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Abstract: Increasing interest in natural gas-fired gensets is motivated by District Heating (DH) net-
work applications, especially in urban areas. Even if they represent customary solutions, when used
in DH, duty regimes are driven by network thermal energy demands resulting in discontinuous
operation, which affects their remaining useful life. As such, the attention on effective condition-based
maintenance has gained momentum. In this paper, a novel unsupervised anomaly detection frame-
work is proposed for gensets in DH networks based on Supervisory Control And Data Acquisition
(SCADA) data. The framework relies on multivariate Machine-Learning (ML) regression models
trained with a Leave-One-Out Cross-Validation method. Model residuals generated during the
testing phase are then post-processed with a sliding threshold approach based on a rolling average.
This methodology is tested against nine major failures that occurred on the gas genset installed in
the Aosta DH plant in Italy. The results show that the proposed framework successfully detects
anomalies and anticipates SCADA alarms related to unscheduled downtime.

Keywords: multivariate time series; early fault detection; condition based maintenance; multi-MW
gensets SCADA data

1. Introduction

District Heating, also known as heat networks or teleheating, provides a platform
for heat supply based on the integration of low-carbon technologies, including renewable
energy sources and thermal storage, to improve overall efficiency and minimize greenhouse
gas emissions. In operation since the end of the XIX century, DH represents an efficient
way to provide heat to a large number of users in densely populated urban areas [1–5].
According to IEA’s 2021 report [6], DH systems are important solutions to describe the
heating sector in any NZE 2050 scenario [7].

DH systems are composed of thermal plants and a distribution network of insulated
pipes that deliver heat to the end users. The thermal plant is based on technology to
generate heat from fossil fuels or renewable energy sources or to valorize waste heat [8].
In 2020, nearly 90% of heat was produced from fossil fuels, and one of the most common
technologies in DH thermal power plants involves the use of generator sets, also known as
gensets, with internal combustion engines (ICEs) either in combined heat and power (CHP)
configurations or directly coupled with heat pumps [9].

Wang et al. [10] reported that, in 2012, in China, more than 36% of the total building
energy demand was consumed for residential heating purposes, and about 62.9% of district
heat was produced by CHP systems. As another example, in Finland, DH accounts for
about 50% of the total heating market, and the city of Helsinki has around 20% of their
district heat produced by genset with the use of wastewater as a low-grade heat source [11].
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Gensets can suffer from intermittent operation caused by the variability and seasonal-
ity of the network heat demand, especially when directly coupled with heat pumps. These
operation modes often lead the engine off-design and can be interpreted as the root cause
of genset anomalies and failures. Therefore, the research on automatic Fault Detection (FD)
of gensets based on proper Condition-Based Maintenance (CBM) strategies is of paramount
importance to monitor the operation, reduce downtime and ensure the reliability and
productivity of the overall heat supply process [12–14].

Rooted in condition-monitoring systems, CBM aims to establish frameworks for
the diagnosis of equipment under supervision indicating incipient failures using sensor
networks. CBM defines and monitors health indicators capable of signaling an anomaly in
the case of deviation from reference values. Based on the evaluation of the current state
of the equipment, it is possible to identify faults and malfunctions at an early stage, thus,
allowing the timely planning of maintenance interventions. Despite the fact that scheduled
maintenance and CBM are complementary, CBM is, by far, the most cost-effective approach
and the one that enhances the life expectancy of the equipment [15,16].

A recent review on ICE diagnostics [17] suggested that a limited number of papers
dealt with analytical models specifically designed for the CBM of gensets operating in
DH networks. Most of the literature is dedicated to load prediction and the analysis of
optimal network design with few contributions focusing on the operation and maintenance
of networks and distribution pipelines [18].

As reported in [19], Machine-Learning (ML) algorithms have also been established as a
viable solution in the DH scenario because they are easily adaptable to changing conditions,
capable of modeling non-linear phenomena and can benefit from the historical data readily
available in modern control systems (e.g., SCADA data). While ML approaches based on
classification algorithms, such as Bayesian Classifiers (BCs) or Support Vector Machines
(SVMs), have been widely used for FD of ICEs [20–25], regression algorithms seem to
represent the most suitable option to perform an effective CBM.

In fact, on the one hand, BCs and SVMs are supervised ML tools that enable effective
FD, but they rely on events that already occurred in the past to label the training dataset.
On the other hand, unsupervised models based on regression approaches, classified in [26]
as Normal Behavior Models (NBM), are able to detect anomalies in real-time conditions, as
they can signal upcoming fault events in advance.

As a general outline, NBM approaches for CBM consist of training a reference model
that represents the normal operation of the system and evaluating the deviation, or residual,
between the predicted and actually measured values in real-time conditions to detect
anomaly occurrence. Note that training a regression model to create an NBM may appear
to be a supervised approach because it is trained on examples in which the expected values
of the target variable are also provided; however, due to the absence of labels classifying the
operational state in the training phase, NBM models fall into the category of unsupervised
fault-detection methods [27].

The scope of this work is to propose an unsupervised NBM model designed for gensets
operating in DH networks that introduces a series of advantages with respect to the state
of art as detailed in the following section.

2. Unsupervised CBM of ICEs: State of the Art

To date, most applications of data-driven unsupervised fault detection in ICE fall in
the automotive, aviation and marine sectors. To name a few, Liu et al. [28] used a linear
regression based on thermal and electrical parameters for detecting the valve clearance of
diesel engines. Bryght et al. [29] predicted failure in aircraft engines by combining lead func-
tion and logistic regression applied to aircraft engine takeoff data. Singh et al. [30] tested
the performance of several Machine-Learning algorithms for predicting the health of an air-
craft engine on historical data retrieved from the NASA data repository. Maraini et al. [31]
developed a data-driven framework based on a Multi-Layer Perceptron (MLP) for marine
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gas turbine engine health monitoring. Chen et al. [32] proposed a deep autoencoder with a
Dimension Fusion Function method (DFF-DAE) to detect aero-engine faults.

Focusing on the specific applications of ICEs in power plants, Mendonça et al. [12]
proposed a methodology for the detection of incipient failures in the components of internal
combustion engine-driven generators based on Electrical Signature Analysis (ESA), while
Deon et al. [33] introduced a predictive maintenance module within a digital twin based on
the definition of independent subsystems, each one supported by an ad hoc trained model
(Air Intake Subsystem, Exhaust Subsystem, Fuel Subsystem, Water Cooling Subsystem,
Lubrication Subsystem and Mechanical Subsystem).

Based on the above, it can be concluded that a large part of the literature envisages the
development of different Machine-Learning models applied to data sampled from sensor
networks specifically designed for condition-monitoring systems (e.g., accelerometers
and vibration sensors). On the other hand, as an interesting perspective, in recent years,
there has been an increasing focus on NBM approaches for CBM based on SCADA data,
especially in the context of wind turbines (see [26] for a comprehensive review).

However, NBM approaches can present a number of critical issues when applied to
multivariate SCADA data. In this sense, a number of challenges were identified in [27]. As
a first example, the high data dimensionality heavily affects the response times of NBM
models, making them frequently unsuitable for near real-time applications typical of CBM.
A second concern is represented by the challenge in isolating the size of the time window to
train the reference model: the seasonal nature of the operating conditions, coupled with the
possible presence of undesired anomalies in the dataset, makes it difficult to identify the
standard dynamics of the system using, for example, standard approaches for clustering or
outlier isolation.

Finally, a further issue is represented by the appropriate handling of residuals for
alarm activation. Since residuals are evaluated as the difference between the value of a
signal predicted by the regression model (trained under reference conditions) and the
actual value of the same signal logged by the SCADA sensor, they can present a high level
of noise and typical signal variability, which makes it very challenging to trigger alarms
using standard control charts.

As an attempt to face the aforementioned issues and challenges, a general framework
for SCADA-based CBM using a NBM approach is proposed, and the method is applied to
the technology of natural gas (NG) gensets in DH networks. Specifically, the framework
proposes a series of solutions to manage the entire data-mining process, starting from the
reduction of dimensionality in the pre-processing phase with a feature-selection algorithm,
passing through the training methods of the reference models with a Leave-One-Out
Cross-Validation approach [34], up to the post-processing of residuals by means of the
introduction of a two-stage sliding threshold metric to provide nowcasting of the alarms.
For the ML module, two different regression algorithms, namely, XGB and MLP, are trained
and compared.

The framework is tested on SCADA data sampled on a 7.5 MW NG genset installed
in the District Heating plant of the city of Aosta, Italy. The considered dataset includes
45 parameters with 5 min sampling during 16 months of engine operation (from September
2019 to December 2020). The paper is organized as follows. Section 3 presents the discussion
of the building blocks of the proposed ML framework for CBM. Then, Section 4 describes
the case study and the obtained results. Finally, Section 5 summarizes the present work
and presents our conclusions.

3. Anomaly Detection Framework, Overview

The first operation proposed in the framework is the pre-processing and cleaning of
SCADA event logs and signals, filtering out minor events from the logs and removing
constant signals (see Section 3.1).

Subsequently, we process all SCADA signals with a feature-selection method based on
a variable importance approach to select the best predictors for the nowcasting of a specific
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target variable (see Section 3.2). These preliminary operations optimize the performance of
the ML models both in terms of accuracy and computational costs for CBM purposes.

In the next step, we apply two completely different models (namely, XGB and MLP)
independently for the construction of the reference model, training both of them with
a Leave-One-Out Cross-Validation approach (see Section 3.3). This avoids any risk of
overfitting and guarantees greater robustness and flexibility of the results by simulating
unsupervised real-time applications.We recommend having at least one year of data for
the training phase, to guarantee the effective learning of the recurring relational dynamics
between signals while still taking into account the seasonal operational variations typical
of the analyzed users.

At the testing stage, we adopt a warning rule for anomaly detection based on a
sliding threshold metric approach, applied to the Local Residual Indicators (LRIs) of each
parameter. Specifically, we filter the noise of LRIs and subsequently define a control chart
based on their intensity and time persistence to trigger alarms only related to significant
anomalies and to reduce the occurrence of false positives (see Section 3.5).

Finally, we evaluate the anomaly detection results with respect to the ability to identify
precursors from the SCADA event logs and early detect major faults. Concerning the
SCADA event logs, after a preliminary filtering of minor events, the framework integrates
the evaluation of the Mean Time Between Alarms (MTBA) indicator and the quantification
of the total downtime in a prognostic perspective.

The entire framework is implemented using Python 3.9 Scikit-Learn open-source
library [35]. A step-by-step framework description is given in the following Figure 1.

Figure 1. ML framework for CBM and schematics.

3.1. SCADA Event Log and Signal Pre-Processing

The pre-processing of the SCADA event logs filters all minor alarms unrelated to
specific faults or anomalies, along with events recorded during the engine downtime. The
remaining logs are then used to estimate operation metrics, such as the MTBA and the
total duration of the outage events until correct operations are recorded. Those indicators
represent key parameters for the training setup of the ML model (as explained in more
detail in Section 3.4). Additionally, we evaluated the information content of each signal
time series using the Shannon Entropy (H) metric [36], which allows for the interpretation
of parameters with H close to zero as irrelevant or derived and to remove them from
the training dataset, together with constant signals. Finally, a sigma rule was adopted to
identify and remove extreme outliers related to measurement errors and to finally filter the
signals with respect to the active power of the ICE.
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3.2. Feature Selection

The framework adopts a feature-selection method based on variable importance
through exploiting the Predictive Power Score (PPS) [37] algorithm. The output of the PPS
analysis is an asymmetric, data-type independent index that identifies the relationships
among the features in a dataset. Specifically, PPS quantifies how much a single input
variable affects the prediction of the target variable. PPS assigns an index on each single
input feature (xi) at a time used to predict the target variable (yi) via a Decision Tree
algorithm. The index is expressed as:

PPS = 1−
MAExi ,yi

model

MAEyi
naive

(1)

where MAExi ,yi
model is the Mean Absolute Error of the chosen regression model that predicts

yi from a candidate xi, while MAEyi
naive is obtained with a naive model that always predicts

the median of yi. The index ranges from 0 (no predictive power) to 1 (perfect predictive
power). On this basis, as suggested by the authors of the algorithm [37], the minimum PPS
acceptability limit is consistently set at 0.2. For each specific target variable (yi), a vector of
best predictors Bi is defined, selecting from the set of all possible input features (xi), the
ones with a PPS score above the set threshold. For example, as highlighted in Figure 2, for
the specific target variable (yi) the vector of best predictors Bi includes the subset of input
features ranging from x1 to x8.

Figure 2. Example of criteria used to select best predictors based on the PPS score. Bars represent the
score value, while the red dashed line represent the minimum acceptability limity for the score.

3.3. Machine-Learning Model

Two different regression algorithms, namely, XGB and MLP, are selected as candidates
for the ML module. Both the regression algorithms saw an optimization process using a
grid search approach [38] to select the best combination of hyper-parameters. In spite of
the fact that both models identify within the training dataset one parameter at a time as the
target variable (yi) and exploit all the others to predict it, some core differences between
the models still represent a challenge for comparability.

Notably, since XGB belongs to the category of ensemble algorithms and since its
structure is composed of several decision trees, the results are independent from feature
normalization [39]. In contrast, Artificial Neural Networks rely on statistical analysis and,
thus, are strongly influenced by the distribution and quality of the data and are highly
dependent on the order of magnitude of their input values. As a consequence, MLP may
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neglect or overestimate the influence of certain features according to their values [40]. To
avoid this, input signals are initially normalized for the MLP model using a Standard
Scaler and then the predicted features are scaled back to their original size.This ensures the
comparability of results between the two ML models in terms of prediction scores.

3.4. Training Setup

As previously stated, the training strategy relies on a Leave-One-Out Cross-Validation
method [34] as a proposed solution to isolate reference operating conditions with standard
unsupervised approaches in highly discontinuous duty periods combined with the strong
seasonality of the signals. In the specific DH application presented in the paper, the
genset workload presented strong discontinuities in the summer period as well as a higher
environmental temperature operating condition, while having a more continuous workload
in winter with lower external temperatures.

In detail, as shown in Figure 3, one month m is cyclically isolated as the testing
dataset Dtest, and a model is trained on the remaining months split between training Dtrain
and validation Dval datasets. This approach is meant to avoid possible overfitting and
presume that most of the operational data over a long period of time refers to normal engine
operation. To further reduce the possible presence of failure precursors in the reference
model, Dtrain does not include any downtime period, considering an additional safety time
range equal to the value of the MTBA index obtained at the pre-processing stage.

Figure 3. Representation of the Leave-One-Out Cross-Validation method as implemented in the
present study.

As a result of this training process, a specific regression model (ML modeli) for each tar-
get variable (yi) is obtained and defined as a function of best predictors Bi previously identi-
fied. The accuracy of the two models during the training phase on the reference period was
evaluated with customary scores, i.e., the Mean Absolute Error (MAE), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MDAPE).

3.5. Residual Indicator Definition

The aim of the proposed CBM framework is the definition of anomaly detection rules
to trigger early warnings of incipient failures. To this end, an LRI is defined for each
monitored variable [41] as the absolute value of the difference between the actual values
( f ) and those predicted by the models trained on the reference period ( fp):

LRI = | f − fp| (2)

Additionally, the LRI is enhanced with a sliding threshold metric based on an average
obtained with a rolling-window algorithm. This is done to trigger early warnings while
limiting the occurrence of false alarms due to LRI spikes. In particular, as shown in Figure 4,
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an alarm is triggered for a signal when the following condition is satisfied for P consecutive
time steps:

LRIi ≥ 0.5 · 1
W

Σi
j=i−W LRIj (3)

where LRIi is the LRI of the signal at time i and W is the length of the sliding window. The
value of W should be selected according to the periodicity of the observed phenomena and,
in this specific case, corresponds to 24 h. Thus, as the averaged LRI experiences a deviation
≥50% compared to the last 24 h that persists for at least P time steps, an alarm is triggered
for the specific sensor of that LRI. We set the persistence threshold P to 6 h, which resulted
in effectively removing residual noise.

Figure 4. Example of the anomaly detection rule to trigger early alarms on specific sensors.

This approach proved to be particularly suitable for this type of dataset, in which a
standard control chart with a fixed threshold for LRIs could be ineffective due to the extreme
data variability in some periods and seasons. Moreover, it guarantees high robustness in
handling the noise of the residuals of the models.

Based on such a warning rule, model performances were evaluated in terms of anomaly
detection capability on each cross-validation datasets cyclically isolated. This assessment
aims to quantify the ability of each warning to anticipate the major failure events included
in the SCADA log.

4. Results
4.1. Dataset Description

Data were collected from a natural gas genset installed in the Aosta District Heating
plant, which is equipped with a 16-cylinders turbocharged ICE. The engine has a nominal
electric power output of 7.5 MWe, and it is directly coupled to a 17.5 MWt heat pump. ICE
technical specifications are given in Table 1.

A SCADA system monitors different operating parameters collected by the main
components of the genset together with environmental measurements. In detail, the initial
dataset included 45 parameters sampled every 5 min from September 2019 to December
2020, for a total of 15 months. After the application of the signal preprocessing described in
the Section 3.1, the feature number was reduced to 33 significant parameters as listed in
Table 2.
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Table 1. Technical specifications of the engine.

Quantity Value Unit

N. of cylinders 16 [–]
Engine speed 720 [r/min]

Electrical power output 7235 [kW]
Thermal power air cooler HT 1305 [kW]
Thermal power air cooler LT 490 [kW]

Thermal power lube oil cooler 730 [kW]
Thermal power jacket

water cooler 925 [kW]

Exh. mass flow rate 39600 [kg/h]
Exh. gas temp. 355 [°C]

Table 2. List of SCADA signals.

Signal ID Description

P01–P19, P23, P25–P26 Cylinder, exhaust and intake temperatures
P20–P22, P24 Cylinder and fuel subsystem pressures

P27–P31 Generator phase and bearing temperatures
P32 Active power
P33 Ambient temperature

In addition to the SCADA signals, the framework’s anomaly detection capability was
evaluated by looking at the alerts logged by the SCADA system from October to December
2020, a period when numerous major failures occurred. As described in Section 3.1, only
major events were considered, including scheduled (i.e., normal stop) and unscheduled
downtime (i.e., emergency stop or outages after engine deratings). Table 3 lists the filtered
major SCADA events in the reference period.

Table 3. Event log for major events in the observation period. Event types are abbreviated as follows:
D—Derating, NS—Normal Stop and UD—Unscheduled Downtime.

Event ID SCADA Event Log Event Type Start Duration (hh)

DS_05_10 Exh Temp Deviation Cylinder D & UD 5 October 2020 11
S_07_10 Emergency Stop Activated UD 7 October 2020 123

DS_15_10 Exh Temp Deviation Cylinder D & UD 15 October 2020 11
S_20_10 Emergency Stop Activated UD 20 October 2020 5

DS_26_10 Exh Temp Deviation Cylinder D & UD 26 October 2020 11
S_13_11 Emergency Stop Activated UD 13 November 2020 4
D_16_11 Charge Air Temp After Cooler High D 16 November 2020 1
S_19_11 Emergency Stop Activated UD 19 November 2020 48
S_13_12 Shutdown from Main Control NS 13 December 2020 1

DS_16_12 Generator Stator Temp Windings D & UD 16 December 2020 1
S_21_12 Emergency stop Activated UD 21 December 2020 12

4.2. ML Settings and Prediction Errors

Both ML approaches experienced identical training, cross-validation and testing
phases. At the training stage, the dataset was split into training and validation sets,
respectively, named Dtrain and Dval, corresponding to 70% and 30% of the total set. Finally,
the testing set Dtest consisted of a single month cyclically isolated from the available data
and included the time periods of failure occurrences.

The XGB model learning task was set to linear regression with hyperparameters
optimization according to grid search algorithm, while the MLP setup included early
stopping to avoid overfitting. Tables 4 and 5 lists the two subsets of hyperparameters.



Energies 2023, 16, 3719 9 of 15

Table 4. XGB regressor hyperparameters.

Hyperparameter Value

Subsampling of columns 0.20
Learning rate 0.10

Max depth 50
Nr. of trees 150

Nr. of parallel trees 20
Alpha 0

Lambda 1

Table 5. MLP regressor hyperparameters.

Hyperparameter Value

Nr. of Neurons 22
Nr. of hidden layer 1

Nr. of training epochs 150
Activation function relu
Initial learning rate 1 × 10−5

Optimizer ADAM
Batch size 1/50th

The ML model predictions are evaluated in terms of the reconstruction errors of all
SCADA signals (during the training phase the predicted values are compared with the ac-
tual ones). As can be seen from Table 6, XGB outperforms MLP in terms of customary scores.

Table 6. Reconstruction errors for the proposed ML models.

XGB MLP

MAE 0.04 0.11
MSE 0.10 0.14

RMSE 0.21 0.31
MDAPE 0.01 0.13

4.3. Anomaly Detection Results

For the evaluation of the anomaly detection capabilities, the results of the testing
phase refers to the period of October to December 2020. Specifically, ML model results are
discussed by plotting the LRIs against the relative warnings activated on the individual
parameters after the application of the sliding threshold metrics (Equation (3)). Furthermore,
as a reference to identify engine derating and shutdown, the results are presented in terms
of the active power together with the details of the main alarms recorded by the SCADA
system in the same time interval.

Figures 5–7 illustrate the results in October 2020. Figure 5 shows the active power,
with the detail of SCADA event logs recorded in that period (event IDs refer to Table 3).
Figures 6 and 7 show the LRI together with the warnings triggered by the framework
(highlighted in dashed red lines).

By analyzing October 2020 SCADA logs, five significant events were isolated. Those
events include three anomalies that resulted in a preliminary power output derating
followed by engine shutdown, along with two emergency stops linked to unscheduled
downtimes. Regarding the first event category, it is worth noting that all the shutdowns
were anticipated by cylinder temperature anomalies and that the application of the pro-
posed framework allows for the early detection of such precursors. In particular, for the
events detected on 5 October 2020 (event ID: DS_05_10) and 15 October 2020 (event ID:
DS_15_10), respectively, a significant deviation of the LRI associated with cylinder tem-
perature parameter (P16) can be seen in Figures 6 and 7, resulting in early warnings with
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respect to the actual SCADA log (additional details on the advance times relative to the
two ML models are in Table 7).

Figure 5. Active power in the reference period of October 2020 with details on the SCADA events
recorded in that period (black dashed line).

Figure 6. LRIs related to the parameters that caused a warning (red dashed line) after the application
of the sliding threshold metric for the MLP model in October 2020.

Figure 7. LRIs related to the parameters that caused a warning (red dashed line) after the application
of the sliding threshold metric for the XGB model in October 2020.

Furthermore, while the warning on the S_15_10 event was triggered by the two models
at the same time, the MLP model detected the anomaly related to event DS_05_10 about
ten hours earlier than XGB. The third derating event followed by an engine shutdown was
recorded on 26 October 2020 (event ID: DS_26_10) and concerned a high-temperature alarm
on cylinder 5B (P13) detected on the same day. Furthermore, for this event, Figures 6 and 7
present a significant variation of the LRI for the parameter P13, constituting a specific
precursor that results in a warning both for the MLP and XGB models on 23 October 2020,
about three days in advance compared to the SCADA alarm.



Energies 2023, 16, 3719 11 of 15

Table 7. Comparison of detection performance of unscheduled downtime events (October–
December 2020).

Event ID XGB Results MLP Results
Detection Anticipation Precursors Detection Anticipation Precursors

(dd/mm/yy;
hh/mm) (hh) ID (dd/mm/yy;

hh/mm) (hh) ID

DS_05_10 4 October 2020;
23:30 4 P16 4 October 2020;

13:45 14 P16

S_07_10 3 October 2020;
20:25 84 P08 4 October 2020;

17:20 62 P08

6 October 2020;
13:15 18 P13, P16 6 October 2020;

14:05 17 P13, P16

DS_15_10 14 October 2020;
06:40 37 P16 14 October 2020;

08:10 34 P16

S_20_10 16 October 2020;
06:00 101 P08 16 October 2020;

07:05 100 P08

DS_26_10 23 October 2020;
09:30 67 P13 23 October 2020;

10:45 65 P13

S_13_11 10 November
2020; 12:55 69 P08 10 November

2020; 14:15 68 P08

S_19_11 14 November
2020; 00:25 123 P04, P08 14 November

2020; 01:05 122 P04, P08

DS_16_12 4 December
2020; 00:10 299 P28, P29, P30 4 December

2020; 01:25 298 P29, P31

4 December
2020; 00:20 299 P04, P31, P32 - - -

S_21_12 16 December
2020; 12:05 114 P04, P08 16 December

2020; 13:00 113 P31, P32

The advances found before the emergency stops on 7 October 2020 (event ID: S_07_10)
and 20 October 2020 (event ID: S_20_10) are of particular interest since they are not as-
sociated with a specific SCADA anomaly alarm on a component of the gas genset. In
correspondence to these unscheduled downtimes, both ML models showed an anomaly on
the LRI of cylinder temperature (P08), which caused a warning three days in advance of the
first event (84 h for XGBoost and 62 h for MLP). Subsequently, the indicator of parameter
P08 returned to normal values after the maintenance intervention, as visible in the active
power plot in Figure 5), and then deviated again from 16 October 2020 (see Figures 6 and 7)
until the emergency stop on 20 October 2020.

In a similar fashion, Figures 8–10 compare the results of the CBM method during
November and December 2020, during which four significant unscheduled downtimes
were reported by the SCADA system. Details on the event log can be found in Table 3.

Those events include three emergency stop alarms recorded, respectively, on 13
November 2020 (event ID: S_13_11), 19 November 2020 (event ID: S_19_11) and 21 Decem-
ber 2020 (event ID: S_21_12) as well as a shutdown transient due to an anomaly found
on the generator temperature on 16 December 2020 (event ID: DS_16_12). From a global
analysis of the LRI trends, shown in Figures 9 and 10, different anomalies were detected
during the observed period in the engine cylinders and generator. In particular, previously
found anomalies on the cylinder exhaust temperature, correlated with two long outages in
October 2020, recurred from 13 November 2020, when a warning on the involved parameter
was triggered by both MLP (Figure 9) and XGBoost (Figure 10). This significant deviation
of the P08 parameter indicator persisted for about three days until an emergency stop was
recorded on 13 November 2020.

Immediately after this 4-h engine outage, both models detected a new significant
anomaly on P08, also involving other cylinders’ temperatures and anticipating the failure
detected by SCADA on 19 November 2020 (event ID: S_19_11). Of particular interest are the
results related to the remaining two significant events recorded by the SCADA in December
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2020, namely, DS_16_12 and S_21_12. In fact, the warnings detected so far by XGBoost
and MLP were always triggered by the same parameters (with some differences only in
the advance times with respect to the SCADA events), while in these two cases, different
precursors emerged from the models.

Figure 8. Active power for the period of November and December 2020, with details on the SCADA
events recorded in that period (black dashed line).

Figure 9. LRIs related to the parameters that generated a warning (red dashed line) after the
application of the sliding threshold metric for the MLP model in November and December 2020.

Figure 10. LRIs related to the parameters that generated a warning (red dashed line) after the
application of the sliding threshold metric for the XGB model in November and December 2020.

In particular, XGBoost LRIs (Figure 9) highlighted, on 4 December 2020, a variation
in the three temperatures of the generator-related variables, phases and bearings (P27-
P31). This resulted in a warning that anticipates the SCADA log DS_16_12 by about
twelve days. Comparing these results with those of the MLP model (Figure 10), the same
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significant deviation was not noticed on the generator stator winding but only on the two
generator bearings.

As for the unscheduled downtime of 21 December 2020, it was detected about 5 days in
advance by both models, with different precursors: exhaust cylinder temperatures (P01-P19)
for the XGB model and generator bearing temperatures (P27-P31) for the MLP model.

Finally, Table 7 summarizes the results discussed so far. In particular, the ability of
each of the two ML models was assessed to identify specific precursors for major faults
included in the SCADA log and then quantified the time of advance warning of the model
relative to the occurrence of the reference SCADA alarm.

5. Conclusions

In this paper, an anomaly detection framework for the CBM of natural gas engines
used in DH applications was presented. The framework exploited the use of signals
collected by the SCADA system. The peculiarities of the framework reside in the PPS-
inspired feature selection to reduce dataset dimensionality, the indifference to training
dataset clustering to discriminate faults and normal operations and the management of
time-series high-frequency information content directly filtering local residuals.

Two different models were tested to represent two different algorithm families: XGB
in the symbolist family of decision trees and MLP in the connectivist family of neural
networks. These models were trained to learn the regular behavior of the system based on
a Leave-One-Out Cross-Validation approach and, based on the model reconstruction errors,
a Local Residual Indicator (LRI) was defined for each monitored variable. Therefore, with
the aim of triggering an early warning before the occurrence of faults, while limiting false
alarms associated with instantaneous peaks in LRIs, a sliding threshold metric based on a
moving average was adopted. In this way, a warning was triggered for the signals with the
highest reconstruction error, to isolate the parameters mostly involved in the anomaly for
troubleshooting purposes.

The proposed method was validated on 5 min SCADA data collected from a 7.5 MWe
natural gas engine installed in the District Heating plant of Aosta city. The model was
tested on anomalous periods selected using the SCADA event log. The results show that
the proposed multivariate nowcasting approach allows the unveiling of hidden precursor
dynamics that anticipate all the main fault events that occurred in the observed period. It is
interesting to note that these anomalies were not detected by single-variable operational
control approaches typical of SCADA systems.

In addition, even if both ML models anticipated the same faults with similar advance
times, the better performance of XGB compared to MLP was evident in terms of the training
customary scores for the nowcasting of single parameters (see Table 6). In particular, XGB
paired with the two-stage threshold tuned with a persistence time of 6 h and time window
size of 24 h provided fault anticipations ranging from 4 to 299 h. The framework proved to
be fault agnostic because it detected ICE and generator anomalies.

In conclusion, the proposed solution presents a number of benefits due to its nature,
which includes the ability to early detect anomalies in NG genset in DH networks, enabling
the timely planning of corrective measures before major failures occur. This feature aligns
with a CBM approach, where predictive maintenance strategies are adopted to ensure
equipment performance and prevent unexpected downtime. Moreover, the proposed
solution is cost-effective, as it works directly on the data sampled from the integrated
SCADA systems. Unlike other systems that require additional intervention costs, the
proposed solution operates directly on the available data and can be seamlessly integrated
into the existing system.

The proposed solution employs a non-supervised approach that does not require
labels to classify operational states during the training phase, which can be challenging
to obtain. This feature makes the proposed solution highly versatile and adaptable to
a wide range of systems and contexts. The methodological framework also introduces
innovative solutions compared to the state of the art, including a feature selection phase



Energies 2023, 16, 3719 14 of 15

based on CPSS that optimizes the response times of the algorithm to obtain near real-time
responses. Additionally, the training approach does not require a preliminary isolation of
faulty conditions for the identification of the reference normal behavior model.

Finally, a post-processing of residuals is introduced through the use of a two-stage
sliding threshold metric that provides nowcasting of alarms. Overall, the proposed solution
offers a highly effective, efficient and cost-saving approach compared to the other systems
and methods currently used in the industry. Future research could explore the potential of
scaling up the solution for larger DH networks and testing its application in other domains.
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