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Abstract: This paper presents a novel approach to tackle the problem of optimal neutral wire ground-
ing in bipolar DC networks including asymmetric loading, which naturally involves mixed-integer
nonlinear programming (MINLP) and is challenging to solve. This MINLP model is transformed
into a recursive mixed-integer quadratic (MIQ) model by linearizing the hyperbolic relation between
voltage and powers in constant power terminals. A recursive algorithm is implemented to eliminate
the possible errors generated by linearization. The proposed recursive MIQ model is assessed in two
bipolar DC systems and compared against three solvers of the GAMS software. The results obtained
validate the performance of the proposed MIQ model, which finds the global optimum of the model
while reducing power losses for bipolar DC systems with 21, 33, and 85 buses by 4.08%, 2.75%,
and 7.40%, respectively, when three nodes connected to the ground are considered. Furthermore,
the model exhibits a superior performance when compared to the GAMS solvers. The impact of
grounding the neutral wire in bipolar DC networks is also studied by varying the number of available
nodes to be grounded. The results show that the reduction in power losses is imperceptible after
grounding the third node for the three bipolar DC systems under study.

Keywords: optimal neutral grounding; recursive mixed-integer quadratic model; bipolar DC systems

1. Introduction
1.1. General Context

Electrical distribution networks are continuously being transformed with the advances
made in electronic power conversion, distributed energy resources, and hybrid distribution
technologies [1]. These grids have transitioned from passive distribution to active distri-
bution configurations, with the main advantage of self-managing all of their distributed
energy resources from an optimization perspective, with the aim to maximize the quality
of the energy service [2,3]. Regarding grid distribution technologies, distribution networks
operating with direct current (DC) technologies have recently gained more attention, given
their advantages over conventional alternating current (AC) distribution technologies [4–6].
These advantages include the following:

i. Reduced energy losses due to resistive effects in cables operated with DC are lower
than those in cables operated with AC due to the skin effect [7]. Additionally, these
energy losses are also reduced because, in DC networks, no reactance effects are
considered. This implies that the voltage droops in the lines are lower, resulting in
reduced current magnitudes for these branches. This reduction is directly linked to
the power loss level [8].
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ii. DC networks are easily controllable, as the only variable of interest is the voltage
supplied at the substation bus, which is a real and constant variable. The main
advantage is that no frequency issues are considered since this variable does not exist
in DC technology [9].

iii. DC technology is the natural choice for operating batteries, photovoltaic (PV) sources,
fuel cells, supercapacitors, and superconductor energy storage systems. This implies
that integrating these devices in DC grids requires fewer power conversion stages,
which can reduce the expected investment costs and increase the reliability of the
entire grid by reducing the number of cascade devices (i.e., DC to AC conversion
stages) [10,11].

Considering the advantages of DC distribution technologies, it is also worth consider-
ing the possible grid configurations applicable to DC distribution grids, i.e., monopolar or
bipolar [12–14]. Figure 1 depicts the two possible DC grid configurations.
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Figure 1. Possible grid topologies for DC distribution networks: (a) monopolar and (b) bipolar.

These grid topologies applicable to DC networks, as depicted in Figure 1, reveal that:
(i) bipolar DC networks can support more than two times the expected power consumption,
as they have two poles fed with ±VDC [15]; (ii) bipolar DC networks can contain special
loads operated with two times the voltage applied to one of the poles (i.e., 2VDC), which
is not possible with monopolar DC configurations [16]; and (iii), the expected costs of a
bipolar DC network include an additional wire (neutral wire) and a bipolar DC converter,
which can increase the construction costs by only about 33.34% concerning a conventional
monopolar DC network [17].

1.2. Motivation

Even though the advantages of bipolar DC grids are evident when compared with
monopolar DC systems, using two poles implies that these grids will operate under unbal-

Figure 1. Possible grid topologies for DC distribution networks: (a) monopolar and (b) bipolar.
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These grid topologies applicable to DC networks, as depicted in Figure 1, reveal that:
(i) bipolar DC networks can support more than two times the expected power consumption,
as they have two poles fed with ±VDC [15]; (ii) bipolar DC networks can contain special
loads operated with two times the voltage applied to one of the poles (i.e., 2VDC), which
is not possible with monopolar DC configurations [16]; and (iii), the expected costs of a
bipolar DC network include an additional wire (neutral wire) and a bipolar DC converter,
which can increase the construction costs by only about 33.34% concerning a conventional
monopolar DC network [17].

1.2. Motivation

Even though the advantages of bipolar DC grids are evident when compared with
monopolar DC systems, using two poles implies that these grids will operate under unbal-
anced conditions, as constant power loads in the positive and negative poles concerning the
neutral wire are generally not balanced [18]. This characteristic implies higher power losses
than those associated with an ideal operation case [19,20]. In addition, the neutral wire
can be considered with two typical connections: solidly grounded in all network nodes or
floating. Nevertheless, solid grounding constitutes the ideal operation case, given that the
voltage profile will be better than the scenario involving a floating neutral wire, and the
energy losses will be lower. This operation scenario is economically infeasible due to the
high costs associated with the implementation of neutral grounding, especially in bipolar
DC distribution networks with hundreds of nodes. Additionally, bipolar DC networks
with asymmetric loads and multiple nodes may entail a complicated operation. All the
challenges above have motivated this research to propose an efficient optimization model
to determine the best set of nodes to implement neutral grounding connections, in order to
minimize the expected grid power losses and improve the voltage profile.

1.3. Literature Review

Bipolar DC networks for distribution network applications have gained significant
attention in the last ten years. Multiple authors have focused on proposing efficient
methodologies for solving the power flow, the optimal power flow, and the load balancing
problems, among others, particularly under steady-state operating conditions. Some of
these works are discussed below.

The authors of [18] presented a generic solution methodology for the power flow
problem in bipolar asymmetric DC networks through the Newton-Raphson formula-
tion. The power flow formulation is based on the current injection method. Six different
node types were defined as a function of the grounding scenario and the voltage control
method in the generation sources. The effectiveness of the Newton-Raphson method
in dealing with the power flow problem in bipolar DC networks was validated via the
PSCAD/EMTDC software.

In [21], the power flow problem in distribution networks was considered to have
a bipolar structure, and asymmetric loading was addressed by applying the successive
approximations method. Numerical results in the 4- and 21-node grids demonstrate the
effectiveness of this derivative-free approach, proving that it is equivalent to the classical
backward/forward power flow approach when extended to unbalanced bipolar DC grids.

The works by [22,23] presented the solution to the optimal power flow problem in
bipolar asymmetric distribution networks using a bilinear formulation based on the current
injection method. The main goal of these works was reducing the nodal marginal prices
caused by asymmetric loading, as the congestion in the distribution lines, given that load
imbalance implies different values between the positive and negative poles downstream of
the substation bus.

The research by [19,24] presented two convex approximations to solve the optimal
power flow problem in bipolar DC networks while considering asymmetric loading and
neutral floating operating conditions. The first approach was based on the recursive lin-
earization procedure applied to the hyperbolic constraints regarding constant power loads
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using Taylor’s series expansion. The second approach involved the representation of these
hyperbolic constraints using a cone representation of the product between two positive
variables. Numerical results in the 21- and 85-bus grids demonstrated the effectiveness and
robustness of the convex models when compared to the sine cosine algorithm, the black
hole optimizer, and the Chu and Beasley genetic algorithm.

The study by [25] addressed the optimal power flow problem in bipolar DC net-
works with asymmetric loading through a quadratic convex approximation based on the
current injection formulation. Three objective functions were considered to define the
optimal generation outputs of the dispersed generation sources, i.e., minimizing generation
costs and energy losses and improving voltage imbalance. Numerical results in the 33-
and 85-bus networks demonstrated the effectiveness of this convex formulation in four
simulation scenarios.

The authors of [16] presented a multi-objective formulation to solve the optimal load
balancing problem in asymmetric bipolar DC networks via a mixed-integer formulation.
The objective functions under analysis corresponded to voltage load balancing in the
positive and negative poles and the reduction of the expected power losses. Even though
this optimization model is a mixed-integer convex formulation, the main problem with
this research is that the authors only considered linear loads, which implies that the
nonlinearities introduced by the constant power terminals were neglected.

In [17], the optimal pole swapping problem in bipolar DC networks with asymmetric
loading was solved while considering multiple unbalanced load terminals. The main
contribution of this research was the hybridization of the sine cosine algorithm, the black
hole optimizer, and the Chu and Beasley genetic algorithm with the triangular-based
power flow problem within a master-slave strategy in order to select the best set of load
interchanges. This, with the aim to minimize the total grid power losses. Numerical
validations were carried out in the 21- and 85-bus grids, where the Chu and Beasley genetic
algorithm reported the best numerical performance.

The above literature review allowed noting the relevance of bipolar DC networks due
to their advantages in comparison with monopolar DC networks or AC conventional sys-
tems. Nevertheless, most of the recent developments are focused on solving the power flow,
the optimal power flow, and the load balancing (or pole swapping) problems. However,
no contributions regarding the efficient solid grounding of neutral wires were found. This
represents a clear gap in bipolar grid analysis, which this work attempts to fill.

1.4. Contributions and Scope

Considering the literature review and challenges and opportunities in proposing new
methodologies for analyzing bipolar DC networks, this paper makes the following contributions:

i. A mixed-integer convex model is proposed to represent the optimal selection of nodes
to be solidly grounded in order to minimize the total grid power losses.

ii. The convex approximation model uses the first Taylor term to linearize the nonlinear
relation between powers and voltages in the constant power demands.

iii. A recursive solution methodology is presented to reduce/eliminate the error intro-
duced by the linearization approach. This methodology is based on Taylor’s series
expansion, which updates the voltages in all of the network poles at each iteration
until the desired convergence error is reached.

iv. Numerical results in three test systems demonstrate the performance and effect of the
model in reducing the grid power losses.

Numerical results in bipolar asymmetric networks composed of 21 and 33 nodes
demonstrate the effectiveness and robustness of this recursive mixed-integer convex solu-
tion methodology in comparison with the solution of the exact mixed-integer nonlinear
programming (MINLP) model, which is obtained via the different solvers available in the
general algebraic modeling system (GAMS) software. On the other hand, it is essential to
mention that, in the scope of this research, all load nodes are modeled as constant power
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loads, as this is the most critical modeling, given the hyperbolic nonlinearities introduced
by these loads regarding voltage profiles.

It is worth mentioning that this is the first time that the problem regarding optimal
neutral grounding has been addressed in the scientific literature. Therefore, comparisons
are only made with different MINLP solvers available in the GAMS software, which implies
that the main contribution in this research is the demonstration that, with a reduced number
of nodes for the implementation of solid neutral grounding (less than 15% of the total grid
nodes), it is possible to have near-ideal power losses when all nodes are assumed to be
solidly grounded.

1.5. Document Structure

The remainder of this document is organized as follows. Section 2 presents the ex-
act MINLP formulation regarding optimal neutral grounding in bipolar DC grids with
asymmetric loading. The main complication of this optimization model lies in the hyper-
bolic constraints introduced by the constant power loads, which transform the nonlinear
programming component of the optimization model into a non-convex set of constraints.
Section 3 describes the proposed solution methodology, which is based on the linearization
of the hyperbolic constraints via Taylor’s series expansion. To reduce/eliminate the error
introduced by Taylor’s linearization, a recursive solution approach is adopted until the
error between voltages is minimized in all poles in two consecutive iterations. Section 4
shows the analyzed test feeders’ main characteristics, i.e., the DC bipolar asymmetric
versions of the 21- and 33-node grids. Section 5 describes the main numerical achievements,
comparisons, and discussions regarding the proposed mixed-integer quadratic approxima-
tion vs. the solution of the exact MINLP model by means of different solvers available in
GAMS. Finally, Section 6 lists the main concluding remarks derived from this work, as well
as some future research approaches.

2. Optimal Neutral Grounding Model

The effective selection of optimal nodes for a grounding strategy to minimize power
losses in bipolar DC grids can be modeled as a mixed-integer nonlinear programming
(MINLP) problem [25]. The solution to this problem requires identifying the best set
of nodes to implement a solid grounding strategy on the neutral wire. This allows the
system to operate efficiently and minimizes the total power losses. The MINLP model is
presented below.

2.1. Objective Function

The objective function of the studied problem involves the reduction of the total power
losses (ploss) of the bipolar DC network, i.e., all of the electrical energy dissipated in heat by
the resistive effects of the system lines [17]. The objective function takes the following form:

min ploss = ∑
r∈P

∑
j∈N

vr
j

(
∑

s∈P
∑

kinN
gjk

rsvs
k

)
, (1)

where vr
j and vs

k are the voltage values at node j for the r-th pole and at node k for the s-th
pole, respectively; grs

jk is the value of the conductance matrix associated with nodes j and k,
which is between poles r and s; P ∈ {p, o, n} denotes the set of poles (e.g., positive, neutral,
and negative) in the bipolar DC network;N represents to the set of nodes in the bipolar DC
network; r and s are pole-related superscripts, while j and k are node-related subscripts.

It is essential to mention that, in order to calculate the total power losses (ploss) in the
objective function (1), when there is a mutual coupling conductance between two poles,
the value of grs

jk will be different from zero if j = k and r 6= s; otherwise, grs
jk will always be

zero if r 6= s.
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2.2. Set of Constraints

The set of constraints for the optimal neutral grounding model is related to the physical
operation and regulation characteristics of bipolar DC networks. This model is composed of
the current balance at each pole and each network node, the limits of the power generators,
the power capacity of the transmission lines, the maximum and minimum voltage levels at
each node, and the decision to ground the neutral wire or not.

2.2.1. Current Balance Equation

The current balances at each node and pole of the bipolar network are obtained by
applying Kirchhoff’s first law:

ip
gk − ip

dk − ip−n
dk = ∑

r∈P
∑

j∈N
gpr

jk vr
k, {∀k ∈ N} (2)

io
gk − io

dk − igr
dk = ∑

r∈P
∑

j∈N
gor

jk vr
k, {∀k ∈ N} (3)

in
gk − in

dk + ip−n
dk = ∑

r∈P
∑

j∈N
gnr

jk vr
k, {∀k ∈ N} (4)

where ip
gk, io

gk, and in
gk are currents injected by the generator into node k for each pole

(positive p, neutral o, and negative n); ip
dk, io

dk, and in
dk are currents absorbed by the loads at

node k for each pole; ip−n
dk is the current absorbed by the load at node k connected between

the positive and negative poles; and igr
dk is the total current drained to the ground at node k.

2.2.2. Current Demand Formulation

The currents absorbed by the loads must be modeled as a function of the constant
power load, which can be connected between the positive and neutral poles or the negative
and neutral poles (which is known as a monopolar load), as well as between the positive and
negative poles (bipolar load). This model generates a hyperbolic relation between voltage
and powers, as follows:

ip−n
dk =

pp−n
dk

vp
k − vn

k
, {∀k ∈ N} (5)

ip
dk =

pp
dk

vp
k − vo

k
, {∀k ∈ N} (6)

in
dk =

pn
dk

vn
k − vo

k
, {∀k ∈ N} (7)

io
dk = −ip

dk − in
dk, {∀k ∈ N} (8)

where pp
dk and pn

dk are the monopolar constant powers demanded by node k at poles p
and n concerning the neutral pole, respectively; and pp−n

dk is the bipolar constant power
demanded at node k connected between the positive and negative poles.

2.2.3. Operating Limits

The capacity limits of the generator bound its current injection as follows:

ip,min
gk ≤ ip

gk ≤ ip,max
gk , {∀k ∈ N} (9)

io,min
gk ≤ io

gk ≤ io,max
gk , {∀k ∈ N} (10)

in,min
gk ≤ in

gk ≤ in,max
gk , {∀k ∈ N} (11)
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where ip,min
gk , io,min

gk , and in,min
gk are the minimum currents that can be injected by the generator

connected to node k the for positive, neutral, and negative poles, respectively; while ip,max
gk ,

io,max
gk , and in,max

gk are the maximum currents that can be injected by the generator connected
to node k for the positive, neutral, and negative poles, respectively.

The voltage values must be bounded between minimum and maximum values for the
satisfactory operation of a bipolar DC grid:

vp,min ≤ vp
k ≤ vp,max, {∀k ∈ N} (12)

vn,min ≤ vn
k ≤ vn,max, {∀k ∈ N} (13)[

vp
j vo

j vn
j

]>
=
[
1 0 −1

]>vnom, {j = slack}, (14)

where vp,min and vp,max are the maximum and minimum voltage allowed in the grid,
respectively; and vp

j , vo
j , and vn

j are the voltages regulated by the generator connected to
node j.

2.2.4. Grounding of the Neutral Wire

Representing a neutral ground connection requires a binary variable in order to be
able to select which nodes are grounded and which are not. In addition, it must also be
ensured that the pole voltage of the grounded node is zero. The following two inequalities
are proposed in order to mathematically represent these constraints:

−zk M ≤ igr
dk ≤ zk M, {∀k ∈ N} (15)

−(1− zk)M ≤ vo
k ≤ (1− zk)M, {∀k ∈ N} (16)

where zk ∈ {0, 1} denotes the binary variable that determines the grounding or not of the
neutral wire at node k, and M > 0 is a positive parameter known as the big-M number.

Note that inequality (15) represents the minimum and maximum current flowing
through the neutral wire. In contrast, inequality (16) is a box constraint that limits the
minimum and maximum voltage in the neutral pole.

Remark 1. The mathematical model described from (1) to (16) is a non-convex MINLP model
whose solution is rather problematic. Its global optimum is not guaranteed due to the hyperbolic
relations between voltages and powers in (5)–(7). Therefore, with the purpose of reaching the
global optimum, a recursive quadratic approximation is performed, which convexifies the set of
Equations (5)–(7) using an equivalent linear approximation, as presented in the next section.

3. Recursive Quadratic Approximation for the Optimal Neutral Grounding

This section shows the transformation of the non-convex MINLP model presented
in (1)–(16) into a convex approximation using the linearization presented in [19]. Now,
the nonlinear and non-convex equations of the exact MINPL model are analyzed.

3.1. Objective Function Analysis

The objective function (1) is a quadratic function since there is a product between
voltages to compute the power losses of the bipolar DC network. As a quadratic function,
it is easy to determine whether the objective function is convex. Therefore, the objective
function (1) can be rewritten as follows:

ploss = x>Gx, (17)

where x ∈ R3n is a voltage vector, and G ∈ R3nn is the conductance matrix that contains
the bipolar DC grid topology.
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The quadratic function (17) is a convex function if and only if G is symmetric and
positive semi-definite, which means that G = G> � 0 and satisfies

x>Gx ≥ 0 ∀ x ∈ R3n. (18)

The general demonstration of a quadratic function defined in (18) can be consulted
in [26,27].

3.2. Linear Approximation Applied to Constant Power Loads

An auxiliary function f (w, y) is invoked to linearize each node’s hyperbolic relation
between voltage and power:

f (w, y) =
1

w− y
, (19)

which is approximated to a linear function using the first term of Taylor’s series expansion
in two variables, as follows:

f (w, y) ≈ f (w0, y0) +∇w f (w0, y0)(w− w0) +∇y f (w0, y0)(y− y0), (20)

where (w0, y0) denotes the linearization point, while ∇w f (w0, y0) and ∇y f (w0, y0) repre-
sent the gradient of the function f (w, y) with respect to the w and y evaluated in (w0, y0).

Now, the linearization of the nonlinear function (19) using the approximation
function (20) is

f (w, y) =
2

w0 − y0
− w− y

(w0 − y0)
2 . (21)

By applying the linear approximation (21) to the hyperbolic relations between voltages
and powers described in (5)–(7), the following is obtained:

ip
dk0 = Pp

dk

 2
vp

k0 − vo
k0

−

(
vp

k − vo
k

)
(

vp
k0 − vo

k0

)2

 {∀k ∈ N} (22)

in
dk0 = Pn

dk

(
2

vn
k0 − vo

k0
− vn

k − vo
k(

vn
k0 − vo

k0

)2

)
, {∀k ∈ N} (23)

io
dk0 = −ip

dk − in
dk, {∀k ∈ N} (24)

ip−n
dk0 = Pp−n

dk

 2
vp

k0 − vn
k0

− vp
k − vn

k(
vp

k0 − vn
k0

)2

. {∀k ∈ N} (25)

where the subscript 0 denotes the initial value of the variables.
It is essential to highlight that an accuracy problem arises in the proposed model’s

response due to the linear approximation. In order to tackle this issue, the model should be
recursive and thus eliminate the errors that may appear due to linearization.

3.3. Recursive Mixed-Integer Quadratic Algorithm

This subsection presents a recursive mixed-integer algorithm to eliminate the error
generated by using the linear approximation (21). To this effect, the recursive mixed-integer
quadratic (MIQ) model for optimal neutral grounding in bipolar DC networks takes the
following form:
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Objective function

min ploss = ∑
r∈P

∑
j∈N

vrt+1
j

(
∑

s∈P
∑

k∈N
gjk

rsvst+1
k

)
, (26)

where superscript t denotes the iteration of the recursive algorithm.

Set of constraints

ipt+1
gk − ipt+1

dk − ip−nt+1
dk = ∑

r∈P
∑

j∈N
gpr

jk vrt+1
k , {∀k ∈ N} (27)

iot+1
gk − iot+1

dk − igrt+1
dk = ∑

r∈P
∑

j∈N
gor

jk vrt+1
k , {∀k ∈ N} (28)

int+1
gk − int+1

dk + ip−nt+1
dk = ∑

r∈P
∑

j∈N
gnr

jk vrt+1
k , {∀k ∈ N} (29)

ipt+1
dk = Pp

dk

 2

vp,t
k − vo,t

k

−

(
vpt+1

k − vot+1
k

)
(

vp,t
k − vo,t

k

)2

 {∀k ∈ N} (30)

int+1
dk = Pn

dk

 2
vn,t

k − vo,t
k

− vnt+1
k − vot+1

k(
vn,t

k − vo,t
k

)2

, {∀k ∈ N} (31)

iot+1
dk = −ipt+1

dk − int+1
dk , {∀k ∈ N} (32)

ip−nt+1
dk = Pp−n

dk

 2

vp,t
k − vn,t

k

− vpt+1
k − vnt+1

k(
vp,t

k − vn,t
k

)2

. {∀k ∈ N} (33)

ip,min
gk ≤ ipt+1

gk ≤ ip,max
gk , {∀k ∈ N} (34)

io,min
gk ≤ iot+1

gk ≤ io,max
gk , {∀k ∈ N} (35)

in,min
gk ≤ int+1

gk ≤ in,max
gk , {∀k ∈ N} (36)

Vp,min ≤ vpt+1
k ≤ Vp,max, {∀k ∈ N} (37)

Vn,min ≤ vnt+1
k ≤ Vn,max, {∀k ∈ N} (38)

vpt+1
j

vot+1
j

vnt+1
j

 =

 1
0
−1

vnom, {j = slack} (39)

−zk M ≤ igrt
dk ≤ zk M, {∀k ∈ N} (40)

−(1− zk)M ≤ vot
k ≤ (1− zk)M, {∀k ∈ N} (41)

The recursive MIQ model iterates until the desired error of the voltages converges to a
near-zero value, defined as

max
k∈N , r∈P

{∣∣∣vrt+1
k

∣∣∣− ∣∣∣vr,t
k

∣∣∣} ≤ ε, (42)

where ε is a parameter to establish the stopping criteria, in other words, the maximum
convergence error, defined as ε = 1× 10−10.

Figure 2 illustrates the flowchart of the recursive MIQ model (26)–(41).
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Start: Recursive MIQ modelGeneration and load data Bipolar DC network data

Initialize t = 0

Define inital voltage each node[
vpt

k , vot
k , vnt

k

]>
= [1, 0,−1]>

Obtain the admittance matrix G

Program the MIQ
model (26)–(41)

Solve the MIQ model
using a convex tool

Satisfy
(42)?

Report voltages and powers

End: Result analysis

Solution report

Make t = t + 1

yes

no

Figure 2. Flowchart for the recursive MIQ model (26)–(41).

4. Test Feeders

This section describes the test systems used to evaluate the performance of the recur-
sive MIQ model, i.e., the bipolar DC 21-, 33-, and 85-node systems reported in [28,29].

4.1. Bipolar DC 21-Bus System

The 21-node test system has a radial grid topology and was modified for bipolar DC
network analysis in [28]. This test system has a substation located at bus 1, operating
with a rated voltage of ±1 kV in the positive and negative poles, and its neutral pole is
solidly grounded. The total power consumptions in the positive and negative poles are
554 kW and 445 kW, respectively, and the total power consumption for bipolar loads is
405 kW. Figure 3 depicts the single-line scheme of the system’s topology. Table 1 shows the
parametric data of this test system, along with the resistance values of the lines and the
consumption load for each pole and between poles.
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Figure 3. Single-line scheme of the bipolar 21-bus system.

Table 1. Parametric data for the 21-bus system (all powers in kW).

Node j Node k Rjk (Ω) Pp
dk Pn

dk Pp−n
dk

1 2 0.053 70 100 0
1 3 0.054 0 0 0
3 4 0.054 36 40 120
4 5 0.063 4 0 0
4 6 0.051 36 0 0
3 7 0.037 0 0 0
7 8 0.079 32 50 0
7 9 0.072 80 0 100
3 10 0.053 0 10 0
10 11 0.038 45 30 0
11 12 0.079 68 70 0
11 13 0.078 10 0 75
10 14 0.083 0 0 0
14 15 0.065 22 30 0
15 16 0.064 23 10 0
16 17 0.074 43 0 60
16 18 0.081 34 60 0
14 19 0.078 9 15 0
19 20 0.084 21 10 50
19 21 0.082 21 20 0

4.2. Bipolar DC 33-Bus System

The 33-node system also has a radial grid topology, and its version for bipolar DC
grids was proposed in [29]. For this test system, the rated voltages in the substation (located
at bus 1) are ±12.66 kV in the positive and negative poles, and its neutral pole is solidly
grounded. The total power demand in the positive and negative poles is 2615 kW and
2185 kW, respectively, and the total power demand in bipolar loads is 2350 kW. Figure 4
illustrates the single-line scheme of the 33-bus system’s topology. The resistance values of
the lines and consumption loads in each pole and between poles for the bipolar DC system
are listed in Table 2.

DC
1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 1819
20
21
22

23
24
25

26 27 28 29 30 31 32 33

Figure 4. Single-line scheme of the bipolar 33-bus system.
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Table 2. Parametric data of the 33-bus system (all powers in kW).

Node j Node k Rjk (Ω) Pp
dk Pn

dk Pp−n
dk

1 2 0.0922 100 150 0
2 3 0.4930 90 75 0
3 4 0.3660 120 100 0
4 5 0.3811 60 90 0
5 6 0.8190 60 0 200
6 7 0.1872 100 50 150
7 8 1.7114 100 0 0
8 9 1.0300 60 70 100
9 10 1.0400 60 80 25
10 11 0.1966 45 0 0
11 12 0.3744 60 90 0
12 13 1.4680 60 60 100
13 14 0.5416 120 100 200
14 15 0.5910 60 30 50
15 16 0.7463 110 0 350
16 17 1.2890 60 90 0
17 18 0.7320 90 45 0
2 19 0.1640 90 150 0
19 20 1.5042 150 50 115
20 21 0.4095 0 90 0
21 22 0.7089 0 90 145
3 23 0.4512 90 110 35
23 24 0.8980 120 0 40
24 25 0.8960 150 100 100
6 26 0.2030 60 80 0
26 27 0.2842 60 0 225
27 28 1.0590 0 0 130
28 29 0.8042 120 75 65
29 30 0.5075 100 100 0
30 31 0.9744 50 150 125
31 32 0.3105 175 100 75
32 33 0.3410 95 60 120

4.3. Bipolar DC 85-Bus System

The 85-node test system has a radial grid topology, and its version for bipolar DC grids
was described in [30]. For this test system, the rated voltages in the substation (located
at bus 1) are ±11 kV in the positive and negative poles, and its neutral pole is solidly
grounded. The total power demand in the positive and negative poles is 1745.48 kW and
2682.19 kW, respectively, and the total power demand for bipolar loads is 2258.58 kW.
Figure 5 illustrates the single-line scheme of the 85-node system’s topology. The resistance
values of the lines and consumption loads in each pole and between poles for this DC
system are listed in Table 3.



Energies 2023, 16, 3755 13 of 18

slack
1 2

3 4

5 6

7 8

9 10 11 12 13 14 15

16

17

18
19
20
21
22

23

24

25

26 27 28 29 30 31 32 33 34 35 36

37 38 39
40
41
4243

44
45
46
47

48 49 50 51
52

53 54
55

56

57
58 59

60
61 62

63
64 65 66

67
68 69 70 71

72

73 74

75

76

77

78

79

80
81 82

83 84

85

Figure 5. Single-line scheme of the bipolar 85-bus system.

Table 3. Parametric information of the 85-bus grid (all powers in kW).

Node j Node k Rjk (Ω) Pp
dk Pp

dk Pp−n
dk Node j Node k Rjk (Ω) Pp

dk Pp
dk Pp−n

dk

1 2 0.108 0 0 10.075 34 44 1.002 17.64 17.995 0
2 3 0.163 50 0 40.35 44 45 0.911 50 17.64 17.995
3 4 0.217 28 28.565 0 45 46 0.911 25 17.64 17.995
4 5 0.108 100 50 0 46 47 0.546 7 7.14 10
5 6 0.435 17.64 17.995 25.18 35 48 0.637 0 10 0
6 7 0.272 0 8.625 0 48 49 0.182 0 0 25
7 8 1.197 17.64 17.995 30.29 49 50 0.364 18.14 0 18.505
8 9 0.108 17.8 350 40.46 50 51 0.455 28 28.565 0
9 10 0.598 0 100 0 48 52 1.366 30 0 15
10 11 0.544 28 28.565 0 52 53 0.455 17.64 35 17.995
11 12 0.544 0 40 45 53 54 0.546 28 30 28.565
12 13 0.598 45 40 22.5 52 55 0.546 38 0 48.565
13 14 0.272 17.64 17.995 35.13 49 56 0.546 7 40 32.14
14 15 0.326 17.64 17.995 20.175 9 57 0.273 48 35.065 10
2 16 0.728 17.64 67.5 33.49 57 58 0.819 0 50 0
3 17 0.455 56.1 57.15 50.25 58 59 0.182 18 28.565 25
5 18 0.820 28 28.565 200 58 60 0.546 28 43.565 0
18 19 0.637 28 28.565 10 60 61 0.728 18 28.565 30
19 20 0.455 17.64 17.995 150 61 62 1.002 12.5 29.065 0
20 21 0.819 17.64 70 152.5 60 63 0.182 7 7.14 5
21 22 1.548 17.64 17.995 30 63 64 0.728 0 0 50
19 23 0.182 28 75 28.565 64 65 0.182 12.5 25 37.5
7 24 0.910 0 17.64 17.995 65 66 0.182 40 48.565 33
8 25 0.455 17.64 17.995 50 64 67 0.455 0 0 0
25 26 0.364 0 28 28.565 67 68 0.910 0 0 0
26 27 0.546 110 75 175 68 69 1.092 13 18.565 25
27 28 0.273 28 125 28.565 69 70 0.455 0 20 0
28 29 0.546 0 50 75 70 71 0.546 17.64 38.275 17.995
29 30 0.546 17.64 0 17.995 67 72 0.182 28 13.565 0
30 31 0.273 17.64 17.995 0 68 73 1.184 30 0 0
31 32 0.182 0 175 0 73 74 0.273 28 50 28.565
32 33 0.182 7 7.14 12.5 73 75 1.002 17.64 6.23 17.995
33 34 0.819 0 0 0 70 76 0.546 38 48.565 0
34 35 0.637 0 0 50 65 77 0.091 7 17.14 25
35 36 0.182 17.64 0 17.995 10 78 0.637 28 6 28.565
26 37 0.364 28 30 28.565 67 79 0.546 17.64 42.995 0
27 38 1.002 28 28.565 25 12 80 0.728 28 28.565 30
29 39 0.546 0 28 28.565 80 81 0.364 45 0 75
32 40 0.455 17.64 0 17.995 81 82 0.091 28 53.75 0
40 41 1.002 10 0 0 81 83 1.092 12.64 32.995 62.5
41 42 0.273 17.64 25 17.995 83 84 1.002 62 72.2 0
41 43 0.455 17.64 17.995 0 13 85 0.819 10 10 10

5. Computational Results

Our recursive MIQ model was implemented in Matlab, using a Dell Inspiron 15
7000 Series computer (Intel Quad-Core i7-7700HQ@2.80 GHz) with 16 GB RAM and 64-
bit Windows 10 Home Single Language. The model was run in a disciplined convex
programming tool known as CVX for Matlab [31], and the Gurobi solver was employed [32].
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The effectiveness of the proposed recursive MIQ model was evaluated and com-
pared to the non-convex MINLP model in GAMS using the CBC, BONMIN, and GUROBI
solvers [33]. Additionally, two simulation cases were considered:

C1: The proposed recursive MIQ model and the non-convex MINLP model were assessed
while only considering the grounding of the three neutral wires.

C2: The impact on the total power losses caused by varying the number of neutral wires
grounded from 0 to 5 was analyzed.

5.1. Analysis of Case 1 (C1)

This case was evaluated regarding the performance of the proposed recursive MIQ
model, implemented in CVX while using the Gurobi solver. The model was also compared
with its non-convex MINLP model solved using GAMS with three different available
solvers. The numerical results of the objective function ploss for the three tested bipolar DC
grids are listed in Table 4.

Table 4. Optimal neutral grounding found by the proposed recursive MIQ model and the
GAMS solvers.

21-Bus Bipolar DC Grid 33-Bus Bipolar DC Grid 85-Bus Bipolar DC Grid

Method Location (Bus) ploss (kW) Location (Bus) ploss (kW) Location (Bus) ploss (kW)

Ben. case 95.4237 344.4797 489.5759
CBC {6, 9, 17} 91.5346 {16, 21, 25} 336.0032 {20, 25, 72} 455.5865
BONMIN {9, 18, 20} 92.1718 {18, 24, 31} 335.9671 {56, 57, 74} 455.5984
GUROBI {9, 17, 18} 91.7213 {16, 17, 18} 336.7072 {32, 33, 69} 459.3622
MIQ {6, 9, 17} 91.5346 {6, 16, 24} 334.9963 {9, 32, 64} 453.3122

Based on Table 4, it can be stated that

• The proposed recursive MIQ model reached the best solution in the analyzed networks,
with objective function values of 91.5346 kW, 335.0946 kW, and 453.3122 kW for
the bipolar DC 21-, 33-, and 85-node systems, respectively. These results were also
obtained by the non-convex MINLP model. In addition, the results show power loss
reductions of 4.07%, 2.75%, and 7.40% (compared to the benchmark cases) for the
bipolar DC 21-, 33-, and 85-node test feeders.

• For the bipolar DC 21-bus system, it can be observed that the CBC solver found the
same result as the recursive MIQ model. In comparison, the other solvers (BONMIN
and GUROBI) achieved the worst solutions; they became stuck in local optima. These
results reduced the power losses by 3.40% and 3.88%.

• For the bipolar DC 33-bus system, it can be noted that no GAMS solver could find the
same solution as the proposed model; they all reached different local optima, reducing
the power losses by 2.46%, 2.47%, and 2.25% for the CBC, BONMIN, and GUROBI
solvers, respectively.

• For the bipolar DC 85-bus system, no GAMS solver could reach the same solution as
the proposed model, and the solutions differ. This indicates that the GAMS solvers
found local optima, reducing the grid power losses by 6.94%, 6.94%, and 6.17%, that
is, the CBC, BONMIN, and GUROBI solvers, respectively.

• No GAMS solver outperformed the others, since the CBC solver found a better solution
in the bipolar DC 21- and 85-node systems, while the BONMIN solver reached a better
solution for the 33-bus system.

A comparison of the voltage profiles between the benchmark cases and the recursive
MIQ model for the bipolar DC systems is depicted in Figure 6. Figure 6a–c show the
voltage profiles of the positive, neutral, and negative poles for the 21-bus bipolar system,
respectively. Figure 6d–f present the voltage profiles of the positive, neutral, and negative
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poles for the 33-bus bipolar system. Finally, Figure 6g–i show the voltage profiles of the
positive, neutral, and negative poles for the 21-bus bipolar system.
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Figure 6. Comparison of the voltage profiles, the benchmark cases vs. optimal neutral ground-
ing: (a,d,g): voltage profiles of the positive pole; (b,e,h): voltage profiles of the neutral pole; and
(c,f,i): voltage profiles of the negative pole

From the voltage profiles presented in Figure 6, it is possible to state that the grounding
of the neutral wire in three nodes can improve the voltage balance in bipolar DC grids. Note
that, in Figure 6b,e,h, the neutral pole voltages are improved, keeping these voltages closer
to zero and reducing their standard deviation by 16.99%, 89.59%, and 89.33%, respectively.

5.2. Analysis of Case 2 (C2)

This case involves the impact of increasing the neutral grounding on power losses.
Figure 7 depicts the reduction in power losses considering 1 to 5 grounded nodes and
complete neutral grounding.

Figure 7 shows that, after the third grounded node, the impact of reducing power
losses in bipolar networks is not significant. This can be supported by looking at the
power losses reductions regarding three grounded nodes and complete grounding, whose
differences are imperceptible for the bipolar DC systems. In these intervals, the reductions
in power losses are 0.29%, 0.17%, and 0.22% for the bipolar DC 21-, 33-, and 85-bus systems,
respectively.
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Figure 7. Percentage of power losses regarding the benchmark case by number of grounded neu-
tral nodes

Table 5 presents the nodes selected for grounding by our recursive MIQ model.

Table 5. Selected grounding neutral nodes for bipolar DC networks.

Number of Nodes for Grounding
Grounded Nodes

21-Test System 33-Test System 85-Test System

1
[
9
] [

16
] [

9
]

2
[
9, 17

] [
6, 16

] [
9, 32

]
3

[
6, 9, 17

] [
6, 16, 24

] [
9, 32, 64

]
4

[
6, 9, 17, 18

] [
8, 16, 24, 29

] [
9, 12, 29, 64

]
5

[
6, 9, 13, 17, 18

] [
8, 16, 24, 27, 33

] [
9, 12, 29, 32, 64

]
From the results listed in Table 5, it can be stated that, in the three DC bipolar networks,

the same node is always selected, which implies that it has greater participation in reducing
power losses.

6. Conclusions and Future Works

This study addressed the issue of optimal grounding for the neutral wire in bipolar
DC networks with asymmetric loading. This, by reformulating the non-convex MINLP
model as a recursive MIQ model via the linearization of the hyperbolic relation between
voltage and power at each node. This linearization relaxed the aforementioned hyperbolic
relation in constant power terminals. A recursive algorithm was utilized to eliminate the
possible errors generated by linearization. The recursive MIQ model was evaluated in
three bipolar DC systems and compared to three solvers of the GAMS software. The results
showed that the MIQ model reached the global optimum of the problem, reducing the
power losses by 4.08%, 2.75%, and 7.40% for bipolar DC systems of 21, 33, and 85 buses
when considering three grounded nodes. For the DC 21-bus bipolar system only, one of the
GAMS software solvers also found the same solution as our MIQ model. In the other cases,
these solvers failed and reached local optima. The recursive MIQ model generally showed
a superior performance to that of the GAMS solvers.

The impact of grounding the neutral wire in bipolar DC networks was analyzed by
varying the number of available nodes to be grounded (0 to 5), demonstrating that the
reduction in power losses is imperceptible after three grounded nodes, as these reduc-
tions showed values of 0.29%, 0.17%, and 0.22% for the bipolar DC 21-, 33-, and 85-node
systems, respectively.
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Future works could be extended the proposed model to bipolar DC networks with a
high presence of distributed energy resources.

Author Contributions: Conceptualization, methodology, software, and writing (review and edit-
ing): W.G.-G., O.D.M., and J.C.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded by the Council of Andalucía (Junta de Andalucía.
Consejería de Transformación Económica, Industria, Conocimiento y Universidades. Secretaría
General de Universidades, Investigación y Tecnología) through project ProyExcel 00381.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing does
not apply to this article.

Acknowledgments: This research received support from the Ibero-American Science and Technology
for Development Program (CYTED) through thematic network 723RT0150 “Red para la integración a
gran escala de energías renovables en sistemas eléctricos (RIBIERSE-CYTED)”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lakshmi, S.; Ganguly, S. Transition of Power Distribution System Planning from Passive to Active Networks: A State-of-the-Art

Review and a New Proposal. In Sustainable Energy Technology and Policies; Springer: Singapore, 2017; pp. 87–117. [CrossRef]
2. Liu, G.; Huang, R.; Pu, T.; Yang, Z. Design of energy management system for Active Distribution Network. In Proceedings of the

2014 China International Conference on Electricity Distribution (CICED), Shenzhen, China, 23–26 September 2014. [CrossRef]
3. Li, Z.; Su, S.; Zhao, Y.; Jin, X.; Chen, H.; Li, Y.; Zhang, R. Energy management strategy of active distribution network with

integrated distributed wind power and smart buildings. IET Renew. Power Gener. 2020, 14, 2255–2267. [CrossRef]
4. Zhou, D.; Chen, S.; Wang, H.; Guan, M.; Zhou, L.; Wu, J.; Hu, Y. Autonomous Cooperative Control for Hybrid AC/DC Microgrids

Considering Multi-Energy Complementarity. Front. Energy Res. 2021, 9, 692026. [CrossRef]
5. Siraj, K.; Khan, H.A. DC distribution for residential power networks—A framework to analyze the impact of voltage levels on

energy efficiency. Energy Rep. 2020, 6, 944–951. [CrossRef]
6. Jing, G.; Zhang, A.; Zhang, H. Review on DC Distribution Network Protection Technology with Distributed Power Supply. In

Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018. [CrossRef]
7. Liu, Z.; Li, M. Research on Energy Efficiency of DC Distribution System. AASRI Procedia 2014, 7, 68–74. [CrossRef]
8. Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153.

[CrossRef]
9. Garces, A. On the Convergence of Newton's Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018,

33, 5770–5777. [CrossRef]
10. Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC-microgrids versus DC-microgrids with distributed energy resources: A review.

Renew. Sustain. Energy Rev. 2013, 24, 387–405. [CrossRef]
11. Razmi, D.; Babayomi, O.; Davari, A.; Rahimi, T.; Miao, Y.; Zhang, Z. Review of Model Predictive Control of Distributed Energy

Resources in Microgrids. Symmetry 2022, 14, 1735. [CrossRef]
12. Zhu, H.; Zhu, M.; Zhang, J.; Cai, X.; Dai, N. Topology and operation mechanism of monopolar-to-bipolar DC-DC converter

interface for DC grid. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference
(IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016. [CrossRef]

13. Najafi, P.; Viki, A.H.; Shahparasti, M. An integrated interlinking converter with DC-link voltage balancing capability for bipolar
hybrid microgrid. Electr. Eng. 2019, 101, 895–909. [CrossRef]

14. Montoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W. Optimal Pole-Swapping in Bipolar DC Networks with Multiple CPLs
Using an MIQP Model. IEEE Trans. Circuits Syst. II Express Briefs 2023. [CrossRef]

15. Liao, J.; Zhou, N.; Wang, Q.; Chi, Y. Load-Switching Strategy for Voltage Balancing of Bipolar DC Distribution Networks Based
on Optimal Automatic Commutation Algorithm. IEEE Trans. Smart Grid 2021, 12, 2966–2979. [CrossRef]

16. Chew, B.S.H.; Xu, Y.; Wu, Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer
Multi-Objective Optimization Approach. IEEE Trans. Power Syst. 2019, 34, 28–39. [CrossRef]

17. Montoya, O.D.; Medina-Quesada, Á.; Hernández, J.C. Optimal Pole-Swapping in Bipolar DC Networks Using Discrete
Metaheuristic Optimizers. Electronics 2022, 11, 2034. [CrossRef]

18. Lee, J.O.; Kim, Y.S.; Jeon, J.H. Generic power flow algorithm for bipolar DC microgrids based on Newton–Raphson method. Int.
J. Electr. Power Energy Syst. 2022, 142, 108357. [CrossRef]

19. Montoya, O.D.; Gil-González, W.; Hernández, J.C. Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive
Quadratic Approximation. Energies 2023, 16, 589. [CrossRef]

20. Garces, A.; Montoya, O.D.; Gil-Gonzalez, W. Power Flow in Bipolar DC Distribution Networks Considering Current Limits.
IEEE Trans. Power Syst. 2022, 37, 4098–4101. [CrossRef]

http://doi.org/10.1007/978-981-10-7188-1_4
http://dx.doi.org/10.1109/ciced.2014.6991772
http://dx.doi.org/10.1049/iet-rpg.2020.0049
http://dx.doi.org/10.3389/fenrg.2021.692026
http://dx.doi.org/10.1016/j.egyr.2020.04.018
http://dx.doi.org/10.1109/cac.2018.8623659
http://dx.doi.org/10.1016/j.aasri.2014.05.031
http://dx.doi.org/10.1016/j.epsr.2017.05.031
http://dx.doi.org/10.1109/TPWRS.2018.2820430
http://dx.doi.org/10.1016/j.rser.2013.03.067
http://dx.doi.org/10.3390/sym14081735
http://dx.doi.org/10.1109/ipemc.2016.7512892
http://dx.doi.org/10.1007/s00202-019-00829-2
http://dx.doi.org/10.1109/TCSII.2023.3264843
http://dx.doi.org/10.1109/TSG.2021.3057852
http://dx.doi.org/10.1109/TPWRS.2018.2866817
http://dx.doi.org/10.3390/electronics11132034
http://dx.doi.org/10.1016/j.ijepes.2022.108357
http://dx.doi.org/10.3390/en16020589
http://dx.doi.org/10.1109/TPWRS.2022.3181851


Energies 2023, 16, 3755 18 of 18

21. Montoya, O.D.; Gil-González, W.; Garcés, A. A successive approximations method for power flow analysis in bipolar DC
networks with asymmetric constant power terminals. Electr. Power Syst. Res. 2022, 211, 108264. [CrossRef]

22. Mackay, L.; Dimou, A.; Guarnotta, R.; Morales-Espania, G.; Ramirez-Elizondo, L.; Bauer, P. Optimal power flow in bipolar DC
distribution grids with asymmetric loading. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON),
Leuven, Belgium, 4–8 April 2016. [CrossRef]

23. Mackay, L.; Guarnotta, R.; Dimou, A.; Morales-Espana, G.; Ramirez-Elizondo, L.; Bauer, P. Optimal Power Flow for Unbalanced
Bipolar DC Distribution Grids. IEEE Access 2018, 6, 5199–5207. [CrossRef]

24. Montoya, O.D.; Grisales-Noreña, L.F.; Hernández, J.C. A Recursive Conic Approximation for Solving the Optimal Power Flow
Problem in Bipolar Direct Current Grids. Energies 2023, 16, 1729. [CrossRef]

25. Lee, J.O.; Kim, Y.S.; Jeon, J.H. Optimal power flow for bipolar DC microgrids. Int. J. Electr. Power Energy Syst. 2022, 142, 108375.
[CrossRef]

26. Barbu, V.; Precupanu, T. Convexity and Optimization in Banach Spaces; Springer: Dordrecht, The Netherlands, 2012. [CrossRef]
27. Berkovitz, L.D. Convexity and Optimization in Rn, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 2001.
28. Montoya, O.D.; Molina-Cabrera, A.; Gil-González, W. A mixed-integer convex approximation for optimal load redistribution in

bipolar DC networks with multiple constant power terminals. Results Eng. 2022, 16, 100689. [CrossRef]
29. Montoya, O.D.; Gil-González, W.; Hernández, J.C. Optimal Scheduling of Photovoltaic Generators in Asymmetric Bipolar DC

Grids Using a Robust Recursive Quadratic Convex Approximation. Machines 2023, 11, 177. [CrossRef]
30. Sepúlveda-García, S.; Montoya, O.D.; Garcés, A. Power Flow Solution in Bipolar DC Networks Considering a Neutral Wire and

Unbalanced Loads: A Hyperbolic Approximation. Algorithms 2022, 15, 341. [CrossRef]
31. Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. 2014. Available online:

http://cvxr.com/cvx (accessed on 28 March 2023).
32. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual; Gurobi Optimization, LLC: Beaverton, OR, USA, 2023.
33. Soroudi, A. Power System Optimization Modeling in GAMS; Springer International Publishing: Cham, Switzerland, 2017. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.epsr.2022.108264
http://dx.doi.org/10.1109/energycon.2016.7513921
http://dx.doi.org/10.1109/ACCESS.2018.2789522
http://dx.doi.org/10.3390/en16041729
http://dx.doi.org/10.1016/j.ijepes.2022.108375
http://dx.doi.org/10.1007/978-94-007-2247-7
http://dx.doi.org/10.1016/j.rineng.2022.100689
http://dx.doi.org/10.3390/machines11020177
http://dx.doi.org/10.3390/a15100341
http://cvxr.com/cvx
http://dx.doi.org/10.1007/978-3-319-62350-4

	Introduction
	General Context
	Motivation
	Literature Review
	Contributions and Scope
	Document Structure

	Optimal Neutral Grounding Model
	Objective Function
	Set of Constraints
	Current Balance Equation
	Current Demand Formulation
	Operating Limits
	Grounding of the Neutral Wire


	Recursive Quadratic Approximation for the Optimal Neutral Grounding 
	Objective Function Analysis
	Linear Approximation Applied to Constant Power Loads
	Recursive Mixed-Integer Quadratic Algorithm

	Test Feeders
	Bipolar DC 21-Bus System
	Bipolar DC 33-Bus System
	Bipolar DC 85-Bus System

	Computational Results
	Analysis of Case 1 (C1)
	Analysis of Case 2 (C2)

	Conclusions and Future Works
	References

