 41.58
PC

2 (MW) 16.52 16.30 10.30 19.52 18.43
PC

3 (MW) 103.56 100.55 103.17 105 105
EcD HC

1 (MWth) 68.72 69.87 74.44 75.41 76.36
HC

2 (MWth) 42.79 41.03 39.29 41.63 40.08
HC

3 (MWth) 2.39 6.71 2.73 0 0
H1 (MWth) 36.10 32.39 33.54 32.96 33.56
Cost (USD) 13,686.49 13,712.33 13,700.49 13,675.28 13,674.70

Emission (kg) 12.05 12.04 12.04 12.04 12.04

P1 (MW) 35 35 35 35 35
PC

1 (MW) 116.87 118.76 115.75 118.71 114.19
PC

2 (MW) 48.57 48.51 55.14 45.47 46.57
PC

3 (MW) 99.56 97.73 94.11 100.83 104.24
EmD HC

1 (MWth) 91.45 78.98 98.89 79.33 102.35
HC

2 (MWth) 41.92 40.98 12.57 36.08 28.83
HC

3 (MWth) 4.22 0 17.44 6.95 0
H1 (MWth) 12.41 30.05 21.11 27.63 18.82
Cost (USD) 12.41 30.05 21.11 27.63 18.82

Emission (kg) 1.21 1.24 1.23 1.23 1.21

P1 (MW) 94.19 94.38 95.04 94.84 94.36
PC

1 (MW) 73.89 67.14 70.56 62.71 72.60
PC

2 (MW) 26.92 34.55 30.82 41.62 28.78
PC

3 (MW) 105 103.93 103.58 100.83 104.26
EED HC

1 (MWth) 72.64 92.75 75 79.76 71.84
HC

2 (MWth) 25.71 0 48.92 35.25 39.95
HC

3 (MWth) 0 0 1.20 0 0
H1 (MWth) 51.66 57.25 24.88 34.99 38.21
Cost (USD) 14,860.23 14,889.75 14,859.34 14,881.14 14,856.36

Emission (kg) 6.09 6.13 6.15 6.15 6.09

CPU time (s) 3.0 2.3 2.4 2.2 2.5

Table 3 presents the statistical results of the DM, HV, and IGD metrics including the
minimum, mean, maximum values, and standard deviation (Std) based on 30 independent
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runs. Meanwhile, the Wilcoxon rank sum test was performed, where “+” and “=” mean
RLMODE is significantly better than or similar to the comparison algorithm, respectively.
As can be seen from Table 3:

• Concerning DM, the minimum, mean, and maximum values and standard deviation
of RLMODE were better than TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO.

• Regarding HV, the minimum, mean, and maximum values of RLMODE were better
than TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO. The standard deviation of
RLMODE was the second-best after TV-MOPSO.

• Considering IGD, the mean and maximum values and standard deviation of RLMODE
were better than TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO. The minimum
IGD of RLMODE was the second-best after TV-MOPSO.

• Based on the Wilcoxon test, RLMODE was notably better than GDE3, NSGA-II-DE,
and MODE-RMO in terms of DM, HV, and IGD. RLMODE was notably better than
TV-MOPSO in terms of HV and similar to TV-MOPSO in terms of DM and IGD.

From the above analysis, the RLMODE algorithm achieved the overall best perfor-
mance among in the aspects of convergence and diversity for Case 1.

Table 3. Statistical results of the performance metrics for the 5-unit CHPEED problem.

Metric Algorithm Min Mean Max Std Sig.

DM

TV-MOPSO 0.7424 0.8003 0.8457 0.0260 =
GDE3 0.7183 0.7594 0.8050 0.0273 +
NSGA-II-DE 0.6759 0.7731 0.8096 0.0283 +
MODE-RMO 0.7060 0.7711 0.8181 0.0224 +
RLMODE 0.7863 0.8131 0.8884 0.0229

HV

TV-MOPSO 0.1926 0.1931 0.1934 0.0002 +
GDE3 0.1914 0.1921 0.1929 0.0004 +
NSGA-II-DE 0.1906 0.1918 0.1926 0.0005 +
MODE-RMO 0.1914 0.1923 0.1929 0.0004 +
RLMODE 0.1927 0.1932 0.1937 0.0003

IGD

TV-MOPSO 9.8452 11.6058 13.1767 0.7173 =
GDE3 12.5343 14.2121 16.4390 1.0600 +
NSGA-II-DE 11.8049 13.8877 17.4370 1.4504 +
MODE-RMO 11.9793 13.5678 16.6436 1.0189 +
RLMODE 10.0634 11.3487 12.6692 0.6079

5.2. Case 2: Seven-Unit CHPEED Problem

The second case was the seven-unit CHPEED problem selected from [25]. It consisted
of 4 PO units, 2 CHP units, and 1 HO unit. The power requirement and heat require-
ment were 600 MW and 150 MWth, respectively. The maximum computational resource
maxFES = 2000 was used.

Table 4 presents the results of the EcD, EmD, and EED for Case 2. From Table 4, it can
be seen that:

• In the case of EcD, the costs of TV-MOPSO, GDE3, NSGA-II-DE, MODE-RMO, and
RLMDOE were USD 10,261.88, 10,298.40, 10,222.16, 10,249.37, and 10,212.26. Therefore,
RLMDOE achieved the smallest cost among the five algorithms.

• In the case of EmD, the emissions of TV-MOPSO, GDE3, NSGA-II-DE, MODE-RMO,
and RLMDOE were 7.75 kg, 7.88 kg, 7.74 kg, 7.59 kg, and 7.54 kg, respectively. There-
fore, RLMDOE achieved the smallest emission among the five algorithms.

• In the case of EED, the cost and emission of RLMDOE were USD 12,000.28 and 18.42 kg,
which were smaller than those of TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO.
Therefore, RLMODE achieved the best compromise solution.

The Pareto-optimal frontier (POF) obtained by TV-MOPSO, GDE3, NSGA-II-DE,
MODE-RMO, and RLMODE is plotted in Figure 9.
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Table 5 presents the statistical results of the performance metrics based on 30 indepen-
dent runs. As can be seen from Table 5:

• Concerning DM, the minimum, mean, and maximum values of RLMODE were better
than TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO.

• Regarding HV, the minimum, mean, and maximum values and standard deviation of
RLMODE were better than TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO.

• Considering IGD, the minimum and mean values and standard deviation of RLMODE
were better than TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO. The maximum
IGD of RLMODE was the second-best after NSGA-II-DE.

• Based on the Wilcoxon test, RLMODE was notably better than TV-MOPSO, GDE3,
NSGA-II-DE, and MODE-RMO in terms of DM, HV, and IGD.

Table 4. Results of EcD, EmD, and EED for the 7-unit CHPEED problem.

Output TV-MOPSO GDE3 NSGA-II-DE MODE-RMO RLMODE

P1 (MW) 65.99 65.79 61.36 63.41 52.75
P2 (MW) 91.23 99.49 99.91 90.82 92.99
P3 (MW) 109.65 100.13 102.37 109.88 112.84
P4 (MW) 201.91 203.08 206.46 204.62 217.86

EcD PC
1 (MW) 98.71 98.80 97.56 98.80 91.24

PC
2 (MW) 40.11 40.36 40 40.07 40

HC
1 (MWth) 0.51 0 7.29 0 44.54

HC
2 (MWth) 73.41 69.63 75 74.02 75

H1 (MWth) 76.08 80.37 67.71 75.98 30.46
Cost (USD) 10,261.88 10,298.40 10,222.16 10,249.37 10,212.26

Emission (kg) 27.05 27.18 27.52 27.19 28.75

P1 (MW) 42.55 36.59 33.85 36.48 46.41
P2 (MW) 31.66 38.32 53.65 44.45 52.59
P3 (MW) 80.83 68.96 59.37 73.65 64.99
P4 (MW) 83.10 99.71 96.54 85.49 76.57

EmD PC
1 (MW) 247 246.97 246.99 247 245.49

PC
2 (MW) 122.60 117.15 117.36 120.68 121.79

HC
1 (MWth) 0 0 0 0 2.68

HC
2 (MWth) 53.56 69.63 88.24 66.27 53.20

H1 (MWth) 96.44 80.37 61.76 83.73 94.11
Cost (USD) 17,638.83 17,329.12 17,345.52 17,553.38 17,640.14

Emission (kg) 7.75 7.88 7.74 7.59 7.54

P1 (MW) 61.41 73.43 75 65.39 75
P2 (MW) 89.41 93.62 78.87 76.39 80.07
P3 (MW) 102.93 114.29 99.22 121.91 105.95
P4 (MW) 136.29 107.57 139.33 125.01 129.74

EED PC
1 (MW) 176.91 176.97 174.48 178.74 176.19

PC
2 (MW) 40.55 41.63 40.59 40 40.54

HC
1 (MWth) 0.16 0.93 24.05 0 6.87

HC
2 (MWth) 75.47 76.41 75 75 75

H1 (MWth) 74.36 72.66 50.95 75 68.13
Cost (USD) 12,047.79 12,027.75 12,131.14 12,049.32 12,000.28

Emission (kg) 18.42 18.67 18.52 18.51 18.42

CPU time (s) 5.5 4.5 4.9 4.6 5.0
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Figure 9. Comparison of Pareto-optimal frontier for the 7-unit CHPEED problem.

From the above analysis, the RLMODE algorithm achieved the overall best perfor-
mance in the aspects of convergence and diversity for Case 2.

Table 5. Statistical results of the performance metrics for the 7-unit CHPEED problem.

Metric Algorithm Min Mean Max Std Sig.

DM

TV-MOPSO 0.6859 0.7325 0.7765 0.0225 +
GDE3 0.7326 0.7657 0.8033 0.0194 +
NSGA-II-DE 0.7032 0.7849 0.8396 0.0339 +
MODE-RMO 0.6949 0.7624 0.8148 0.0227 +
RLMODE 0.7632 0.8048 0.8516 0.0251

HV

TV-MOPSO 0.2767 0.2781 0.2796 0.0007 +
GDE3 0.2785 0.2804 0.2818 0.0009 +
NSGA-II-DE 0.2776 0.2808 0.2827 0.0012 +
MODE-RMO 0.2779 0.2806 0.2826 0.0010 +
RLMODE 0.2805 0.2821 0.2827 0.0005

IGD

TV-MOPSO 31.8580 36.3950 43.7990 2.9514 +
GDE3 30.1660 37.6670 49.0670 4.9670 +
NSGA-II-DE 25.2580 33.6990 42.3560 4.3386 +
MODE-RMO 29.7410 36.8890 56.5780 5.5591 +
RLMODE 25.0030 29.6970 42.9080 4.0536

5.3. Case 3: 100-Unit CHPEED Problem

The third case was a 100-unit CHPEED problem, which was established by duplicating
Case 1 20 times. It consisted of 20 PO units, 60 CHP units, and 20 HO units. The power
requirement and heat requirement were 6000 MW and 3000 MWth, respectively. The
maximum computational resource maxFES = 20,000 was used.

Table 6 presents the cost and emission results of the EcD, EmD, and EED for Case 3.
Due to the large size of 100 units, the detailed dispatch results of the PO, HO, and CHP
units by the other algorithms are given in Tables S1–S3 in the Supplementary File. From
Table 6, it can be seen that:

• In the case of EcD, the costs of TV-MOPSO, GDE3, NSGA-II-DE, MODE-RMO, and
RLMDOE were USD 284,998.66, 280,781.47, 278,648.30, 278,670.12, and 278,102.84,
respectively. Therefore, RLMDOE achieved the smallest cost.
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• In the case of EmD, the emissions of TV-MOPSO, GDE3, NSGA-II-DE, MODE-RMO,
and RLMDOE were 45.49 kg, 33.93 kg, 26.39 kg, 30.99 kg, and 25.56 kg, respectively.
Therefore, RLMDOE achieved the smallest emission.

• In the case of EED, the cost and emission of RLMDOE were USD 292,647.89 and
153.57 kg, which were smaller than those of TV-MOPSO, GDE3, NSGA-II-DE, and
MODE-RMO. Therefore, RLMODE achieved the best compromise solution.

Table 6. Results of EcD, EmD, and EED for the 100-unit CHPEED problem.

Output TV-MOPSO GDE3 NSGA-II-DE MODE-RMO RLMODE

EcD Cost (USD) 284,998.66 280,781.47 278,648.30 278,670.12 278,102.84
Emission (kg) 204.75 227.54 232.20 230.31 238.49

EmD Cost (USD) 330,327.51 336,643.25 341,869.59 338,879.12 342,104.18
Emission (kg) 45.49 33.93 26.39 30.99 25.56

EED Cost (USD) 292,904.09 292,934.82 293,398.89 293,113.78 292,647.89
Emission (kg) 157.50 160.30 156.81 155.89 153.57

CPU time (s) 47.4 48.0 48.0 47.9 54.9

The Pareto-optimal frontier (POF) obtained by TV-MOPSO, GDE3, NSGA-II-DE,
MODE-RMO, and RLMODE is plotted in Figure 10.
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Figure 10. Comparison of Pareto-optimal frontier for the 100-unit CHPEED problem.

Table 7 presents the statistical results of the performance metrics based on 30 indepen-
dent runs. As can be seen from Table 7:

• Concerning DM, the minimum and mean values and standard deviation of RLMODE
were better than TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO. The maximum
DM of RLMODE was the second-best after NSGA-II-DE.

• Regarding HV, the minimum, mean, and maximum values and standard deviation of
RLMODE were better than TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO.

• Considering IGD, the minimum, mean, and maximum values and standard deviation
of RLMODE were better than TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO.

• Based on the Wilcoxon test, RLMODE was notably better than TV-MOPSO, GDE3,
NSGA-II-DE, and MODE-RMO in terms of DM, HV, and IGD.

Therefore, the RLMODE algorithm achieved the overall best performance among the
five algorithms in the aspects of convergence and diversity for the large-scale Case 3.
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Table 7. Statistical results of the performance metrics for the 100-unit CHPEED problem.

Metric Algorithm Min Mean Max Std Sig.

DM

TV-MOPSO 0.6320 0.6918 0.7543 0.0274 +
GDE3 0.6956 0.7747 0.8456 0.0371 +
NSGA-II-DE 0.7633 0.8098 0.8764 0.0235 +
MODE-RMO 0.7633 0.8073 0.8474 0.0206 +
RLMODE 0.8168 0.8414 0.8758 0.0144

HV

TV-MOPSO 0.1698 0.1733 0.1767 0.0017 +
GDE3 0.1769 0.1814 0.1836 0.0015 +
NSGA-II-DE 0.1801 0.1836 0.1852 0.0010 +
MODE-RMO 0.1804 0.1828 0.1845 0.0009 +
RLMODE 0.1861 0.1869 0.1879 0.0004

IGD

TV-MOPSO 909.1800 1234 1788.3000 206.8600 +
GDE3 270.9400 487.7000 1047.2000 166.0400 +
NSGA-II-DE 210.3000 279.2600 442.5800 52.9940 +
MODE-RMO 252.5700 331.1600 449.7500 55.0550 +
RLMODE 169.3400 200.3200 224.1500 11.8440

5.4. Case 4: 140-Unit CHPEED Problem

The third case was a 140-unit CHPEED problem, which was established by duplicating
7-unit Case 2 20 times. It consisted of 80 PO units, 40 CHP units, and 20 HO units. The
power requirement and heat requirement were 12,000 MW and 3000 MWth, respectively.
The maximum computational resource maxFES = 30,000 was used.

Table 8 presents the cost and emission results of the EcD, EmD, and EED for Case 4.
Due to the large size of the 140 units, the detailed dispatch results of the PO, HO, and CHP
units by the other algorithms are given in Tables S4–S6 in the Supplementary File. From
Table 8, it can be seen that:

• In the case of EcD, the costs of TV-MOPSO, GDE3, NSGA-II-DE, MODE-RMO, and
RLMDOE were USD 237,703.69, 224,936.75, 239,690.11, 225,670.28, and 216,483.24,
respectively. Therefore, RLMDOE achieved the smallest cost.

• In the case of EmD, the emissions of TV-MOPSO, GDE3, NSGA-II-DE, MODE-RMO,
and RLMDOE were 194.38 kg, 201.67 kg, 180.39 kg, 191.32 kg, and 172.18 kg, respec-
tively. Therefore, RLMDOE achieved the smallest emission.

• In the case of EED, the cost and emission of RLMDOE were USD 239,690.11 and
391.68kg, which were smaller than those of TV-MOPSO, GDE3, NSGA-II-DE, and
MODE-RMO. Therefore, RLMODE achieved the best compromise solution.

Table 8. Results of EcD, EmD, and EED for the 140-unit CHPEED problem.

Output TV-MOPSO GDE3 NSGA-II-DE MODE-RMO RLMODE

EcD Cost (USD) 237,703.69 224,936.75 239,690.11 225,670.28 216,483.24
Emission (kg) 466.50 526.37 391.68 554.75 544.62

EmD Cost (USD) 330,651.70 337,670.10 347,284.96 340,838.48 347,112.22
Emission (kg) 194.38 201.67 180.39 191.32 172.18

EED Cost (USD) 242,778.96 243,338.27 242,231.62 243,210.60 239,690.11
Emission (kg) 423.76 428.76 418.54 425.72 391.68

CPU time (s) 77.6 75.6 75.2 76.4 84.6

The Pareto-optimal frontier (POF) obtained by TV-MOPSO, GDE3, NSGA-II-DE,
MODE-RMO, and RLMODE is plotted in Figure 11.
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Figure 11. Comparison of Pareto-optimal frontier for the 140-unit CHPEED problem.

Table 9 presents the statistical results of the performance metrics based on 30 indepen-
dent runs. As can be seen from Table 9:

• Concerning DM, the minimum, mean, and maximum values of RLMODE were bet-
ter than those of TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO. The standard
deviation of RLMODE was the second-best after NSGA-II-DE.

• Regarding HV, the minimum, mean, and maximum values and standard deviation
of RLMODE were better than those of TV-MOPSO, GDE3, NSGA-II-DE, and MODE-
RMO. The standard deviation of RLMODE was the second-best after NSGA-II-DE.

• Considering IGD, the minimum and mean values of RLMODE were better than
those of TV-MOPSO, GDE3, NSGA-II-DE, and MODE-RMO. The maximum IGD and
standard deviation of RLMODE were the second-best after NSGA-II-DE.

• Based on the Wilcoxon test, RLMODE was notably better than TV-MOPSO, GDE3,
NSGA-II-DE, and MODE-RMO in terms of DM, HV, and IGD.

Therefore, the RLMODE algorithm achieved the overall best performance in the
aspects of convergence and diversity for the large-scale Case 4.

Table 9. Statistical results of the performance metrics for the 140-unit CHPEED problem.

Metric Algorithm Min Mean Max Std Sig.

DM

TV-MOPSO 0.6343 0.6923 0.7416 0.0259 +
GDE3 0.6008 0.6918 0.7473 0.0343 +
NSGA-II-DE 0.7542 0.7980 0.8465 0.0215 +
MODE-RMO 0.6396 0.7175 0.7635 0.0360 +
RLMODE 0.7660 0.8144 0.8541 0.0228

HV

TV-MOPSO 0.2251 0.2278 0.2316 0.0017 +
GDE3 0.2225 0.2263 0.2297 0.0018 +
NSGA-II-DE 0.2335 0.2361 0.2391 0.0013 +
MODE-RMO 0.2257 0.2284 0.2318 0.0015 +
RLMODE 0.2488 0.2518 0.2553 0.0015

IGD

TV-MOPSO 2110.5000 3065.3000 3751.2000 387.1000 +
GDE3 795.6700 1180.7000 1913.3000 257.3000 +
NSGA-II-DE 445.6000 555.7200 738.6900 62.6100 +
MODE-RMO 680.3500 1001 1611.9000 243.1500 +
RLMODE 376.3600 482.7200 783.0600 92.9610
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6. Conclusions

In this paper, a reinforcement-learning-based multi-objective differential evolution
(RLMODE) algorithm was devised to deal with the CHPEED problem considering large-
scale systems with more than 100 units. In RLMODE, a reinforcement learning technique
called Q-learning was employed to adjust the scale factor parameters. The constraint
repair technique and constraint domination principle were employed to deal with complex
operating constraints in CHPEED. The suggested RLMODE was applied to solve four
CHPEED problems with 5, 7, 100, and 140 units and compared with well-established
multi-objective algorithms. The main findings are summarized below:

• For two small-scale CHPEED problems with 5 and 7 units, the proposed RLMODE
achieved better results in the case of economic dispatch (EcD), emission dispatch
(EmD), and economic emission dispatch (EED). The costs and emissions of RLMODE
were less than the four compared algorithms, TV-MOPSO, GDE3, NSGA-II-DE, and
MODE-RMO.

• For two large-scale CHPEED problems with 100 and 140 units, the proposed RLMODE
also achieved the best results in the case of EcD, EmD, and EED. The costs and
emissions of RLMODE were the smallest among the compared algorithms.

• Considering the performance metrics of the Pareto-optimal Front (i.e., DM, HV, and
IGD), the suggested RLMODE obtained better results than the compared algorithms,
and the Wilcoxon rank sum test indicated that the superiority was significant.

• The Pareto-optimal frontier obtained by RLMODE was better than the compared
algorithms from Figure 8 to Figure 11. The superiority was especially obvious for the
two large-scale CHPEED problems with 100 and 140 units.

The proposed RLMODE showed its effectiveness for the CHPEED problem. The
good performance of RLMODE benefited from the reinforcement-learning-based parameter
adjustment technique. There are some promising research for future work. Firstly, the
multi-region power system is very important, and it is a promising work to improve the
RLMODE algorithm to solve the multi-region CHPEED problem. In addition, CHP unit
commitment is seldomly studied in the existing research, and the development of efficient
optimization method for the CHP unit commitment problem is also worth investigation.
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