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Abstract: The accurate quantification of the performance loss rate of photovoltaic systems is critical
for project economics. Following the current research activities in the photovoltaic performance
and reliability field, this work presents a comparative assessment between common change point
methods for performance loss rate estimation of fielded photovoltaic installations. An extensive
testing campaign was thus performed to evaluate time series analysis approaches for performance
loss rate evaluation of photovoltaic systems. Historical electrical data from eleven photovoltaic
systems installed in Nicosia, Cyprus, and the locations” meteorological measurements over a period
of 8 years were used for this investigation. The application of change point detection algorithms on
the constructed monthly photovoltaic performance ratio series revealed that the obtained trend might
not always be linear. Specifically, thin film photovoltaic systems showed nonlinear behavior, while
nonlinearities were also detected for some crystalline silicon photovoltaic systems. When applying
several change point techniques, different numbers and locations of changes were detected, resulting
in different performance loss rate values (varying by up to 0.85%/year even for the same number of
change points). The results highlighted the importance of the application of nonlinear techniques
and the need to extract a robust nonlinear model for detecting significant changes in time series data
and estimating accurately the performance loss rate of photovoltaic installations.

Keywords: change point techniques; modeling; nonlinear degradation; performance loss rate; photovoltaics

1. Introduction

Estimating accurately the performance loss rate (PLR) of fielded photovoltaic (PV) sys-
tems is vital for evaluating the lifetime performance output, decreasing financial/investment
risks, and improving the bankability [1]. The PLR expresses the performance loss over time
with units of %/year and its estimation can be made at different levels (e.g., module, array,
inverter and/or system level) based on the available measurements. On the system level, it
represents all performance losses such as physical degradation, shade, soiling, snow, etc. [2].
Such losses can be reversible (i.e., loss mechanisms that can be recovered) or irreversible
(i.e., loss mechanisms that cannot be retrieved due to physical PV module degradation).

PLR investigations can be performed using indoor or outdoor methodologies. For
indoor methods, current-voltage (I-V) curve data and power at standard test conditions
(STC) [3] are acquired for PV modules over different time periods. To this end, the PV
electrical characteristics are originally measured at STC, and subsequently, the PV panels
are exposed either indoors (through accelerated tests) or outdoors [3]. For the PV modules
under study, I-V curves are frequently obtained using solar simulators. The differences in
the PV electrical parameters from the initial measurements provide evidence of the PLR
at successive time periods. The outdoor performance assessment of PV systems can be
performed by obtaining I-V sweeps (taken at maximum power point) over different time
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periods and regular time intervals. Apart from I-V scans, recorded environmental and PV
electrical field data (from a data acquisition system) can be used for quantifying long-term
performance loss rates. This is achieved through the statistical /comparative analysis of
field measurements. This work focuses on PLR investigations using outdoor methodologies
and historical field data.

In this domain, the PLR (or the degradation rate when considering only the irreversible
material degradation of PV modules) of PV systems is mainly calculated through the
statistical extraction of a trend (de-trending) from a performance indicator time series. An
influential hypothesis made in past PLR studies was that the subsequent trend was linear.
Several statistical techniques have been proposed in the literature for estimating the linear
PLR (or the degradation rate) of fielded PV systems [2,4], while also demonstrating that
its estimation is methodology-dependent [2]. Reported linear trend extraction methods
include the ordinary least squares (OLS) regression, simple- or dual-periodicity fit, the
nonparametric filtering method of locally weighted scatterplot smoothing (LOESS), the
classical seasonal decomposition (CSD), the Holt-Winters (HW) exponential smoothing,
the autoregressive integrated moving average (ARIMA) and the principal component
analysis (PCA) [5]. In parallel, a comparative approach (i.e., the year-on-year method)
was also introduced in [4,6], and implemented as an open-source Python package [7], for
estimating the PLR value. An ensemble method was finally suggested [8] and developed
as an open-source R package to calculate the linear PLR [9].

For operating PV systems, a lot of performance outliers reflecting module defects and
failures, initial degradation for the case of thin film modules, shading, and soiling can cause
performance variations, biasing the PLR results. Special care should be taken for such
variations, that can cause nonlinearities in the performance trend of a PV system. Bearing
this in mind, the latest studies [1,10-13] introduced methodological pipelines for estimating
the nonlinear PLR (or degradation rate) of PV systems during actual field exposure. In
this context, change point (CP) techniques that can identify changes in the investigated
performance time series were introduced. More specifically, Facebook Prophet (FBP)
was proposed for nonlinear trend extraction in [1], while a multi-step performance loss
algorithm using piecewise (or segmented) regression was introduced in [10] for advanced
PV system performance loss rate modeling. Segmented regression was also used along
with the Bayesian estimation of abrupt change, seasonality, and trend (Beast) in [12] for
modeling nonlinear PV degradation rates. The results demonstrated that the segmented
method was the most accurate for estimating the degradation rates when using synthetic
datasets. Furthermore, the pruned exact linear time (PELT) method was utilized in [13] to
estimate the long-term PV degradation rate. The findings of this study showed that the
PELT technique could provide more accurate results than conventional statistical models
for nonlinear degradation patterns. Moreover, six open-source Python and R libraries were
used for a comparative assessment between change point techniques for the nonlinear
degradation rate estimation [11]. The results of the analysis demonstrated that piecewise
regression (implemented in R and Python) and FBP outperformed the Beast, breakpoint
(bkp), and sequential and batch change detection utilizing parametric and nonparametric
techniques. The findings of this study also indicated the effectiveness of change point
techniques for modeling and decomposing the performance time series and identifying
changes in PV performance profiles.

Following the current research activities, the aim of this paper is to advance the field
of PV performance and reliability by evaluating common change point techniques for cal-
culating the PLR of fielded PV installations. This paper expands on our previous work [14],
where different statistical techniques were evaluated for nonlinear PLR estimation using
outdoor field measurements. In this work, the analysis is expanded by presenting the
results of an extensive testing evaluation of time series analytic approaches for estimating
the PLR and validating the results through indoor testing and synthetically generated PV
performance data.
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The proposed paper presents useful insights for establishing robust models for cap-
turing both linear and nonlinear PV behavior. Applying methodologies that also consider
nonlinear behavior can improve PLR estimates, thus reflecting more accurately PV power
plant project economics.

2. Materials and Methods

The procedure followed to estimate the PLR of fielded PV systems using statistical
analysis methods is presented in this section. The first section describes the experimental
setup (i.e., the investigated PV arrays) and the data acquisition process for extracting and
storing the historical outdoor measurements (i.e., PV electrical and meteorological data).
Then, it provides details regarding the data processing procedure followed for creating
the cleansed PV datasets for analysis. Finally, it describes the methodologies used for PLR
estimation and the validation process.

2.1. Experimental Setup and Data Acquisition

Historical data from eleven PV systems were used for this analysis. The test PV
systems are of ~1 kW), capacity and comprise different PV module technologies, including
mono-crystalline silicon (mono-c Si), multi-crystalline silicon (multi-c Si), and thin film
(i.e., amorphous silicon (a-5i), cadmium telluride (CdTe), copper indium gallium diselenide
(CIGS)). Table 1 depicts the characteristics of the installed PV systems.

Table 1. Summary of the characteristics of the installed PV systems.

System ID Manufacturer Technology Series Modules  Parallel Module Rated Power (kWp,)
(a) mono-c Si 6 1 1.020
(b) mono-c Si 6 1 1.110
(c) mono-c Si 5 1 1.025
(d) Suntechnics mono-c Si 5 1 1.000

multi-c Si (edge defined
(e) Schott Solar film-fed growth—EFG) 6 1 1.000
multi-c Si
(multi-crystalline

6] Schott Solar advanced industrial 4 1 1.020

cells—MAIN)
(g) SolarWorld multi-c Si 6 1 0.990
(h) multi-c Si 7 1 1.540
(i) Wiirth Solar thin film (CIGS) 6 2 0.900
1) thin film (CdTe) 3 6 1.080

Mitsubishi Heavy s .
(k) Industries (MHI) thin film (a-5i) 2 5 1.000

The PV performance and the weather conditions are recorded every second according
to the International Electrotechnical Commission (IEC) 61724-1:2021 standard [15], through
the use of a sensor network and a data acquisition system (Campbell Scientific CR1000
with an accuracy of +0.06%). The recorded measurements are then stored on a monitoring
platform as 15 min average measurements. The meteorological measurements include
in-plane irradiance (Gy), ambient temperature (Tyy,), module temperature (Ty,0q), wind
speed (Sw), and direction (aw). The electrical data include the array DC current (I ), voltage
(Va), and power (Py).

Table 2 summarizes the installed sensors and the associated measurement accuracies.
The PV systems and in-plane irradiance sensors under study were cleaned periodically
(i.e., four times a year) and after dust events to decrease the effect of soiling [14]. Systematic
recalibration and frequent cross-checks against nearby sensors were performed to identify
sensor drifts.
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Table 2. Sensor’s network and accuracy.

Parameter Manufacturer Model Accuracy
Ambient temperature Rotronic HC2A-53 +0.1°Cat23°C
. . . +2% expected daily accuracy,
In-plane irradiance Kipp Zonen CMP11 £20 W/m? for 1000 W /m?
DC voltage Muller Ziegler Ugt +0.5%
DC current Muller Ziegler Igt +0.5%
AC energy Muller Ziegler EZW +1%

The grid-connected PV systems were commissioned in June 2006 at the outdoor test
facility (OTF) of the University of Cyprus (UCY) in Nicosia, Cyprus (Koppen-Geiger-
Photovoltaic climate classification CH; steppe climate with high irradiation [16]). The PV
arrays, comprising of PV modules connected in series, are installed side-by-side in the
south direction and at a constant tilt angle of 27° (see Figure 1).

Figure 1. PV arrays installed at the UCY in Nicosia, Cyprus.

Historical measurements over a period of 8 years (June 2006-June 2014) were employed
for this investigation. The in-plane solar irradiation in Nicosia, Cyprus varied between
1980 kWh/m? /year and 2094 kWh/m? /year. The monthly total in-plane irradiation over
the investigated period is provided in Figure 2a. Moreover, the average monthly ambient
temperature (19.5 £ 0.5 °C) in Nicosia, Cyprus is shown in Figure 2b.
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Figure 2. (a) Total in-plane irradiation aggregated into monthly values and (b) average ambient
temperature in Nicosia, Cyprus over the evaluation period.

During the evaluation period, different fault types occurred affecting the PV perfor-
mance. For example, partial shade affected the performance of the BP Solar and Solon
PV systems during the years 2006-2009 [17]. In addition, a fault occurring due to water
ingress was reported for the Sanyo and Suntechnics PV systems in March 2009 and June
2009, respectively.
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2.2. Data Processing and Creation of PV Datasets

Initially, data quality algorithms were applied to the recorded measurements to cleanse
the data [18]. During this procedure, the irradiance measurements were restricted between
0 W/m? and 1300 W/m?. Other data filters and statistical tests were also used to filter out
invalid values (e.g., outliers, missing and nonrepresentative values) [19].

Next, the PV datasets of each system were created using the filtered measurements
and aggregated into monthly blocks. The monthly array performance ratio (PR) was then
estimated [20] and incorporated into the PV datasets. For PV arrays, the PR is defined
as (1):

PR =Y¢/Yy )

where Y is the final yield and Y, is the reference yield.

Subsequently, an outlier filter (i.e., three-sigma) was employed to remove outlying
values [21]. Figure 3 illustrates the PR time series for the PV systems under investigation.
All PV technologies exhibit seasonal behavior (i.e., higher performance values in winter
months and lower values in the summer period mainly due to module temperature varia-
tions), with the thin film technologies exhibiting a slowly progressing performance loss.
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Figure 3. Monthly PR time series for the PV systems under investigation from June 2006—June 2014.

The exhibited monthly PR time series of the investigated PV arrays are depicted in
Figure 4. The crystalline silicon PV systems exhibited similar behavior and PR variations
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(i.e., same seasonal performance pattern) over the years, apart from the BP Solar system
(whose modules were partially shaded). The BP Solar PV system achieved the lowest PR
variations among the crystalline silicon PV systems. In addition, the crystalline silicon PV
systems demonstrated greater peak-to-peak PR variations than the thin film PV arrays.
Signs of early degradation are evident for the thin film technologies. Findings from previous
studies [22,23] demonstrated pronounced performance loss during the first months of
operation for the First Solar and MHI thin film systems due to the stabilization processes.
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Figure 4. Monthly PR time series for (a) mono-crystalline silicon (mono-c Si), (b) multi-crystalline
silicon (multi-c Si), and (c) thin film PV systems over the evaluation period (June 2006-June 2014).

2.3. PLR Estimation Using Statistical Methods

Different statistical techniques, such as the LOESS method and change point algo-
rithms, were utilized to calculate the linear/nonlinear PLR of the investigated PV arrays.
The LOESS method utilizes local weighted regression fitting [24] and a smoother is used to
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decompose the given time series into three components (trend, seasonal, remainder). The
OLS method is then applied to the LOESS trend to estimate the linear PLR. The LOESS
estimates are not affected by outliers and they can be utilized to estimate nonlinearities [24].
In this paper, the LOESS trend was also inspected visually to detect change points in the
performance time series.

Change point algorithms were then used for identifying changes in PV trends and
estimating the linear (in case of zero change points) or nonlinear (in case of 1 or more
change points) PLR. More specifically, the PELT, the bkp, the FBP, and the Beast algorithms
were utilized.

The PELT method was utilized to identify change points in the performance ra-
tio time series [25] for a specified cost function and penalty [26]. To avoid overfitting
(e.g., identifying noise as change points), penalty values were used as inputs. In this
work, the optimal segmentations for multiple penalty values over a continuous range were
selected (i.e., from 0.001 to log10(x)—where x is the total number of months in the perfor-
mance time series). Once the change points were detected, a small t-test was performed
to extract the significant change points [27]. The procedure followed for identifying the
significant change points is as follows [28]:

(1) Each change point corresponds to two data segments (e.g., one segment from the
start month of the reporting period to the corresponding month of the change point,
and the other from the change point month to the end month of the time series) with
supposedly different means. In case of more than one change point, the number of
segments is equal to the number of change points plus one (number of segments
= number of change points + 1).

(2) For each change point, we subtract the data of its second segment from the data of its
first segment (i.e., the data difference, x4) and ensure that the months of the subtracted
data correspond. If the detected change point is not statistically significant, then the
mean of x4 should be statistically zero. Otherwise, if the mean of x4 is not statistically
zero, then the detected change point is statistically significant.

(3) We test the following hypothesis (assuming that the differences x4 ; are random from
normal distribution such as the E (x4 ;) = 0):

e Null hypothesis Hyp: E (x4;) =0

e  Alternative hypothesis Hy: E(xq;) # 0

If the null hypothesis (Hy) is rejected, the data provide evidence in favor of the
alternative hypothesis (H).

The bkp algorithm uses linear regression models for detecting changes within the
time series [29], by minimizing the residual sum of squares [30]. In this work, the bkp
algorithm was utilized to identify multiple change points in time series regression models
using Bellman'’s principle of optimality [30]. To determine the ideal number of breaks, the
Bayesian information criterion estimator of the number of change points was utilized.

The Beast algorithm deals with Bayesian CP detection and time series decomposition.
It uses a Bayesian model averaging scheme to decompose the time series into abrupt
changes (i.e., CPs), cyclic variations (e.g., seasonality) and trends (i.e., piecewise linear
and nonlinear) [31]. The period for the seasonal/cyclic component (which was set to 12
for the annual time series) and the max number of trend change points (which was set
to 3) allowed in segmenting and fitting the trend component were provided as inputs
(specified by the user). More details about the Beast algorithm and the calibration process
are provided in [32].

The FBP algorithm is an additive model, in which nonlinear trends are fit with yearly,
weekly, and daily seasonality, plus holiday effects. The FBP model decomposes the time
series into trend, seasonality, and holidays [33]. A piecewise linear model is employed to
model the trend component, while an additive component is used for modeling seasonality.
A number of CPs are distributed uniformly along the time series. Then, it statistically
compares the slopes to a predefined threshold level to determine the significant CPs. The
tuning of the FBP algorithm was executed as reported in [1].
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Once the CPs were detected by the four algorithms, the trend was sliced into different
segments (with the number of segments being equal to the number of detected change
points + 1), and finally, the OLS method was applied to calculate the PLR of each segment.

2.4. Validation through Indoor Testing and Synthetic Dataset

The obtained time series analysis results were thus validated through indoor testing.
In particular, the test PV systems were tested indoors at STC to measure the electrical
characteristics of each PV module according to the IEC 61215-1 [34]. These characteristics
were then used to estimate the linear PLR at STC. The indoor measurement procedure
took place inside a solar simulator (i.e., the Pasan SunSim Illc). The technical procedure
followed for indoor testing along with the calibration process are described in detail by
Phinikarides et al. in [3]. In parallel, electroluminescence (EL) and infrared (IR) thermogra-
phy images were also taken for each test PV module to detect any invisible defects, which
can cause performance drops.

Finally, the PR time series of the Sanyo system was used to create a PV performance
time series (see Figure 5) with anomalous conditions (circled in red). This system was se-
lected as it is a well-maintained and well-operating PV system, showing PR values between
0.80 and 0.97 and availability of higher than 99% during the reporting period [19]. The time
series was generated to investigate the effectiveness of CP models for estimating the PLR
in the presence of data anomalies (here only global and local outliers were emulated), that
may be attributed to fault occurrences and/or maintenance events.

1.0

0.9

=
=]
!

Performance Ratio
o
= |

=
=
L

.54

Figure 5. PR time series of the Sanyo PV system with emulated data anomalies (circled in red).

3. Results and Discussion

The obtained PLR results for the fielded PV arrays along with the findings from the
application of outdoor time series analysis techniques and indoor STC are presented in this
section. Future research directions are also provided.

3.1. Linear PLR Estimates Using the LOESS Technique

The LOESS method was applied to the constructed monthly performance time series to
obtain the respective PV trend (see Figure 6). The LOESS trend was also inspected visually
for detecting change points within the given time series. Initial inspection of the trend
indicated obvious trend changes (and the presence of nonlinear power loss) for the BP Solar
and thin film PV arrays. Since there were indications for the existence of change point(s),
the utilization of change point algorithms is needed for more reliable PLR estimations.
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Figure 6. Monthly PR time series along with the LOESS trend (colored in maroon) for the investigated

PV systems. The purple, black, and red lines indicate the mono-crystalline silicon (mono-c Si),

multi-crystalline silicon (multi-c Si), and thin film PV systems, respectively.

This method was then used to estimate the linear PLR (see Table 3). The annual PLR
values ranged from —0.60 to —2.04%/year, which is in line with the reported literature
values [2]. For the mono-c Si PV arrays, the PLR estimates varied between —0.60 and
—0.78%/year. Likewise, the obtained PLR values for the multi-c Si PV systems ranged
from —0.68 to —1.09%/year. As indicated by the results, all crystalline silicon-based PV
arrays demonstrated annual PLR < 1%/year.
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Table 3. Annual PLR of the PV arrays under study evaluated by the LOESS method.

System ID Annual PLR (%/Year) &+ Standard Error
(a) —0.78 £ 0.00
(b) —0.60 £ 0.01
(©) —0.74 £+ 0.00
(d) —0.75 £+ 0.00
(e) —0.84 £ 0.00
(f) —0.68 £ 0.00
(g) —1.09 £+ 0.00
(h) —1.09 £ 0.00
() —2.52 +£0.03
G) —2.04 £0.00
(k) —1.46 £ 0.00

Conversely, the thin film technologies yielded greater annual PLR values (when com-
pared to crystalline silicon-based technologies), varying from —1.46 to —2.52%/year. Simi-
lar results (PLR values larger than —1%/year and ranging between —0.6 and —2.4%/year)
were reported in the literature for thin film PV systems [10].

The histogram of the PLR, the median and mean for all investigated PV systems using
the LOESS technique is shown in Figure 7. The median PLR for all PV module technologies
was —0.84%/year and is shown by the red dashed vertical line. The mean PLR of all
technologies was —1.14%/year (black dashed vertical line). For individual technologies,
the mean PLR for mono-crystalline silicon was —0.72%/year, for multi-crystalline silicon
was —0.93%/year, and for thin film the mean was —2.01%/year. The differences in the
mean PLR indicate that a separation must be made, according to the PV module technology.

5

$a
.

aa
1

Count

o]

Minne

. 3
Performance Loss Rate (%/year)

Figure 7. Histogram of PLR of all PV systems using the LOESS technique. The red and black vertical
lines indicate the median and the mean PLR, respectively.

3.2. Nonlinear PLR Estimates Using CP Algorithms

Four different change point methods were subsequently employed to find PV trend
changes and calculate the nonlinear power loss. Specifically, the PELT technique revealed
at least one change point for all the PV systems under study as indicated in Table 4. Two
change points were detected for the Atersa, Schott Solar (EFG), Wiirth Solar, First Solar, and
MHI arrays. The detected change point in 2008 for the thin film PV technologies may be
attributed to initial degradation. Finally, three change points were identified for the BP Solar
system in 2008 (probably due to partial shading), 2009 (probably due to partial shading),
and 2012. Likewise, partial shading may be the cause for the change point detected in 2009
for the Solon PV system. For the rest of the PV systems, information extracted from the
maintenance logs did not indicate any fault/maintenance event. Therefore, some of the
identified change points might be due to the actual degradation mode.
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Table 4. Change points identified by the PELT algorithm.

System ID Number of CPs Location of CPs
(@) 2 04/2011,10/2013
(b) 3 03/2008, 12/2009, 04/2012
(©) 1 04/2008
(d) 1 04/2008
(e) 1 02/2011
(£ 2 05/2012, 09/2012
(g) 1 03/2009
(h) 1 02/2009
() 2 04/2008, 03/2012
G) 2 04/2008, 04/2011
(k) 2 11/2008, 12/2011

inspection of the LOESS trend, are shown in Figure 8.

b) MHI thin film (a-Si)
T T

Performance Ratio

For demonstration reasons, the changes detected by the PELT technique for two test
PV systems (i.e., the BP Solar and MHI), for which suspicions were created by the visual
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Figure 8. Monthly PR time series for the (a) BP Solar (mono-c Si) and (b) MHI thin film (a-Si) PV
arrays. The solid maroon line indicates the LOESS trend, while the red dashed vertical lines show the
position of the detected CPs.

Table 5. Change points identified by the bkp algorithm.

The bkp algorithm also identified at least one CP for all PV installations as shown in
Table 5. Two change points were identified for the BP Solar PV system in 2008 and 2009
(years when the system was affected by partial shading conditions), while three change
points were found for all the thin film PV systems. For the MHI PV system, the detected
change points in 2007 and 2008 may be due to initial degradation.

System ID Number of CPs Location of CPs
(@) 1 04/2011
(b) 2 03/2008, 08/2009
(© 1 04/2008
(d) 1 04/2008
() 1 02/2011
() 1 03/2012
(g) 1 03/2009
(h) 1 02/2009
(i) 3 04/2008, 04/2010, 04/2012
G) 3 03/2008, 02/2010, 01/2012
(k) 3 10/2007, 12/2008, 12/2011
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The Beast algorithm also detected CPs for nine PV systems (see Table 6), while zero CPs
were identified for the Schott Solar MAIN and SolarWorld PV arrays. One CP was detected
for the Sanyo, Suntechnics, Wiirth Solar, and First Solar systems. For the Suntechnics PV
system, the identified CP may be due to a failure reported in the log. Three changes in
the PR time series were detected for the MHI PV system; two of them may be attributed
to early degradation. For the Atersa and Schott Solar (EFG) PV systems, two CPs were
detected, with no indications of fault occurrences in the logs. Likewise, two CPs were
identified for the BP Solar and Solon PV systems, with their maintenance logs reporting
some performance issues.

Table 6. Change points identified by the Beast algorithm.

System ID Number of CPs Location of CPs
(a) 2 09/2011,10/2013
(b) 2 09/2008, 03/2010
(© 1 09/2010
(d) 1 08/2009
(e) 0 -

(f) 2 01/2009, 02/2012

() 0 -

(h) 2 02/2009, 02/2012

() 1 07/2012

] 1 06/2012

(k) 3 09/2008, 11/2009, 12/2011

Zero CPs were identified for Atersa, Schott Solar (MAIN and EFG), and SolarWorld PV
systems when applying the FBP algorithm (see Table 7). One change point was identified
for Sanyo and Suntechnics PV arrays in 2009 (might be caused by water ingress reported
failure in 2009) as well as for the Solon PV system (affected by partial shading). One change
point was also identified for the thin film PV arrays in the early years of operation. Finally,
two CPs in 2008 and 2011 were identified for the BP Solar system.

Table 7. Change points identified by the FBP algorithm.

System ID Number of CPs Location of CPs
(a) 0 -
(b) 2 12/2008, 05/2011
(c) 1 07/2009
(d) 1 04/2009
(e) 0 -
(f) 0 -
(8) 0 -
(h) 1 05/2011
i) 1 06/2011
g 1 08/2009
(k) 1 04/2010

The detected change points for each PV system and per algorithm are depicted in
Figure 9. Different numbers of change points were identified depending on the utilized
technique. The results demonstrate that the PLR estimation is methodology dependent.
For the thin film technologies, all algorithms identified at least one change point, indicating
that the PV trend can demonstrate nonlinearities that need to be accounted for (particularly
for this PV module technology).
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Figure 9. Detected change points for the investigated PV systems using different techniques.

In addition, even different locations of change points were identified for the same PV
system using different methods (see Figure 10). Consequently, different PLR values will be
obtained by each method. This highlights the necessity of deriving more sophisticated and
accurate models for PLR estimations of fielded PV systems.
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Figure 10. Location of detected CPs for all PV systems under study using different techniques.
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Then, the nonlinear PLR was estimated. Here, only the results from the FBP application
are displayed, since this method has already been benchmarked using synthetic data and
the results provided evidence for robust PLR estimates [1,11,12]. The FBP results are
summarized in Table 8. For the case of linear trend (i.e., Atersa mono-c Si, Schott Solar
multi-c Si (MAIN), Schott Solar multi-c Si (EFG) and SolarWorld multi-c Si PV systems),
differences of up to 0.14% were observed when compared to LOESS linear PLR estimates.

Table 8. Annual PLR of PV systems under study obtained from the application of FBP algorithm.

System ID Linear FPB FPB PLR; FPB PLR, FPB PLR;
(a) —0.83 +0.01 - - -
(b) - —4.27 +0.01 —2.49 +0.01 —1.42 +0.01
() - —~1.35+0.01 —0.45 + 0.01 -
(d) - —1.07 £ 0.00 —0.61 %+ 0.00 -
(e) —0.96 + 0.00 - - -
16) —0.80 + 0.00 - - -
) —1.23 4 0.00 - - -
(h) - —~1.21+0.01 —0.90 + 0.01 -
(i) - —2.52 £ 0.00 —2.66 +0.01 -
() - —2.80 + 0.00 —1.99 + 0.04 -
(k) - —~1.78 + 0.01 —1.48 +0.00 -

The other three CPs were also used for calculating the PLR of PV systems. The acquired
values of PLR showed differences up to 0.85%/year (for the same number of change points)
between the CP methods.

3.3. Indoor Testing Results and Validation

The indoor testing results showed variations in the maximum power point of PV
modules within the array after outdoor field exposure. From the obtained EL images (see
Figure 11), broken cells and cracks were detected for two of the test PV arrays (BP Solar and
SolarWorld), justifying their low performance and the detection of change points within
their time series.

Figure 11. Obtained EL images from defective PV modules. Detected defects include cracked cells
and hotspots.

The FBP method, which demonstrated nonlinear PLR estimation and fault catego-
rization capabilities in PV systems [35,36], was then validated against the created Sanyo
PV performance time series with data anomalies. The results are shown in Figure 12,
verifying the FBP model’s capability for capturing trend changes, even in the presence of
global/local outliers in the time series. It can be seen, that the FBP model detected the
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same CP (July 2009) as previously (see Section 3.2) for the Sanyo PV system. FBP is thus a
robust model for reliability studies and the initial results showed that its performance is not
affected by outliers. Though further validation is needed to confirm the model’s accuracy
in the presence of anomalous conditions, that will be part of future investigations.

1.0

= =]
L] [1+]
1 1

Performance Ratio
[t
|
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0.5

2008 2010 2012 2014
Year

Figure 12. PR time series (shown by black dots) of the Sanyo PV system with imputed data anomalies.
The change point detected by FBP algorithm is shown in red dashed line. The red and blue solid lines
show the extracted trend and FBP fit, respectively. The blue-shaded area is the uncertainty.

3.4. Summary and Future Directions

The performed investigation showed valuable information for the PLR of fielded PV
systems and the following findings were obtained:

1.  The LOESS trend can be used for an initial screening to detect obvious change points
within the PV performance time series.

2. The application of change point algorithms proved to be an efficient statistical tech-
nique for detecting nonlinear power loss in PV systems.

3. Theidentified change points may be attributed to failures/defects, maintenance events
and/or actual degradation mechanisms. Suggestions for future research include the
development of a detailed methodology for attributing the reason (e.g., maintenance
events, fault, and degradation modes) behind the detected change points.

4.  Different numbers and locations of change points were detected based on the applied
algorithm. This reveals the method dependency of the PLR estimation.

5. The indoor testing validation revealed invisible defects that may be the root cause of
PV’s low performance and the existence of change points.

6.  The validation of the FBP model on the created PV performance time series with data
anomalies showed its capability for capturing trend changes, even in the presence
of anomalous conditions. Though, further investigation and validation on data with
different types of outliers, such as global (i.e., point anomalies), contextual (i.e., condi-
tional anomalies), and collective outliers, is needed to verify the above statement.

Apart from the validation of the FBP model against outlying conditions, future work
should focus on the application of the LOESS method for quantifying nonlinear behavior
and estimating the PLR. Moreover, due to the immersion of new PV module technologies
(e.g., advanced crystalline silicon cells accounting for ~25% of market share), further inves-
tigation is needed for such novel technologies, which would be the focus of future research.



Energies 2023, 16, 3724

16 of 18

4. Conclusions

In this work, the annual performance loss rate of various technology PV systems was
estimated by utilizing statistical analysis methods, applied on outdoor field measurements.
The analysis revealed that the extracted trend might exhibit nonlinearities. To identify
nonlinear performance loss in PV systems, the application of change point algorithms
proved to be an effective solution. The change point algorithms can identify changes in
PV trends. Though, different numbers and locations of change points were identified
based on the applied methodology. As a result, different performance loss rate values were
obtained by each change point algorithm, demonstrating differences up to 0.85% per year
(for the same number of change points). This illustrates the methodology dependency
of the performance loss rate estimates. By cross-correlating the identified change point
location with the maintenance logs, the results revealed that the change points may be due
to failures, maintenance events and/or actual degradation mechanisms. Though, further
research is required to determine the reason behind the detected change points.

Since the performance loss rate directly influences the LCOE, the need for more
sophisticated models is thus required for estimating accurately this rate for operating
PV systems. Future research should thus focus on the extraction of the PV performance
trend by the LOESS method to quantify nonlinear behavior and precisely estimate the
performance loss rate values. The performance loss rate estimation’s sensitivity to outliers
is also recommended. Finally, estimating the performance loss rate of novel solar PV
technologies should be the focus of future research.
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Abbreviations

The following abbreviations were used in this manuscript:
a-Si Amorphous silicon

ARIMA Autoregressive integrated moving average
Beast Bayesian estimation of abrupt change, seasonality, and trend
Bkp Breakpoints

CdTe Cadmium telluride

CP Change point

CSD Classical seasonal decomposition

CIGS Copper indium gallium diselenide

EL Electroluminescence

FBP Facebook prophet

HW Holt-Winters

IR Infrared

IEC International Electrotechnical Commission
LCOE Levelized cost of energy

LOESS Locally weighted scatterplot smoothing
mono-cSi  Mono-crystalline silicon
multi-cSi  Multi-crystalline silicon

OLS Ordinary least squares

OTF Outdoor test facility

PLR Performance loss rate

PR Performance ratio

PV Photovoltaic

PCA Principal component analysis
PELT Pruned exact linear time

STC Standard test conditions
UuCcYy University of Cyprus
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