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Abstract: With the wake effect between different wind turbines, a wind farm generally aims to achieve
the maximum energy capture by implementing the optimal pitch angle and blade tip speed ratio
under different wind speeds. During this process, the balance of fatigue load distribution is easily
neglected because it is difficult to be considered, and, thus, a high maintenance cost results. Herein, a
novel bi-objective optimal wind farm energy capture (OWFEC) is constructed via simultaneously
taking the maximum power output and the balance of fatigue load distribution into account. To
rapidly acquire the high-quality Pareto optimal solutions, the decomposition-based multi-classifier-
assisted evolutionary algorithm is designed for the presented bi-objective OWFEC. In order to
evaluate the effectiveness and performance of the proposed technique, the simulations are carried out
with three different scales of wind farms, while five familiar Pareto-based meta-heuristic algorithms
are introduced for performance comparison.

Keywords: wind farm; wake effect; fatigue load; Pareto-based optimization; bi-objective optimization

1. Introduction

In recent years, wind energy has become a major breakthrough in the development of
new energy in many countries due to its clean, renewable, and environmentally-friendly
features [1]. In order to save land resources and reduce investment costs, tens or even
hundreds of wind turbines (WTs) are usually built into a wind farm (WF) in a certain
arrangement. When the incoming wind speed passes through the upstream WTs, the wind
speed for the downstream WTs decreases while the turbulence intensity increases, which
is usually called the wake effect [2]. In general, the wake effect can not only reduce the
power generation of the downstream WTs, but also increase the fatigue load [3] with the
increasing turbulence intensity. The existing research shows that the efficiency loss of a WF
influenced by the wake effect is up to 40%, and the maximum load increase can range from
10% to 45%.

To weaken the influence by the wake effect, many optimization or control methods
were designed to achieve the optimal layout and operation of WTs in a wind farm. Ref. [4]
explicitly incorporated the wake effect into the reliability assessment of a WF. Later, a new
method for placing offshore wind turbines in regular-shaped wind farms was proposed to
minimize the wake effect of wind farms [5]. Based on the consideration of wake effect, a
wind farm optimal scheduling method was proposed to maximize the output power [6].
In Refs. [7–9], wind power generation can be improved by reasonably arranging wind
turbines to minimize wake effect. The multi-body dynamic model of offshore wind turbine
when considering wake effect was established in [10], in which the improved Jensen model
was used to describe the wake profile. Ref. [11] incorporated Park and Law’s modifications
of the popular Jensen wake model into Frandsen’s simplified “wake turbulence” model,
and finally achieved the goal of maximizing output power. In Ref. [12], a Particle Swarm

Energies 2023, 16, 3718. https://doi.org/10.3390/en16093718 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16093718
https://doi.org/10.3390/en16093718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5480-0781
https://orcid.org/0000-0001-7189-2040
https://doi.org/10.3390/en16093718
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16093718?type=check_update&version=2


Energies 2023, 16, 3718 2 of 22

Optimization-Model Predictive Control (PSO-MPC) strategy was proposed, and the dy-
namic power model was established to reduce the unit loss. Ref. [13] presented an optimal
placement of WTs in a given farm area to maximize the output power with a minimum
number of turbines. Ref. [14] conducted wind power distribution according to the optimal
power of each wind turbine, and improved the power of the whole wind farm. In summary,
these studies mainly focused on the power generation increment of a WF by considering
wake effect, and the fatigue equilibrium of wind turbine is not sufficiently considered;
at the same time, there is no clear quantitative relationship for operation status between
different WTs, i.e., the influence of wake effect on wind farm output power and turbulence
intensity have not been considered simultaneously.

To further take the turbulence intensity into account, the fatigue analysis of WTs has
been studied at home and abroad. Ref. [15] applied a comprehensive fatigue coefficient in
the fatigue balance optimization of offshore wind farms. A comprehensive optimization
method for the fatigue load of wind turbine components and a novel multi-objective
adaptive Yin–Yang pair optimization algorithm were proposed in refs. [16,17], respectively,
both of which aimed to coordinate and optimize the fatigue load distribution and active
power scheduling. A time-domain simulation method of fatigue load for the offshore wind
power plant based on wind wave combined load was introduced in [3]. Two simplified
look-up table wind turbine active power dispatching models were proposed for relieving
the computing pressure of fatigue load [18], and effectively reducing the fatigue load,
separately. Based on these findings, a multi-objective optimal wind farm active power
distribution strategy was presented [19]. An optimal power distribution method was
adopted to balance the fatigue difference of wind turbines [20], so as to maximize output
power [21] and minimize fatigue load [22]. Ref. [23] used the improved-accuracy wind
farm flow models to increase the power gain and reduce the fatigue load, improving the
capture of wind energy and cutting down the maintenance cost at the same time.

In the above study, the consideration of wind turbine fatigue balance was only a
simple linear superposition, in which it was difficult to achieve a proper balance between
fatigue balance and the maximum power output target. Therefore, this paper constructs
a new bi-objective optimal wind farm energy capture (OWFEC) to pursue the maximum
power output and the minimum fatigue load distribution concurrently. To address this
Pareto optimization problem, the decomposition-based multi-classifier-assisted evolution
algorithm (MCEA) is introduced to give high-quality optimal Pareto solutions. This algo-
rithm uses support vector machine as the auxiliary model to solve the high-dimensional
classification problem with few training samples [24]. In summary, the main motivations
and innovation points of this work are given as follows:

1. The bi-level OWFEC is proposed to pursue the maximum power output and the
balance of fatigue load distribution during the energy capture based on the Pareto-
based optimization;

2. To rapidly acquire the high-quality Pareto optimal solutions, the decomposition-based
multi-classifier-assisted evolutionary algorithm is firstly designed for the presented
bi-objective OWFEC;

3. The simulations are carried out with three different scales of wind farms and com-
pared with several familiar Pareto-based meta-heuristic algorithms to evaluate the
effectiveness and performance of the proposed model and algorithm.

The rest of this work is organized as follows: Section 2 presents a wake effect superposi-
tion model based on the Jensen model [25] and a mathematical model of OWFEC; Section 3
introduces the detailed design of MCEA for OWFEC; Section 4 gives the simulation results;
finally, Section 5 provides the conclusions.

2. Mathematical Model of Bi-Objective Optimal Wind Farm Energy Capture
2.1. Wake Effect

In order to quantify the wake effect between different WTs, a classical Jensen model
is used to evaluate the wind speed of each WT, due to its fast calculation speed and
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high accuracy for engineering requirements. As shown in Figure 1, the downwind wake
wind speed, vj,i, which is x distance downstream from wind turbine unit j in the upwind
direction [26], can be calculated:

vj,i = vj

[
1−

(
1−

√
1− CT

)( R
R + kx

)2
]

(1)

where vj,i is the wake wind speed, which is x multiplied by the diameter of wind turbine
distance away from the upwind unit j; R is the wind wheel radius; vj is the incoming wind
speed; k is the wake attenuation factor; and CT represents the thrust coefficient [27], which
can be written as follows:

CT = 4a(1− a) (2)

a =
1±
√

1− CT
2

(3)

Cp = 4a(1− a)2 (4)

where a denotes the axial induction factor, which is generally less than 0.5 in the actual
operation process of the wind motor, so the above ‘+’ does not exist; and Cp denotes
the wind energy utilization coefficient, which increases with the increase of the axial
induction factor.
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Figure 1. Intersection area between wake and wind rotor.

There are three relationships between wake radius and downwind wind wheel di-
ameter [28]. For the case of non-intersection, it is naturally unnecessary to calculate the
area of wake superposition area; for the case of complete inclusion, the wake wind speed
can be calculated according to Formulas (2) or (13); for the case of partial intersection, the
intersection area of wake and wind turbine needs to be calculated first, which is divided
into the two cases in Figure 1.

In Figure 1, circle o1 represents the wake area of upstream wind turbine; circle o2
represents the wind wheel area of the downstream fan; the overlapping part represents
the intersection area of the upstream wind turbine wake area and the downstream wind
turbine disk. The intersection area is calculated as follows [29]:

Aj,i = arccos

(
r2

1 + d2 − r2
2

2r1d

)
r2

1+arccos

(
r2

2 + d2 − r2
1

2r2d

)
r2

2−

sin

(
arccos

(
r2

1 + d2 − r2
2

2r1d

)
r1d

)
(5)

where Aj,i represents the intersection area of the upwind unit wake area and the wind
turbine area of downwind unit.
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When there are i − 1 typhoon generators set in front of wind turbine unit i, the
incoming wind speed at infinity is set as v0, and the calculation formula of wind speed vi
at wind turbine i is as follows:

vi =

√√√√v2
0 +

i−1

∑
j−1

β j,i

(
v2

j,i − v2
j

)
=

√√√√√√v2
0 +

i−1

∑
j−1

β j,i

v2
j

1−
1−

√
1− CT,j

(1 + 2ks)2

2

− v2
j

 (6)

β j,i =
Aj,i

πR2 (7)

where vj,i is the downwind wake wind speed from (1); and β j,i represents the weight of the
intersection of the wake area of upstream fan j and the rotor area of downstream fan i.

It can be seen from (6) that the wind speed at downstream wind turbine i is only
relevant to the thrust coefficient CT,j of upstream wind turbine j; changing the thrust
coefficient of the upstream wind turbine can change the incoming wind speed of the
downstream wind turbine.

2.2. Bi-Objective Optimization Model of OWFEC

Like the general optimization, the optimization model of OWFEC consists of two
objective functions and multiple operating constraints. It attempts to realize maximization
or minimization of the objective function while satisfying all the operating constraints.

2.2.1. Objective Function

The objectives of OWFEC are to maximize the output power and to minimize the stan-
dard deviation of the comprehensive fatigue coefficient. The fatigue effect of wind power
is caused by changes in wind load, abnormal weather conditions, poor manufacturing and
design, and improper long-term operation and maintenance. A series of measures need
to be taken to reduce the risk of fatigue damage and ensure the safe operation of wind
turbines. From ref. [17], we can know that the additional wake turbulence will accelerate
the recovery of the wake wind speed and lead to the increase of the annual production
capacity of the wind turbine; on the other hand, the additional turbulence in the wake area
will increase the annual damage of the wind turbine, reduce the fatigue life of the wind
turbine, and, thus, reduce the production capacity of the wind turbine over the whole life
cycle. Obviously, unit active output and unit fatigue damage are a set of contradictory
goals, which can be written as follows:{

max g1 = ∑n
i=1

1
2 ρπR2Ci

P(β, λ)vi
3

min g2 = S[(λ, β), t]
(8)

where n is the number of wind turbines; ρ is the air density; R represents the radius of
the wind turbine; vi is the wind speed of the ith fan at the center of the hub; and Ci

P(β, λ)
represents the wind energy utilization coefficient, which is determined by the pitch angle β
and tip speed ratio λ, which can be determined as follows:Ci

P(β, λ) = 0.5176
[

116
λ1
− 0.4β− 5

]
∗ e−

21
λ1 + 0.0068λ

1
λ1

= 1
(λ+0.08β)

− 0.035
β3

(9)

In Formula (9), S[(λ, β), t] represents the standard deviation of fatigue coefficient of
each unit at time t. The standard deviation of the comprehensive fatigue coefficient is used
as the optimized objective in place of simply reducing the fatigue of the wind turbine [15].
In this way, the fatigue of the entire wind farm can be controlled globally, which thereby
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optimizes the capacity of the wind farm and improves its economic efficiency. It can be
shown as follows:

S[(λ, β), t] = min

√
1
n

n

∑
i=1
{ fi[(λ, β), t]− fave[(λ, β), t]}2 (10)

fave[(λ, β), t] =

n
∑

i=1
fi[(λ, β), t]

n
(11)

where fi[(λ, β), t] is the comprehensive fatigue coefficient. The traditional method of
analyzing the fatigue of the wind turbine is very complicated, and it is difficult to use
the operational optimization control of the whole field wind turbine. In this research,
the comprehensive fatigue coefficient [30] is used to describe the damage caused by the
fatigue of each component of the style power unit to the overall unit, which considers
the relationship between the fatigue of each component of the unit and the active power
output, which can be shown as follows:

fi[(λ, β), t] = fi[(λ, β), t0] +

∫ t
t0

Pi(t)dt

Pi
rateTi

set

(
1 + Mi

rep

) + Ddis

∫ t
t0

Ii
e f f (t)dt

Ti
set

(
1 + Mi

rep

) (12)

where the first subitem fi[(λ, β), t0] indicates the fatigue coefficient of unit i at time t0;
the second subitem indicates work fatigue during power generation, so this subitem is
0 under shutdown; the third subitem represents the unit fatigue caused by turbulence;
Pi(t) and Pi

rate are the output power and rated power of unit i, respectively; Ti
set represents

the design life; and Mi
rep represents the unit maintenance compensation coefficient. The

compensation factor of wind turbine maintenance refers to the ratio between the expected
maintenance cost and the actual maintenance cost. It is an important parameter used to
measure the deviation between expected and actual maintenance costs. Generally, the
maintenance compensation coefficient is a constant value, ranging from 0 to 1 based on
experience [15,31–33], without detailed calculation. Additionally, in Formula (12), Ddis
is the turbulence fatigue equivalent coefficient of wind farm. The equivalent coefficient
of turbulent fatigue is used to assess the extent of damage to wind turbines in unstable
wind conditions, thus helping developers and operators better manage operation and
maintenance of wind farm. This coefficient is obtained by comparing the time integral of
the fluctuated degree of the wind turbine blade affected by different wind speeds, wind
directions, and turbulent power density in the wind farm with the time integral of the
fluctuation degree of the wind turbine blade operating in the stable wind farm at the same
time [15]. Finally, Ii

e f f (t) is the effective turbulence intensity of unit i at time t.

Ii
e f f (t) consists of two parts, which are the wake turbulence intensity Ii

w(t) and ambient

turbulence intensity Ii
a(t); the calculation formula is as follows:

Ii
e f f (t) =

√
Ii
a(t)

2
+ Ii

w(t)
2

Ii
a(t) =

Ire f (0.75·vi(t)+5.6)
vi(t)

Ii
w(t) =

1
Si

√
1.2·Ci

T(t)

(13)

where Ire f represents the reference value of turbulence intensity when the wind speed at
the hub height is 15 m/s, since the offshore wind farm is a low turbulence flow field, 0.12
is taken here; vi is the wind speed of unit i at the hub height, m/s; Si is the area swept by
the wind turbine of unit i, m2; and Ci

T represents the thrust coefficient of unit i.
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2.2.2. Constraints

The same as the conventional wind farm scheduling problem, the obtained solution
of OWFEC should satisfy various constraints, including wind speed constraint, power
constraint [34], the rotor speed constraint [35], the tip speed ratio (TSR) constraint [36], and
the axial induction factor constraint [37], which can be described as follows:

• Wind speed constraint: vi is the exotic wind speed, which should be between the
cut-in wind speed and the cut-off wind speed of the wind turbine, to keep the rotor of
the wind turbine in operation. In this paper, wind speed scale is set as follows:

vi
in ≤ vi ≤ vi

out (14)

where vi
in and vi

out is respectively the cut-in and cut-off wind speed of the ith fan;

• Power constraint: Pi is the active output of the ith fan. In the traditional sense, the
power can be reduced to zero through pitch regulation, and the maximum power is
usually the rated power. This can be shown as follows:

0 ≤ Pi ≤ Pi
rate (15)

where Pi
rate is the rated power of the ith fan;

• Rotor speed constraint: ωi is the rotor speed of the ith wind turbine. The output power
of a wind turbine does not exhibit linear growth with the increasing rotor speed of
wind turbine. Generally, we need to keep the rotor speed within a certain range to
maximize the output power. In this paper, the scale of rotor speed is set as follows:

ωi
0 ≤ ωi ≤ 1.2·ωi

rate (16)

where ωi
0 is the initial rotor speed of the ith fan; and ωi

rate is the rated rotor speed of the
ith fan. In this paper, we take 1.2 times the rated rotor speed as the maximum allowable
rotor speed;

• Tip speed ratio (TSR) constraint: We know that λ = ωr R
v ; when the pitch angle is

constant, we require the wind energy utilization coefficient curve to run on the right
half, so there is a minimum limit on the tip speed ratio:

λi ≥ λi
min (17)

where λi represents the tip speed ratio of the ith fan; and λi
min is the minimum tip speed

ratio of the ith fan. Figure 2 shows the relationship between the wind energy utilization
coefficient and the tip speed ratio;
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• Axial induction factor constraint: The axial induction factor a of wind turbines should
be between 0 and 1

3 because the maximum value of Cp will be obtained while a is in
this range according to (4), which can be written as follows:

0 ≤ a ≤ 1
3

(18)

3. Objective Optimization of Decomposition-Based Multi-Classifier-Assisted
Evolutionary Algorithm

The core idea of MCEAD is to decompose the multi-objective problem into a group
of single-objective sub-problems or multi-objective sub-problems, and optimize all sub-
problems in a cooperative way by using the neighborhood relationship between sub-
problems, so as to find the approximation of the whole Pareto surface. Usually, the defini-
tion of sub-problems is determined by weight vectors, and the neighborhood relationship
between sub-problems is determined by calculating Euclidean distance between weight
vectors. MCEAD algorithm emphasizes selecting the parent from the domain to generate
new individuals through crossover operation, and carries out population updating in the
domain according to certain rules. Therefore, neighborhood-based optimization strategy is
an important feature to ensure the search efficiency of MCEAD. In the process of evolu-
tion, once a high-quality solution to a sub-problem is found, its good genetic information
will quickly spread to other individuals in the neighboring region, thus accelerating the
convergence rate of the population.

3.1. Design of the Fitness Functions

Firstly, the optimization variables are tip speed ratio λ and pitch angles β of all wind
turbines, which can be expressed as λi = {λ1, · · · , λn|n ∈ N∗}, βi = {β1, · · · , βn|n ∈ N∗},
where n indicates the number of fan units. Initialization of optimization variables is
as follows: {

λi =
ωiri
vi

βi = 0
(19)

where ωi is the rotational angular velocity of the ith fan; ri is the radius of wind wheel of
the ith fan; and vi is the incoming wind speed of the ith fan. The lower and upper bounds
of all the optimization variables are set according the actual situation of the fans.

Secondly, we wanted the output power of the wind turbine to be as large as possible,
and the standard deviation of turbulence intensity of the wind turbine to be as small as
possible, so the two are in an opposite relationship. Therefore, we designed the following
fitness function and solved it with an optimization algorithm in the subsequent content:{

f1 = Pr − g1 + C f
f2 = g2 + C f

(20)

where Pr is the approximate total output power of all fans; and C f is a penalty factor, which
is used when the rotor speed constraint and tip speed ratio constraint are not satisfied

3.2. Algorithm Solution

To begin with, its basic data structure and mathematical notions are as shown in
Table 1.
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Table 1. The basic data structure and mathematical notions.

Symbol or Expression Descriptions Mathematical Notions

weight vector set (define Chebyshev problem)
{

λ1, · · · , λN}
reference point z = {z1, · · · , zM}

a current evolutionary population P
the weight vector set

{
x1, · · · , xN}

a set including N solutions P =
{

xi
}N

i=1
an archive set consisting of all evaluated solutions and their

objective values A

evaluated solutions xεRD

objective values { f1(x), · · · , fM(x)}
the sub-problem area NS1, · · · , NSN

training samples
(

xi
j, ci

j

)
a dataset consisting of training samples designed for

ith sub-problem Di

a set of current best solutions of sub-problems for the
ith sub-problem Ci

a set of candidate solutions of offspring Y i for
ith sub-problem

Yi

a decision function for ith sub-problem c∗i (x)
Lagrange multipliers

{
ai∗

j

}|Di |

j=1
a decision score function determined with

Lagrange multipliers d∗i (x)

the maximum repeat time to control the number of
candidate solutions Rmax

the elite population used to preserve Pareto solutions EP

Other symbols not described will be defined after the specific formula.

3.2.1. Initialization

1. The set of an elite solution set EP for holding Pareto solutions is set to an empty
set ∅;

2. For each weight, determine its T closet weight vectors λi∀i ∈ {1, · · · , N};
3. Then, initialize the population x1, · · · , xN , and calculate each target vector value,

expressed as follows:
min F(x) = { f1(x), · · · , fM(x)}
s.t. x ∈ S

(21)

where x ∈ S denotes a decision vector x which belongs to a feasible region S, and F(x)
is a set of M objective functions, f j, with M ≥ 2. This manuscript considers real-value
optimization problems with x ∈ RD, where D is the number of decision variables. In
this manuscript, we use the Chebyshev function as a scalarization function to divide a
particular problem into N sub-problems, where the ith scalarization function is expressed
as follows:

g
(

x
∣∣∣λi, z

)
= max

1≤j≤M

{
λi

j

∣∣∣ f j(x)− zj

}
(22)

where λi =
{

λi
1, · · · , λi

M
}

is a weight vector; and z = {z1, · · · , zM} is a set of reference
points determined as the optimal value of each objective function;

4. Lastly, initialize the current reference point, zj = mini∈{1,··· ,N} f j
(
xi)∀j ∈ {1, · · · , M}.

3.2.2. Update Operations

For each i ∈ {1, · · · , N}, perform the following steps:
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1. Each sub-problem has individual crossover and mutation in the neighborhood.
MCEAD defines an index set of neighbor sub-problems for the ith one, denoted by B(i),
and the index set of parent candidates, P, can be expressed as follows:

P =

{
B(i) with a probility δ

{1, · · · , N} otherwise
(23)

Additionally, the process of crossover and mutation are as follows:

Y i
k =

{
xi

k + F×
(

xr1
k − xr2

k
)

with probility CR
xi

k otherwise
(24)

Y i
k ←

{
Y i

k + σk × (bk − ak) with probility pm
Y i

k otherwise
(25)

where Y i
k is a kth decision variable of Y i; F and CR are scaling factor and crossover rate,

respectively; pm is a mutation probability; and ak and bk are the lower/upper bounds of
the kth decision viriable. σk is further expressed as follows:

σk =

{
(2r)1/(η+1) − 1 i f r < 0.5

1− (2− 2r)1/(η+1) otherwise
(26)

where η is a distribution index of polynomial mutation and r >∈ [0, 1] is a uniformly-
sampled random value;

2. For each sub-problem, build a decision function c∗i (x) which generates an offspring
solution Y i, each of which is denoted by model-construction and solution-generation.
Subsequently, Y i is inserted to A;

3. After completing the calculation of Y i
k for all k = 1, · · · , D, Y i is evaluated with the

fitness functions in Formula (20);
4. Update reference points z = {z1, · · · , zm};
5. For each j ∈ NSi, if g

(
Y i
∣∣λj, z

)
≤ g

(
xj
∣∣λj, z

)
, perform the replacement xj = Y i,

and update the individual in the domain, where xj is the individual in the jth weight
sub-problem;

6. Update the archive set A;
7. Update the external set EP.

3.2.3. Termination of the Judgement

If the termination condition is met, the outer set EP is output; otherwise, turn to
process ii.

3.3. Calculation Flow

The whole calculation flow of solving the multi-objective optimization model of wind
farm is provided in Algorithm 1, where the termination condition of MCEAD is set to the
maximum iteration number. For each sub-problem, MCEAD builds a decision function
c∗i (x), and then it generates an offspring solution Y i by using c∗i (x), which are denoted
by model-construction at line 11 and solution-generation at line 13. The following steps
describe the detailed procedure of model-construction and solution-generation.

Algorithm 2 describes the complete procedure of model-construction. For the ith
sub-problem, MCEAD builds a dataset Di, which is designed such that c∗i (x) captures
a good region, which may improve g

(
x
∣∣λi, z

)
, together with its neighbor scalarization

functions. In addition, each c∗i (x) may be similar to, but still different from, ones built for
neighboring sub-problems. Accordingly, each sub-problem is conservatively explored via
different surrogate models. For the establishment of SVM classifier model, we have made
a special treatment, and we add the sub-best solution to Ci to avoid duplicative selection.
With this exception handling, it is guaranteed that Di always includes a fixed number of
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positive samples. Accordingly, the number of negative samples will increase, which is more
helpful to build a special agent model for sub-problems.

Algorithm 1: MCEAD for OWFEC

1: Input: N, T,
{

λ1, · · · , λN}, F, CR, η, pm, nr, δ, γ, C, Rmax;
2: Output: EP;
3: Initialize EP as EP← ∅; (19);
4: Set B(i) to indices of the T closest weight vectors to λi∀i ∈ {1, · · · , N};
5: Set P to initial solutions

{
x1, · · · , xN};

6: Evaluate ∀x ∈ P ;
7: Initialize zj as zj ← minx∈P f j(x)∀j ∈ {1, · · · , M};
8: Initialize A as A ← P ;
9: While termination criteria are not met do
10: for i = 1 to N do
11: Build surrogate as c∗i (x)←model-construction

(
A, λi

)
;

12: Set P; (23);
13: Generate Y i as Y i ← solution-generation

(
P , P, c∗i (x)

)
; (24–25);

14: Evaluate Y i; (8–13, 20)

15: Update zj ←min
{

zj, f j

(
Y i
)}
∀j ∈ {1, · · · , M}; (22)

16: Randomly shuffle indices of P;
17: count←0;
18: for each j ∈P do
19: if g

(
Y i
∣∣∣λj, z

)
≤ g

(
xj
∣∣∣λj, z

)
and count < nr then

20: xj ← Y i ;
21: count← count+1;
22: end if
23: end for
24: Update A as A∪

{
Y i
}

;

25: Remove from EP all the solutions dominated by Y i;
26: Add Y i to EP if Y i is the Pareto solution in EP;
27: End for
28: End while

Algorithm 2: Model-Construction

1: Di, Ci ← ∅,∅ ;
2: for each k ∈ B(i) do
3: x∗k ← arg minx∈A∧x/∈Ci

g
(

x
∣∣∣λk, z

)
;

4: Ci ← Ci ∪
{

x∗k
}

;
5: end for
6: for each x ∈ A do
7: if x ∈ Ci then
8: Di ← Di ∪ {(x,+1)} ;
9: else
10: Di ← Di ∪ {(x,−1)} ;
11: end if
12: end for
13: c∗i (x)← build the decision f unction trained with Di ;
14: return c∗i (x)

In Algorithm 3, we use the model to predict whether the candidate solution has the
positive class. If there is still no positive predictive solution after the maximum repeat time
Rmax is reached, we will select some points closest to a decision boundary drawn by c∗i (x)
among the existing solutions to make our solution close to the optimal solution plane.
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Algorithm 3: Solution-Generation

1: Yi ← ∅ ;
2: for r = 0 to Rmax do
3: Ŷ i ← generate a candidate ;

4: if c∗i
(
Ŷ i
)
= +1 then

5: Y i ← Ŷ i ;
6: return Y i;
7: else
8: Yi ← Yi ∪

{
Ŷ i
}

;

9: end if
10: end for
11: Y i ← arg maxŶ i∈Yi

d∗i
(
Ŷ i
)

;

12: return Y i

3.4. Overall Execution Procedure

To this end, the overall execution procedure of wind power dispatching optimization-
based MCEAD is depicted in Figure 3.

Energies 2023, 16, x FOR PEER REVIEW 12 of 23 
 

 

Start

Initialize the algorithm parameters

Initialize the pitch angle and tip speed ratio of the fan (19)

Calculate the corresponding objective function value

Update a weight vector to each subproblem (22)

Each subproblem crosses and mutates in the neighborhood individual (23–25)

Solving non inferior sets with SVM classifier

The solutions are evaluated according to the fitness value (8–13、20)

Update parent population according to aggregation function

Optimal output power and the standard deviation of turbulence intensity

Yes 

No 

𝑘 = 1 

𝑘 = 𝑘 + 1 

End

𝑘 < 𝑘𝑚𝑎𝑥 ? 

 
Figure 3. Overall execution procedure of wind power dispatching optimization-based MCEAD. 

3.5. Best-Compromise Solution 
In practice, the final implementation of the scheme is usually only one; therefore, the 

decisionmaker needs to choose an optimal compromise solution from the Pareto optimal 
solution set. Here, the optimum compromise solution can be determined according to the 
fuzzy set theory. The satisfaction degree corresponding to each objective function in each 
Pareto solution can be expressed by the fuzzy membership function, which is defined as 
follows: 

ℎ =  ⎩⎪⎨
⎪⎧ 1 𝑓 ≤ 𝑓𝑓 − 𝑓𝑓 − 𝑓 𝑓 > 𝑓 > 𝑓0 𝑓 ≥ 𝑓  (27)

where 𝑖 ∈ 1,2, ⋯ , 𝑁 ; 𝑓  is the objective function; 𝑁  is the number of the objective 
function; and 𝑓  and 𝑓  are the maximum and minimum values of the 𝑖th objective 
function, respectively. When ℎ  is 0 or 1, the 𝑖th objective function value is completely 
dissatisfied or completely satisfied, respectively. The standardization satisfaction degree 
of each solution in the Pareto solution set can be obtained as follows: ℎ = 1𝑁  (28) 

4. Case Studies 
The proposed wind power dispatching optimization model with MCEAD algorithm 

is evaluated in this section. Three simulations are used to illustrate the optimization effects 

Figure 3. Overall execution procedure of wind power dispatching optimization-based MCEAD.

3.5. Best-Compromise Solution

In practice, the final implementation of the scheme is usually only one; therefore, the
decisionmaker needs to choose an optimal compromise solution from the Pareto optimal
solution set. Here, the optimum compromise solution can be determined according to
the fuzzy set theory. The satisfaction degree corresponding to each objective function in
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each Pareto solution can be expressed by the fuzzy membership function, which is defined
as follows:

hi =


1 fi ≤ f min

i
f max
i − fi

f max
i − f min

i
f max
i > fi > f min

i

0 fi ≥ f max
i

(27)

where i ∈
{

1, 2, · · · , Nobj

}
; fi is the objective function; Nobj is the number of the objective

function; and f max
i and f min

i are the maximum and minimum values of the ith objective
function, respectively. When hi is 0 or 1, the ith objective function value is completely
dissatisfied or completely satisfied, respectively. The standardization satisfaction degree of
each solution in the Pareto solution set can be obtained as follows:

h =
1

Nobj
(28)

4. Case Studies

The proposed wind power dispatching optimization model with MCEAD algorithm
is evaluated in this section. Three simulations are used to illustrate the optimization effects
of different algorithms, including NSGA, MOPSO, SPEA2, MOGWO, MOEADDE, and
NSGAIII. Specifically, the Pareto solution set of OWFEC can be obtained by using different
algorithms under different incoming wind directions (including spatial evaluation method,
super volume index, solution set coverage, etc.). Then, the compromise solution, average
value, and minimum value of each solution set are visually displayed as the optimization
results of each algorithm. Meanwhile, the average value of each solution set is placed in the
Pareto solution set determined by MCEAD for comparison. In case 1, we consider 10 WTs
under 90◦ and 270◦ inflow wind directions. Similarly, 50 WTs with the incoming wind
directions 10◦ and 100◦ are tested in case 2. In case 3, the number of fans has changed to
100, and the dimension of decision-making space has been increased many times compared
to the first two cases. In addition to similar results in the previous cases, the operation time
has also been compared in case 3. Some parameters in the simulations are set as shown in
Table 2.

Table 2. The main parameters of OWFEC for each Case.

Parameters Value

Number of fans
10 (Case 1)
50 (Case 2)

100 (Case 3)

Wind wheel radius (m) 33 (Case 1)
30.5 (Case 2 and 3)

Wind wheel speed (rad/s) 3.5
Rated wind speed (m/s) 12

Decay coefficient 0.04
Spacing between fans (m) 300

Pr (kW)
15 (Case 1)
75 (Case 2)

150 (Case 3)

Population number 100 (Case 1)
200 (Case 2 and 3)

Number of iterations 50

The specific test results are shown as follows:
1. In case 1, 10 fans are uniformly arranged with the given wind speed and fan rotation

angular velocity. The OWFEC is explored by changing the inflow wind speed, as the inflow
angle has a great influence on the output power and fatigue damage of the fan, with the
simulation results being shown in Figure 4. This shows the MCEAD has the most beautiful
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Pareto preface in solving the model, in which its convergence speed and solution diversity
are better. In addition, it can find a better compromise solution within the target time, and
realize the collective optimization of two objectives. The specific test data are shown in
Table 3.
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Table 3. Run results of different algorithms for 10 fans under 90◦ and 270◦ inflow wind direction.

Wind
Direction (◦) Algorithm

Best-Compromise Solution Average Value Minimum Value
Spacing HV

f1 (MW) f2 f1 (MW) f2 f1 (MW) f2

90◦

NSGA 8.4576 0.0270 8.1724 0.0542 7.9490 0.0270 0.0057 1.4971
MCEAD 8.1534 0.0302 7.7882 0.0860 7.6732 0.0302 0.0051 2.1077
MOGWO 8.6679 0.0114 8.4577 0.0233 8.0823 0.0114 0.0078 1.3859
MOPSO 8.2722 0.0469 8.0008 0.0760 7.8276 0.0469 0.0025 1.5841
SPEA2 8.2870 0.0157 8.0124 0.0506 7.7533 0.0157 0.0032 1.7009

MOEADDE 8.4100 0.0214 7.8764 0.0823 7.7647 0.0241 0.0195 1.6794
NSGAIII 8.3760 0.0199 7.9557 0.0657 7.7638 0.0199 0.0103 1.6827

270◦

NSGA 8.5321 0.0103 8.1780 0.0484 7.9226 0.0103 0.0104 1.5417
MCEAD 8.2065 0.0299 7.8030 0.0874 7.6999 0.0300 0.0054 1.7316
MOGWO 8.4835 0.0204 8.3912 0.0279 8.0127 0.0204 0.0077 1.4456
MOPSO 8.3861 0.0265 8.0660 0.0523 7.8692 0.0265 0.0044 1.5774
SPEA2 8.2409 0.0253 7.9505 0.0640 7.7737 0.0253 0.0040 1.6688

MOEADDE 8.7874 0.0218 7.8826 0.0890 7.7585 0.0218 0.0427 1.6784
NSGAIII 8.2065 0.0300 7.8030 0.0874 7.6999 0.0300 0.0054 1.6816

In Table 3, the spacing value of MCEAD is almost equal to 0, which is smaller than
that obtained by other algorithms. This indicates that the solution set of MCEAD is more
evenly-distributed in the target space. Meanwhile, the vector [9.5 1] is selected as the
reference vector, and its hypervolume is the largest, indicating that it is closer to the ideal
Pareto front. The compromise solution, average value, and minimum value obtained by
each algorithm are shown as Figure 5. In addition, the Pareto solution set obtained by
MCEAD is taken as the benchmark solution, and the average value of solution sets of each
group is compared in Figure 6.
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Next, the inflow direction is changed to 270◦, while other operating conditions are
maintained. In this case, MCEAD also has the largest hypervolume. The compromise
solution, average value, and minimum value obtained by each algorithm are shown in
Figure 7. Similarly, based on the Pareto front of MCEAD, the average solution distribution
of each algorithm is shown in Figure 8. It can be seen that the average value of MCEAD is
the closest to the reference value, meaning it can capture a better solution for the overall
power generation process of the wind turbine. In addition, the coverage of the C-metric
solution set obtained by each algorithm is shown in Table 4, in which the solution set
generated by MCEAD is better than those obtained by other algorithms. Overall, MCEAD
remains optimal in searching for an optimal solution to the OWFEC problem, even if the
inflow wind direction is changed;
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Table 4. Comparison of C-metric solution sets obtained by each algorithm.

Wind
Direction (◦)

Compare
Objects NSGA MOGWO MOPSO SPEA2 MOOEADDE NSGAIII

90◦
C (A, B) 0.9143 0.1500 1 0.1700 0.9462 0.7600
C (B, A) 0 0 0 0.4587 0.0046 0.0413

270◦
C (A, B) 0.6857 0.2400 0.9200 0.9000 0.9789 1
C (B, A) 0 0 0 0.0044 0 0

Note: A represents the solution set of MCEAD algorithm, and B represents the solution set of other algorithms;
when C (A, B) is greater than C (B, A), it means that Pareto solution set A is better than B for the same problem.

2. In case 2, the number of fans is increased to 50 and the inflow wind speed angle β
is set as 10◦ or 100◦, while other conditions are unchanged from case 1. When the inflow
wind speed angle β is 10◦, the output results of fan output power and standard deviation
of comprehensive fatigue coefficient optimized by these five algorithms are as shown in
Figure 9. Comparison results are in Figure 10, with the angle of inflow wind speed adjusted
to 100◦.
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It can be seen from the above two test charts that MCEAD can always capture larger
output power and smaller standard deviation, even if the inflow wind direction is changed.
MCEAD shows better convergence speed and stability for optimizing high-dimensional
multi-objective problems. This is because adding an agent model can greatly shorten
optimization time when optimizing high-dimensional optimization problems, leading
to the optimization results being more prominent than other traditional multi-objective
algorithms. The specific test data are shown in Table 5. The solution set of MCEAD has a
much larger HV than that of other algorithms, which shows the superiority of MCEAD in
solving this bi-objective optimization problem. From the results, we can also see that the
change in target 2 is generally small, so we can focus on comparing the change range of
target 1, as shown Figure 11. Figure 12 shows the comparison of power difference captured
by different algorithms relative to MCEAD. The coverage of the C-metric solution set
obtained by each algorithm under 10◦ inflow direction is shown in Table 6, which shows
that the solution set obtained by MCEAD is more dominant than all other test algorithms;

Table 5. Run results of different algorithms for 50 fans under 10◦ and 100◦ inflow wind direction.

Wind
Direction (◦) Algorithm

Best-Compromise Solution Average Value Minimum Value
Spacing HVf1 (MW) f2 f1 (MW) f2 f1 (MW) f2

10◦

NSGA 33.5481 0.4385 32.3184 0.4495 31.0872 0.4385 0.0178 6.1002
MCEAD 32.7725 0.4453 27.8147 0.4899 25.2341 0.4453 0.0030 9.0438
MOGWO 30.9756 0.4615 30.8464 0.4627 30.6954 0.4615 0.0074 6.0866
MOPSO 31.5286 0.4565 31.5286 0.4565 31.0694 0.4525 0.0023 5.9811
SPEA2 38.6547 0.3928 34.5427 0.4296 30.3903 0.3928 0.0219 6.7422

MOEADDE 33.8762 0.4355 29.2674 0.4768 28.9505 0.4355 0.1449 7.2399

100◦

NSGA 29.3697 0.4749 28.2142 0.4852 26.9804 0.4749 0.0118 7.8611
MCEAD 28.1785 0.4854 23.9225 0.5235 20.9216 0.4855 0.0017 10.5824
MOGWO 29.3631 0.4751 28.8667 0.4795 28.2334 0.4750 0.0141 7.2210
MOPSO 29.3356 0.4752 29.2265 0.4761 29.1167 0.4751 0.0028 6.7616
SPEA2 33.5379 0.4377 29.0723 0.4775 25.0409 0.4377 0.0507 9.2101

MOEADDE 29.0214 0.4780 24.8235 0.5155 24.3680 0.4780 0.1769 7.2399
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Figure 11. Comparison diagram of target 1 by 50 fans under 10◦ inflow direction.
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Figure 12. Difference of captured power under different algorithms by 50 fans (10◦).

Table 6. Comparison of C-metric solution sets obtained by each algorithm.

Compare
Objects NSGA MOGWO MOPSO SPEA2 MOOEADDE

C (A, B) 0.1286 0.7900 0.4850 0.1250 0.0166
C (B, A) 1.9932 × 10−4 0 0 0 0

Note: A represents the solution set of MCEAD algorithm, and B represents the solution set of other algorithms;
when C (A, B) is greater than C (B, A), it means that Pareto solution set A is better than B for the same problem.

3. In case 3, the number of fans is increased to 100, while the parameter settings are set
as the same as those of the previous 50 fans. The comparison diagram of the final algorithm
test results is shown in Figure 13. From the above results, we know that a better solution
set of two targets can be found by MCEAD; the specific test data are shown in Table 7.
Comparison diagram of target 1 with 100 fans under 10◦ inflow wind direction and different
evaluating parameters for 100 fans under 10◦ inflow wind direction are represented in
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Figures 14 and 15, respectively. The HV of the solution set obtained by MCEAD is 7.5143,
which is far greater than that obtained by other algorithms. Compared with the operation of
the first 10 and 50 fans, the dimension of 100 fans increases several times, and the MCEAD
operation results show greater advantages, which implies the MCEAD is more proficient
in dealing with higher-dimensional optimization problems. In addition, MOGWO cannot
find a suitable Pareto solution set with the same population number and iteration number.
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Figure 13. Comparison of Pareto front by different multi-objective optimization algorithms for
model solving.

Table 7. Run results of different algorithms for 100 fans under 10◦ inflow wind direction.

Algorithm
Best-Compromise Solution Average Value Minimum Value

Spacing HV
f1 (MW) f2 f1 (MW) f2 f1 (MW) f2

NSGA 76.5911 0.3974 74.6424 0.4062 72.5716 0.3974 0.0472 4.4384
MCEAD 74.1414 0.4085 69.8633 0.4279 67.1066 0.4084 0.0070 7.5143
MOGWO — — — — — — — —
MOPSO 73.1003 0.4132 73.0380 0.4136 72.9681 0.4133 0.0034 4.1256
SPEA2 79.5391 0.3841 76.5689 0.3976 73.9552 0.3841 0.0115 3.6514

MOEADDE 73.9282 0.4095 70.4324 0.4253 70.2278 0.4094 0.1616 5.7311

MCEAD shows greater advantages for solving such high latitude problems. A good
Pareto optimal solution can be found even if the population number or the number of
iterations is reduced, which further reduces the time cost. After reducing the number of
corresponding populations and iterations, we can get the following results in Table 8.
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Figure 14. Comparison diagram of target 1 by 100 fans under 10◦ inflow wind direction.
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Figure 15. Capture power comparison under different algorithms (10◦).

From Table 8, we can draw the conclusion that MCEAD needs more time when solving
high-dimensional problems with the same population and number of iterations. We can
always obtain a better solution set than with other algorithms, with faster convergence
speed and bigger hypervolume, even if our function evaluations are reduced. This implies
that the improved algorithm has more advantages in dealing with double-objective opti-
mization problems such as OWFEC. The more fans, the more obvious the advantages of
this algorithm.
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Table 8. Comparison of different evaluating parameters for 100 fans under 10◦ inflow wind direction.

Algorithm Population
Number Iterations FEs

Average Value Time Cost
(mins) HV

f1 (MW) f2

NSGA 200 50 10,000 74.6424 0.4062 75.79 4.4384

MCEAD

200 50 10,000 69.8633 0.4279 192.73 7.5143
150 50 7500 70.0236 0.3965 90.09 7.3912
100 50 5000 71.5648 0.4029 51.43 7.1648
50 50 2500 72.3229 0.4138 26.02 6.8562

MOGWO 400 100 10,000 74.1593 0.4087 338.89 3.6443

MOPSO 200 50 10,000 73.0380 0.4136 83.12 4.1256

SPEA2 200 50 10,000 76.5689 0.3976 85.40 3.6514

MOEADDE 200 50 10,000 70.4324 0.4253 76.20 5.7311

5. Conclusions

A novel bi-objective OWFEC model is proposed in this paper for maximizing wind
power output and balancing fatigue load distribution simultaneously. The decomposition-
based multi-classifier-assisted evolutionary algorithm (MCEAD) with faster and more
stable convergence characteristics is used to find the optimal solution of the proposed
model. Based on simulation studies, it is concluded that the proposed OWFEC model
can be optimized to an appropriate solution, which reaches an equilibrium solution with
more wind output power and lower standard deviation of the comprehensive fatigue
coefficient. In addition, the effectiveness and advantages of high-speed and high-quality
convergence of MCEAD are verified, which help the proposed model greatly improve the
energy capture and economic benefits of the whole wind farm. Compared with traditional
algorithms (NSGA, MOGWO, MOPSO, SPEA2, and MOEADDE) for three different scales
of wind farms, both the average energy output captured and standard deviation of compre-
hensive fatigue coefficient of MCEAD are considerably better, and the high-dimensional
optimization problem is solved better. Lastly, MCEAD reduces the maximum evaluation
coefficient several times in solving the two-objective optimization problem for obtaining
similar quality target solutions, which lowers various costs. The future work involves two
main problems: (1) How to improve the feasibility of the algorithm in practice when larger
scale wind farms are incorporated; (2) How to extend static day-ahead optimization to
dynamic optimization of wind power generation prediction, to make the whole wind power
system more stable and safer. In subsequent studies, the day-ahead optimization model
can be extended to intraday optimization, which occurs each hour, every five minutes, or
a shorter time, with dynamic optimization throughout the day [38–40]. The day-ahead
optimization schedules most of the power output, while the intraday optimization acts as
a compensation to deal with real time uncertainties. They are encouraged to be used in
cooperation to improve the operational efficiency of wind farms.
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