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Abstract: This study proposes an optimal scheduling method for complex integrated energy sys-
tems. The proposed method employs a heuristic algorithm to maximize its energy, economy, and
environment indices and optimize the system operation plan. It uses the k-means combined with
box plots (Imk-means) to improve the convergence speed of the heuristic algorithm by forming its
initial conditions. Thus, the optimization scheduling speed is enhanced. First of all, considering the
system source and load factors, the Imk-means is presented to find the typical and extreme days in a
historical optimization dataset. The output results for these typical and extreme days can represent
common and abnormal optimization results, respectively. Thus, based on the representative historical
data, a traditional heuristic algorithm with an initial solution set, such as the genetic algorithm, can
be accelerated greatly. Secondly, the initial populations of the genetic algorithm are dispersed at the
historical outputs of the typical and extreme days, and many random populations are supplemented
simultaneously. Finally, the improved genetic algorithm performs the solution process faster to find
optimal results and can possibly prevent the results from falling into local optima. A case study was
conducted to verify the effectiveness of the proposed method. The results show that the proposed
method can decrease the running time by up to 89.29% at the most, and 72.68% on average, compared
with the traditional genetic algorithm. Meanwhile, the proposed method has a slightly increased
optimization index, indicating no loss of optimization accuracy during acceleration. It can also
indicate that the proposed method does not fall into local optima, as it has fewer iterations.

Keywords: integrated energy system; k-means cluster; optimization acceleration; optimal scheduling

1. Introduction

In recent years, with the rapid development of industry, the world is facing increas-
ingly serious energy shortages and environmental pollution problems [1]. To alleviate
these serious problems, the use of integrated energy systems (IESs) that can combine the
advantages of safety, stability, high efficiency, and low carbon emissions has become an
inevitable trend [2,3]. IESs can integrate multiple energy types and energy equipment to
promote the coordinated supply of different energy sources [4]. In addition, IESs can also
achieve cascade energy utilization, thereby improving the efficiency of renewable energy
and reducing environmental pollution [5].

Advanced energy management technology is a fundamental prerequisite for the
efficient and stable operation of IESs [6], and it has become the focus of current academic
research [7]. Many scholars use heuristic algorithms, such as the genetic algorithm (GA)
or particle swarm optimization, to solve the optimal operation problems. Zhang et al. [8]
presented a two-stage operation optimization method of IESs by using GA to optimize
demand curves within customer comfort requirements. Compared with the traditional
method, this method reduced operating costs by 3.6%. Jiang et al. [9] used GA with
an elite retention strategy to solve an IES operation optimization model to minimize
operating costs. This could reduce the system cost by 7.85% without causing environmental
pollution, as well as improve the energy efficiency. To optimize the energy cost of building
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operation, Kamal et al. [10] used a multi-objective GA to find the best operating strategy,
enabling consumers to save 10–17% of their costs each year. Li et al. [11] proposed a hybrid
optimization method, using GA to optimize the hourly set value of power generation
equipment. The results showed that the overall performance of this method was 1.92%
better in summer and 1.91% better in winter compared with the traditional GA. Liu et al. [12]
developed an IES dynamic optimization strategy based on GA, which can find the optimal
transient coefficient of performance. However, this method is relatively complex, and takes
4980 s in the preprocessing stage. Zhao et al. [13] proposed a power system scheduling
strategy based on a heuristic algorithm, and it can significantly reduce carbon dioxide
emissions, primary energy consumption, and operating costs. This method needs to
perform approximately 2,304,000 cooling and power generation simulations for 24 h, and
there are cases that need more simulations and time. These optimal scheduling strategies
can basically realize the stable and efficient operation of IESs. However, almost any heuristic
algorithm uses a randomly generated initial solution set and requires constant iterative
calculation until convergence. The optimal scheduling of IESs is characterized by complex
nonlinear constraints and a large number of optimization variables. In particular, the
energy storage unit also aggravates the complexity of IESs to a higher level and increases
the difficulty of operation optimization [14]. These characteristics mean that the above
methods take a longer time to solve optimization problems.

At present, to increase the convergence speed of optimization algorithms, many
scholars use the historical data of typical or extreme periods (e.g., days or weeks) as the
initial solution set of heuristic algorithms [15]. The clustering algorithm is an effective
method for selecting typical and extreme periods. It divides similar profiles into clusters
according to periods and then defines a representative period for each cluster [16].

To find typical periods (common values in historical data), Elsido et al. [17] used
heating demand and ambient temperature to find typical periods for a heating network
problem in medium-scale areas, and used them as a reference factor to evaluate annual
operating costs. Li et al. [18] studied a regional IES partition optimization design method
based on the clustering algorithm. This method used k-means to cluster the electricity,
heating, and cooling demands, as well as the gas loads, of each building. Yeganefar et al. [19]
used electricity load and electricity demand as reference factors for screening typical periods
and improved the selection of the typical days of a power system. Poncelet et al. [20]
first selected a small number of required representative periods and then used clustering
methods to calculate and derive typical periods based on electrical load, photovoltaic
power, and wind power, thus reducing the computational cost of selecting typical periods.
Its accuracy is not high, because the number of original datasets in this method is small and
artificially selected. The typical period selection methods used in most studies only use
2–3 influencing factors. For IESs, optimal scheduling is not only affected by the demands of
cooling, heating, and power on the user side, but also has a lot to do with new energy power
generation. If more clustering reference conditions and appropriate clustering methods are
used, the speed and accuracy of optimization can be improved [21].

Some researchers chose the cycles with special data (e.g., peak values) as the extreme
periods (abnormal values in historical data) [22]. This method only considers the peak
values of a certain factor as extreme periods, and is more effective for single-factor clustering
algorithms. However, it is not suitable for multi-factor clustering. Thus, the influence of
other clustering factors on the results is ignored. For the multi-factor clustering algorithm,
some researchers have developed algorithms that could add extreme periods to input
datasets in an iterative manner [23]. For cases with a large amount of data, this iterative
extreme period search method may take a lot of time because the actual extreme period
may be only found in the last iteration. Zatti et al. [24] proposed an optimization-based
method whose purpose is to select typical and extreme periods more accurately and
systematically; the influencing factors included power, cooling, and heating. Due to the
relative limitations of the considered factors, the method’s accuracy may be relatively poor
in special scenarios. Li et al. [25] predicted the long-term maximum power demand of
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substations and conducted extreme daily searches of the forecasting process. The authors
used clustering to model three common factors required by utility companies: number of
customers, average demand, and installed photovoltaic capacity. In the images generated
using this processing method, the points at which uneven areas appear were defined as
extreme days. Sigauke et al. [26] analyzed the frequency of non-winter extreme electricity
consumption peaks in South Africa. To improve the screening speed, the authors only
clustered the excess parts that exceeded the power threshold on the basis of considering
the demands of cooling, heating, and electricity. Although the optimization speed was
significantly improved, the optimization accuracy was reduced due to a relatively small
amount of data. Similar to the choice of typical periods, the choice of extreme periods also
has the problem of fewer reference factors. According to current studies, most researchers
tended to use the empirical method to select extreme periods, so the influence of subjective
factors is relatively large.

In conclusion, at this stage, there are not enough clustering reference attributes to
select the typical and extreme periods of IESs. At the same time, the selection of extreme
periods mostly uses the peak value method or empirical method, making the results less
comprehensive or subject to human influence. In addition, the calculation speed and
accuracy of some optimization methods are not balanced, resulting in poor overall results.

This paper attempts an increase in optimizing speed without losing accuracy for the
scheduling method for complex IESs. The optimization model is established based on
energy, economic, and environmental evaluation indicators. An improved GA is proposed
to solve this and obtain the optimal operation plan of each device. More specifically, the
historical operation data of an IES are clustered using the k-means combined with box
plots (Imk-means) clustering method, considering both the source (photovoltaic power and
wind power) and load (cooling, heating, and electricity demands) factors. Its cluster results
are used as a part of the initial feasible solution set of the GA to accelerate the convergence
speed of the optimization process. At the same time, some random initial feasible solutions
are employed to prevent the optimization from falling into local optima. Case studies are
conducted to verify the effectiveness of the proposed method.

2. System Statement
2.1. Structure of IES

The structure of an IES with thermal energy storage (TES) is shown in Figure 1 [13].
The power generation unit (PGU) is the core component of this system, and uses natural
gas to generate electricity. Photovoltaic power (PV) and wind power (WP) are employed to
generate electricity. The system can also purchase electricity from the power grid to ensure
the balance of energy supply and demand, and the excess electricity generated by the PGU,
PV, and WP can be sold to the grid. The waste heat from the PGU is directly supplied
for the heat demands of users or drives an absorption chiller (AC) for cooling. The TES
can store the surplus heat energy and releases it according to the heat balance. If the heat
supply is insufficient, a gas boiler (GB) will be used. Similarly, if cooling is insufficient, an
electric chiller (EC) can complement it.

2.2. Energy Flow Analysis

Before analyzing the energy flow, it is necessary to clarify the operating parameters of
each device. The standard characteristic data of a naturally aspirated small unit are used as
an example [27]. The electricity balance of the IES can be expressed as follows:

E(t) = Epgu(t) + Epv(t) + Ewp(t) + Egrid(t)− Eech(t) (1)

where E(t) is the electricity load in the period t; Epv(t), Ewp(t), and Epgu(t) denote the out-
put power values of PV, WP, and PGU, respectively; Egrid(t) is the purchased (Egrid(t) > 0)
or sold (Egrid(t) < 0) electrical energy from or to the grid; and Eech(t) is the input power of
the EC.
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Figure 1. Structure and energy flow of IES with TES. 
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Due to the fluctuations in renewable energy generation, the PGU generally operates
in the off-design performance mode. Hence, the natural gas consumption of the PGU is
calculated as follows:

Gpgu(t) =
Epgu(t)

ηth(t)ηe(t)
(2)

where ηth(t) and ηe(t) represent the thermal and electrical efficiencies of the PGU in a
period t, respectively. They are related to the part–load ratio of the PGU, which can be
formulated as follows [11]:

ηth(t) = a0 + a1PLRpgu(t) + a2PLR2
pgu(t) (3)

ηe(t) = b0 + b1PLRpgu(t) + b2PLR2
pgu(t) (4)

where a and b represent the coefficients of the polynomials.
Then, the heating balance of the IES can be expressed as:

Q(t) + Qach(t) + Qtes(t) = Qhe(t) + Qb(t) (5)

where Q(t) is the heating load; Qach(t) is the input power of the AC; Qtes(t) is the stored
or released heat by the TES; Qhe(t) is the heat recovered by the heat exchangers from the
PGU; and Qb(t) is the output heat of the GB. The redundant heat generated by the system
is stored in the TES. If the stored heat reaches a certain value, the TES releases heat, so
Qtes(t) can be expressed as:

Qtes(t) =
{

Qex(t) Vtes(t) < ω
−ω Vtes(t) ≥ ω

(6)

where Qex(t) is the redundant thermal energy, Vtes(t) is the TES volume at time t, and ω is
the release threshold. The recovered heat Qhe(t) by the heat exchangers from the PGU can
be calculated as follows:

Qhe(t) = Qrh(t)ηhe (7)

where ηhe is the heat exchanger efficiency, and Qrh(t) is the recovered waste heat.
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The cooling balance of the IES can be expressed as follows:

C(t) = Cach(t) + Cech(t) (8)

where C(t) is the cooling load, and Cach(t) and Cech(t) are the output of the AC and EC,
respectively. Cach(t) is produced by converting the recovered waste heat as follows:

Cach(t) = Qach(t)COPac(t) (9)

Similar to the PGU, the AC also runs in the off-design performance mode, so COPac(t)
is calculated as follows [11]:

COPac(t) = c0 + c1PLRpgu(t) + c2PLR2
pgu(t) (10)

where c represents the polynomial coefficients.

3. Formulation of the Optimization Problem

The main function of optimal scheduling considered in this paper can be described
as follows.

Given: Optimized objective function; scheduling constraints; target area parameters;
device parameters; hourly profiles within a selected period of 24 h, including predicted
energy consumption, natural resources, and energy prices; historical data of the target area,
including energy consumption, natural resources, and relevant weather parameters.

Determine: Maximize the optimized objective function and obtain the hourly output
plan of each device within 24 h.

3.1. Objective Function

Energy, economic, and environmental indices are usually used to evaluate the per-
formance of IESs. These three aspects correspond to the primary energy saving ratio
(PESR), cost-saving ratio (CSR), and carbon dioxide emission reduction ratio (CDERR) of
IESs compared with separate production (SP) systems, respectively [28,29]. Usually, the
optimal scheduling method takes each day as a cycle, so the three indices also take a day as
their units.

The energy objective is defined as follows:

IPESR,day =
FSP

PESR,day − FIES
PESR,day

FSP
PESR,day

(11)

where FSP
PESR,day and FIES

PESR,day denote the daily energy consumptions of the SP system and
IES, respectively, and they can be calculated by:

FSP
PESR = ∑24

t=1

ESP
gb (t)

ηTPηGR
(12)

FIES
PESR,day = ∑24

t=1

{
EIES

gb (t)

ηTPηGRv
+

GIES
gas (t)

v

}
(13)

where EIES
gb (t) and ESP

gb (t) denote the purchased electrical power of the IES and SP system,
respectively; ηTP is the power generation efficiency of the power station; ηGR is the line
transmission efficiency of the grid; v is a standard coal conversion factor; and GIES

gas (t) is the
fuel consumption of IES in period t. GIES

gas (t) can be expressed as:

GIES
gas (t) = GIES

pgu(t) + GIES
b (t) (14)
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The economic objective is defined as follows:

ICSR,day =
CSSP,day − CSIES,day

CSSP,day
(15)

where CSSP,day and CSIES,day are the daily operating costs of the SP system and IES, respec-
tively. They can be calculated by:

CSSP,day = ∑24
t=1

{
Kgb(t)ESP

gb (t) + µgasGSP
b (t)

}
(16)

CSIES,day = ∑24
t=1

{
Kgb(t)EIES

gb (t)− Kgs(t)EIES
gs (t) + µgasGIES

gas (t)
}

(17)

where Kgb(t) and Kgs(t) denote the prices of the purchased and sold electricity by the grid
at a time t; GSP

b (t) is the input power of the GB in the SP system; GIES
gas (t) is the natural gas

consumption of the IES; and µgas is the price of natural gas.
The environmental objective is defined as follows:

ICDERR,day =
VSP

CDERR,day −V IES
CDERR,day

VSP
CDERR,day

(18)

where VSP
CDERR,day and V IES

CDERR,day denote the daily CO2 emissions of the SP system and IES,
respectively, and they can be calculated by:

VSP
CDERR,day = ∑24

t=1

{
ucESP

gb (t)
}

(19)

V IES
CDERE,day = ∑24

t=1

{
ucEIES

gb (t) + ubGIES
gas (t)

}
(20)

where uc is the CO2 emission coefficient of the coal-fired power grid, and ub is the CO2
emission coefficient of natural gas.

Each of the above energy, economy, and environment indices can be defined as the
optimization objective independently. In this study, to improve the energy, economic, and
environmental performance of IESs simultaneously, the weighted objective I for all three
indices is defined as [29]:

MaxI = α1 IPESR,day + α2 ICSR,day + α3 ICDERR,day (21)

where α1, α2, and α3 denote the weights of the energy, economic, and environmental
objectives, respectively. They need to meet the following conditions:

0 ≤ α1, α2, α3 ≤ 1 (22)

α1 + α2 + α3 = 1 (23)

Without loss of generality, the coefficients can be set at α1 = α2 = α3 = 1/3 [18,29].

3.2. Constrains

Considering the limitations of the device input and output, the following inequalities
must be satisfied:

θpguNpgu ≤ Epgu(t)≤ Npgu or Epgu(t) = 0 (24)

0 ≤ Cech(t)≤ Nech (25)
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θbNb ≤ Qb(t)≤ Nb or Qb(t) = 0 (26)

θachNach ≤ Cach(t)≤ Nach or Cach(t) = 0 (27)

0 ≤ Qtes(t)≤ Ntes (28)

Qtes(t) ≤ |Qtes,max| (29)

where θpgu, θb, and θach denote the minimum load ratios of the PGU, GB, and AC, respec-
tively. This is to prevent the light load operation of the equipment. Qtes,max is the maximum
input/output of the TES, and Npgu,Nech, Nb, Nach, and Ntes are the rated capacities of PGU,
EC, GB, AC, and TES, respectively.

3.3. Optimization Variables

To ensure that the day-ahead optimal scheduling problem can be solved with high
speed, it is extremely important to select appropriate optimization variables. The energy
supply devices of the system include PGU, GB, AC, EC, and TES. If they are all regarded as
optimization variables, the calculation time of the optimization algorithm will be very long.
Therefore, we only selected a part of this as the optimization variables and obtained the rest
of the results according to the energy flow relationship. The main energy supply equipment
PGU and more controllable EC were chosen as the optimized equipment, meaning that
Epgu(t) and Cech(t) are the optimization variables.

4. Optimal Scheduling Method with High Speed

Figure 2 shows the flow chart of the proposed optimal scheduling method, which is
divided into two steps. In the first step, the Imk-means is used to determine the typical and
extreme periods of the historical data. Then, in the second step, the GA is employed to solve
the above optimization problem, in which a part of the initial population is specified using
the results of the first step. It should be noted that the historical optimization results of the
typical and extreme periods determined in the first step are used to replace a small part of
the randomly generated initial population. This part of the initial population can ensure
the rapid convergence of the algorithm, while the remaining random population can also
prevent the optimization from falling into a local optimum [30,31]. Thus, the convergence
of the optimal scheduling algorithm can be accelerated without loss of accuracy. The
optimization process of the second step is closed to a typical GA. The fitness of the GA is
calculated using Equation (21). Therefore, the proposed Imk-means method is explained
detailly in this section.

The optimal scheduling algorithm is to arrange the operation set point of each device
in the next stage within a certain time step. Therefore, when accelerating the optimal
scheduling algorithm, a reasonable selection of typical and extreme periods is very impor-
tant. Before the next period, the operation plan of each device is obtained. In this study, we
take day-ahead optimization as an example, meaning that the optimal scheduling is based
on daily cycles with hourly intervals. To match the day-ahead optimal scheduling, the
typical and extreme periods should also be 24 h periods. In other words, typical days and
extreme days need to be found. Notably, this research method is a general method that can
be used in optimization at any time interval, such as rolling optimization (optimize every
5 min), and is not limited to day-ahead optimization. If the interval time is different, only
the time step h in the formula needs to be adjusted. The optimal scheduling of the IESs is
affected by the cooling, heating, and electricity demands, and the electricity produced by
renewable energy. Therefore, the factors affecting the selection of typical days and extreme
days are load (cooling, heating, and electricity demands) and source (photovoltaic power
generation and WP generation). These factors are our clustering attributes.
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4.1. k-Means Algorithm: Traditional Clustering Method

The k-means algorithm divides all candidates into a given number of categories by
minimizing the distance between the cluster center and the other candidates [32]. This
clustering method has been widely used in the optimization of IESs, especially in the case
of large datasets [19]. The clustering object studied in this paper is the annual energy
consumption and resource data of a certain area, so the k-means algorithm is suitable for
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this purpose. To eliminate the influence of different units of different clustering attributes,
all data need to be standardized, as shown in Equation (30). Then, the Euclidean distance
is used to calculate the distance d(k, j) between the candidates, as shown in Equation (31):

xa,h,i =

∼
xa,h,i −min

∼
xa,h,i

max
∼
xa,h,i −min

∼
xa,h,i

(30)

d(k, j) =

√
∑24

h=1 ∑Na
a=1

(
xa,h,k − xa,h,j

)2
(31)

where x is the normalized value,
∼
x is the original value; xa,h,k represents the k-th clustering

centroid point, and xa,h,j represents each attribute point; subscript h is one hour within 24
h; a is a clustering attribute (here, Na = 5).

Then, the k-means algorithm can be described as follows:

min ∑
Nj
j=1 ∑K

k=1{d(k, j)·z(k, j)} (32)

where K is the number of clusters; Nj is the number of candidates; z(k, j) is a binary variable
that is equal to 1 if the candidate xa,h,j is assigned to the k-th cluster (0 otherwise). To make
sure that each candidate is exactly assigned to a cluster, constraint (33) is added.

z(k, j) = 1∀j ∈
{

1, . . . , Nj
}

(33)

In the k-means algorithm, different values of K result in different clustering results.
Therefore, a reasonable choice of K is very important. The elbow method is a reliable way
to choose K. It trains multiple k-means models and makes calculations within the cluster
sum of squared errors (SSE) by selecting different values of K. If the SSE has a sudden
inflection point, the corresponding K is the optimal number of clusters. SSE can be written
as in Equation (34):

SSE = ∑K
k=1 ∑

Nj
j=1

(
xa,h,j −

−
xk

)2
(34)

where
−
xk is the average of candidates in the k-th cluster.

In this work, the days reaching the peak value of each attribute are set as extreme
days, while the other days corresponding to the clustering centroid points are set as typical
days. In this algorithm, the selection of extreme days only considers a certain clustering
attribute without a comprehensive consideration of all clustering attributes. This means
that the k-means algorithm cannot automatically select typical days and extreme days at
the same time.

4.2. Imk-Means Algorithm: A Clustering Method for Automatically Identifying Typical and
Extreme Days

We developed the Imk-means algorithm that can automatically find typical and ex-
treme days at the same time. It is essentially an improvement and adjustment of the
traditional k-means algorithm combined using box plots. First, to ensure that the method
can automatically select outliers (extreme days) from all candidates, constraint (33) should
be changed as follows:

z(k, j) ≤ 1∀j ∈
{

1, . . . , Nj
}

, (35)

where z(k, j) is a binary variable that is equal to 1 if the candidate xa,h,j is assigned to the
k-th cluster (0 otherwise). The constraint in Equation (35) means that each candidate does
not have to be assigned to a certain cluster, where the extreme days are the candidates
corresponding to z(k, j) (equal to 0). Second, the extreme days need to be determined. The
k-means algorithm is used to obtain the distance data for all candidates. The number of
distance data is

Ndis = Nj − K̂ (36)
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where K̂ is the number of clusters produced by the k-means algorithm. The distance data
are arranged in order of size to determine the positions of Q1 and Q3 as follows:

PQ1 =
Ndis + 1

4
(37)

PQ3 =
3(Ndis + 1)

4
(38)

where Q1 is the 1st quartile corresponding to the position PQ1 , and Q3 is the 3rd quartile
corresponding to the position PQ3 . In statistics, based on Tukey’s test, the abnormal distance
value of a dataset is defined as:

d > Q3 + 1.5(Q3 −Q1) ∪ d < Q1 − 1.5(Q3 −Q1) (39)

The candidates corresponding to the abnormal distance values are the extreme days.
In addition, Equation (40) defines the ultra-abnormal distance values of a dataset as follows:

du > Q3 + 3(Q3 −Q1) ∪ du < Q1 − 3(Q3 −Q1). (40)

The candidates corresponding to the ultra-abnormal distance values are the ultra-
extreme days. To exclude the extreme days from the cluster candidates, constraint (41)
needs to be added:

Nd = Nj − Nex (41)

where Nd is the number of candidates that need to be clustered, from which the typical
days are selected; Nex is the number of extreme days. Then, the selection of typical days
can be expressed by:

SSE = ∑K
k=1 ∑Nd

j=1

(
xa,h,j −

−
xk

)2
(42)

min∑Nd
j=1 ∑K

k=1{d(k, j)·z(k, j)} (43)

Equation (42) is used to determine K, and the clustering centroid points selected by
Equation (43) are typical days.

Therefore, the Imk-means method can automatically find typical days and extreme
days at the same time. Unlike the traditional k-means algorithm, the calculation of d
includes all the clustering attributes, so the extreme days found based on d also fully
consider the impact of all the clustering attributes, which makes the choice of extreme days
more reasonable. Figure 3 shows the process of the Imk-means method.
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5. Case Study
5.1. Description of the Datasets

A hypothetical building in Jinan City was used to verify the proposed optimal schedul-
ing method with high speed. The one-year time series of the relevant attributes (normalized
between 0 and 1) is shown in Figure 4. The data collection interval was 1 h. These data
were simulated using EnergyPlus (a software for building energy usage simulations) [33].
The following three major remarks can be made on these time series. The total electricity
demand is relatively stable compared with the other attributes due to the office’s properties
and the geographic characteristics of the building. Since Jinan has four distinct seasons, the
seasonality of the cooling and heating demands is obvious. Photovoltaic power generation
reaches its peak in summer and supplements the electricity demand for cooling. The five
types of relevant attributes are divided by day, and the daily data are composed of these
relevant attributes, which are combined into 120-dimensional variables as input variables
for clustering.
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5.2. Resource Data Clustering and Analysis

This section analyzes the processed source data. First, the number of clusters was
determined by the SSE curve, and then the typical days and extreme days were determined
using the proposed Imk-means algorithm. Figure 5 shows the SSE curve of the resource
data. The sudden inflection point appears at n = 3, and then the curve flattens out. Therefore,
when the k-means algorithm was used for clustering to obtain distance data, the initial
centroid of mass was set to 3.
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Table 1. Results of the box plots.

Parameter Value

Q1 1.03696507
Q3 1.42307279
d 2.00223437

du 2.58139595

Through the data in Table 1, the distance threshold could be obtained to filter out the
extreme days. After removing the extreme days from the original database, the SSE curve
was recalculated, as shown in Figure 7.
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As shown in Figure 7, the sudden inflection point appears at n = 3. Therefore, when the
Imk-means algorithm was used for clustering to obtain typical and extreme days, the initial
centroid of mass was set to 3. Table 2 lists the size of each cluster and the extreme days.

Table 2. Sizes of the results.

Parameter Size

Cluster 1 174
Cluster 2 38
Cluster 3 118

Extreme days 35

Figure 8 shows the normalized plots of the typical days selected by different ap-
proaches. The proposed Imk-means clustering algorithm in this paper is compared with
the other two clustering methods, which only consider a single factor. Among them, there
are three typical days: TD1–TD3. The selection of typical days used three methods from top
to bottom as follows: (a) Imk-means clustering algorithm: the clustering attributes include
cooling, heating, and electricity demands, as well as photovoltaic and WP; (b) K-means
clustering algorithm where the clustering attribute is the cooling demand only; (c) K-means
clustering algorithm where the clustering attribute is the electricity demand only.

Since both the cooling and heating demands have very obvious seasonal variation
characteristics, we do not analyze the typical day selections that only considered the heating
demand. It can be seen that, in a typical day obtained using the Imk-means algorithm,
TD1 has a strong heat demand but no cold demand, TD2 has a strong cold demand but
no heat demand, and TD3 has both cold and heat demands. This meets the three seasonal
characteristics (winter, summer, and transitional seasons), which is in line with the four
distinct seasons of Jinan. The typical days selected by the other two comparison methods
have very sharp fluctuations, but in view of the results of a variety of factors considered
together, their various attributes change relatively smoothly. From a practical point of view,
under normal circumstances, none of the factors has a very obvious turning point.
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Since the electricity demand of the building is relatively stable throughout the year,
there are no significant differences in the electricity demand clustering results. The same
phenomenon also applies to WP; because the wind does not change much throughout
the year, there are no obvious differences. For the cooling and heating demands and
photovoltaic power, TD3 shows a clear difference. In transitional seasons, the cooling
and heating consumptions are relatively small, but they are not completely zero. This
phenomenon appears to be zero when considering only the cooling demand, but it is still
slightly higher in the image where only the electricity demand is considered. In the Imk-
means image, the values of the cooling and heating demands are lower but not completely
zero, which is more in line with reality. The proposed method in this paper can generally
obtain results that are closer to reality than the methods that only consider a single factor,
and the typical days derived from this method are also more accurate.

Figure 9 shows the normalized plots of the extreme days selected by different ap-
proaches. Five extreme days, ED1–5, were selected using two methods from top to bottom.
The proposed Imk-means clustering algorithm clustered attributes including cooling, heat-
ing, and electricity demands, as well as photovoltaic and WP. The peak value method
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obtained ED1–5 when the cooling, heating, and electricity demands, as well as photovoltaic
and WP, had peak values in the dataset. The extreme days obtained using the Imk-means
method were slightly different from those obtained using the peak value method. The
curves of selected extreme days should greatly differ from each other. If two extreme days
have similar profiles, this indicates that the selection of extreme days is unreasonable. The
curves of the extreme days selected by the proposed method are almost different, while
some curves selected by the peak method are very similar. Compared with the extreme
days selected by the peak value method, the extreme days selected considering multiple
factors change more drastically, which shows that the extreme days obtained using our
method are more accurate. By performing a specific analysis on a certain day, it is found
that, except for ED2, the heating demands in the other four days filtered using the peak
value method are all zero. However, in real life, four days with zero heat loads means that
they belong to the same period (and are likely all summer days). This choice results in
the cluster results being too similar to each other, and is not conducive to analysis. For
the extreme days selected using the Imk-means algorithm, the types of loads that are zero
in the five days are different, so they are more representative of the different conditions
throughout the year. It can be seen from the ED3 and ED4 obtained using the Imk-means
method that their clustering attributes fluctuate drastically and that their peak values
are prominent, indicating that the days selected using this method meet the “extreme”
requirements. In addition, it can be seen from ED4 using the Imk-means algorithm that,
although none of the loads reach their peak during the day, each curve fluctuates sharply,
satisfying the performance of extreme days. This shows that, when considering multiple
factors at the same time, the extreme days are not necessarily the same days that certain
data values reach peak values. The proposed method in this paper can be used to filter
out such extreme days. Through comparison, the ED5s obtained by the two methods are
shown to be exactly the same. The proposed method in this paper can obtain the extreme
days filtered using the peak value method, and can also obtain more reasonable results
under the comprehensive consideration of multiple factors. It is clear that the Imk-means
clustering algorithm can automatically filter out more reasonable typical and extreme days.
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5.3. Optimization Results

The GA was used as an example to analyze the speed improvement and accuracy of
the designed optimization. The parameters of the equipment are shown in Table 3 [34]. The
SP system includes the EC and GB, whose capacities are obtained from the peak cooling
and heating loads. The price of natural gas is 0.27 CNY/kWh [8]. The GA parameter
settings are listed in Table 4.

Table 3. Parameters of the equipment.

Equipment Rated Capacity
(kW)

Minimum Load
Ratio

Coefficient of
Efficiency

Initial Energy
Storage (kW)

Price (10,000
CNY/kW)

PGU 200 0.4 - - 0.5
PV 30 - 0.85 - 1.3
WP 10 - 0.95 - 1.8
GB 700 0.3 0.82 - 0.2
AC 300 0.2 0.8 - 0.2
EC 500 - 3.5 - 0.15
TES 500 - 0.9 0 0.03

Table 4. Parameters of the GA.

Parameter Value

Population size 200
Number of generations 100
Crossover probability 0.5
Mutation probability 0.2

The optimization results of the typical and extreme days obtained in Section 5.2
were used as part of the initial population of the proposed optimization program, and
their iterative process was compared with the improved and traditional GA, as shown in
Figure 10. Six days were randomly selected as the test set, and we tried to ensure that
these days included days from all the seasons during the extraction process. The details
of comparison test methods are as follows: comparison test 1 used an accelerated GA, in
which the typical and extreme days were selected based on the cooling demand and peak
values, respectively; comparison test 2 used another accelerated GA, whose typical and
extreme days were selected based on the electrical demand and peak values, respectively;
comparison test 3 used the traditional GA without acceleration.

From Figure 10, it can be seen that, compared with the three comparative tests, the
proposed optimization method in this study always achieved the fastest convergence. The
other optimization which replaced the initial population always converged faster than the
traditional GA. Therefore, it can be concluded that a suitable replacement for the initial
population can indeed accelerate the convergence of optimization algorithms, and that the
proposed replacement method in this paper is a more appropriate method for accelerating
optimization.

To avoid contingency of the results, we ran each method 10 times to observe the
average convergence rates, as listed in Table 5. The four different optimizations are the
proposed method and the three other methods of comparison test 1, test 2, and test 3. From
the data in Table 5, it can be seen that the conclusions are the same as those obtained from
Figure 10. The proposed optimization method in this paper always converged faster.

Figure 11 shows the percentage of convergence speed for the proposed method and
methods of tests 1 and test 2, compared with the traditional GA used in test 3. In the
randomly selected test set, the improvement in speed of the proposed method could reach
up to 89.29% at best, and 72.68% on average, compared with the traditional GA. It can be
seen that the proposed optimization method in this paper is, on average, 58.22% faster than
the method used in test 1, and 49.17% faster than the method used in test 2. In addition, it
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is worth noting that the data obtained on the fourth test day in test 2 could not effectively
accelerate the optimization algorithm, showing that the obtained typical and extreme days
do not cover the fourth test day. This shows that the typical and extreme days obtained by
the proposed method are more realistic and reliable. In summary, the proposed method
can always converge faster than the other acceleration methods.
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Table 5. Comparison convergence results of the four methods.

Test Day No. Methods
The Number of Iterations Required for Convergence

1th 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Average

No.1

proposed 13 21 6 16 6 10 11 14 22 16 13.5
test 1 45 46 45 41 36 48 54 40 59 43 45.7
test 2 41 25 44 38 27 27 27 33 31 37 33
test 3 57 59 45 47 62 50 50 46 53 47 51.6

No.2

proposed 28 13 13 6 6 13 15 22 12 17 14.5
test 1 48 30 41 57 51 42 33 47 31 38 41.8
test 2 27 24 45 48 46 22 31 17 50 38 34.8
test 3 65 66 58 51 55 49 54 51 50 47 54.6

No.3

proposed 6 5 5 6 5 6 5 6 6 6 5.6
test 1 46 35 35 35 51 85 71 33 27 38 45.6
test 2 38 59 51 29 29 45 44 38 34 42 40.9
test 3 57 58 48 49 70 48 45 50 46 52 52.3

No.4

proposed 12 6 15 6 31 14 19 36 15 6 16
test 1 33 42 43 47 61 41 34 43 36 43 42.3
test 2 36 39 34 57 74 86 43 15 74 32 49
test 3 52 48 42 54 50 47 40 42 47 47 46.9

No.5

proposed 15 24 20 26 15 27 11 17 11 11 17.7
test 1 27 55 44 37 36 31 49 49 46 51 42.5
test 2 40 37 34 44 28 27 28 32 41 40 35.1
test 3 50 67 39 39 57 49 49 41 49 48 48.8

No.6

proposed 15 24 22 6 5 5 27 15 13 6 13.8
test 1 36 33 26 45 31 31 39 44 38 60 38.3
test 2 26 24 45 30 41 33 33 49 31 39 35.1
test 3 48 39 42 42 46 47 48 45 45 56 45.8
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Figure 11. Convergence acceleration results.

To verify that the acceleration does not lose optimization accuracy, we compared the
results of the two optimizations (proposed and unaccelerated) and summarize them in
Table 6. The larger values of these parameters indicate better results.

Table 6. Optimization results.

Test Day No.
PESR CSR CDERR

Proposed Unaccelerated Proposed Unaccelerated Proposed Unaccelerated

No.1 0.349068 0.307028 0.331584 0.314526 0.367105 0.367615
No.2 0.066901 0.015197 0.094727 0.063864 0.135633 0.110889
No.3 0.53121 0.464188 0.484205 0.455047 0.55152 0.54615
No.4 0.462359 0.43935 0.430054 0.415684 0.4888 0.478241
No.5 0.006422 0.020481 0.017027 0 0.025043 0
No.6 0.39973 0.370715 0.336494 0.325065 0.353632 0.355469

To judge whether accuracy is lost more intuitively, we included parameter ∆, which
is the difference between the results of the proposed optimization and traditional GA. If
∆ ≥ 0, this proves that there is no loss of accuracy. Especially, if ∆ > 0, this indicates that
the optimized result after acceleration is better, as shown in Table 7.

Table 7. Results of parameter ∆.

Test Day No. ∆PESR ∆CSR ∆CDERR ∆I

No.1 0.04204 0.017058 −0.00051 0.019529333
No.2 0.051704 0.030863 0.024744 0.035770333
No.3 0.067022 0.029158 0.00537 0.03385
No.4 0.023009 0.01437 0.010559 0.015979333
No.5 −0.01406 0.017027 0.025043 0.009336667
No.6 0.029015 0.011429 −0.001837 0.012869
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By observing the parameter ∆ for the energy, economic, and environmental indexes,
and the weighted objective I, it can be seen that the weighted objective values of the
proposed optimization are all better than the traditional GA. Though ∆ parameters have
negative values, −0.00051, −0.01406, and −0.001837, the other indices will counteract these
negative values. Thus, the proposed optimization algorithm in this study does not reduce
the optimization performance and even can improve it to a certain extent. Therefore, the
case study demonstrates that the proposed optimization method can greatly increase the
calculation speed without losing optimization accuracy. The optimization results of the
improved algorithm are very close to those obtained by the traditional algorithm, and their
hourly output plans are almost identical. Thus, the differences in their output plans will
not be discussed in the case study of this paper.

6. Discussion

The proposed Imk-means clustering method in this paper considers both the source
factors (photovoltaic power and WP) and load factors (cooling, heating, and electricity
demands). It can obtain typical daily clustering results, which are more consistent with
the actual situation of energy supply throughout the four seasons. For spring and autumn,
the values of the cooling and heating demands are both lower, which is more in line with
reality. It can also obtain extreme day clustering results that differ from each other. This
indicates that the selection of extreme days using the proposed method is more reasonable
and accurate compared with the peak value method.

For a heuristic algorithm such as the GA, some of the feasible solutions can be dis-
persed around the equipment output results of these clustering typical and extreme days,
and a large number of random feasible solutions are also preserved. Thus, the improved
heuristic algorithm can achieve faster convergence and fewer iterations, which leads to a
faster computation time without affecting the optimality of the results. In the case study,
the optimization results of the improved method are slightly better than those obtained
with the traditional GA method.

7. Conclusions

This paper proposes an improved heuristic optimization method for the operation of
IESs. It can increase the computing speed of the traditional heuristic optimization without
losing optimization accuracy. For the GA, its initial populations took advantage of the
equipment output results of the clustering of typical and extreme days, thereby greatly
increasing its solving speed. Using the Imk-means clustering method, the source factors
(photovoltaic power and WP) and load factors (cooling, heating, and electricity demands)
were comprehensively considered to scientifically and accurately determine the typical and
extreme days of the historical datasets. In order to prevent the results from falling into local
optima, many random populations were supplemented simultaneously. The case study
verified the effectiveness of the proposed method. The results are as follows.

• The typical and extreme days obtained in this study are more accurate and in line with
system requirements compared with those obtained using the existing methods. They
can be used to accelerate the system convergence faster than the existing methods.

• The convergence speed of the optimization algorithm increased by up to 89.29%
compared with the traditional GA, and the average speed increased by 72.68%. While
speeding up, the optimization performance undergoes a small performance improvement.

In addition, with the growth of historical databases, the search for typical and extreme
days will be more reasonable and more suitable for systems, so a more effective optimization
and acceleration will be obtained. Future work will focus on the combination of artificial
intelligence and optimization methods to extract useful information from historical data,
and further explore the efficiency of energy savings and emission reductions achieved by
the system.
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Abbreviations

AC Absorption chiller
CDERR Carbon dioxide emission reduction ratio
CSR Cost-saving ratio
EC Electric chiller
GA Genetic algorithm
GB Gas boiler
IES Integrated energy system
PESR Primary energy saving ratio
PGU Power generation unit
PLR Part-load ratio
PV Photovoltaic power
SP Separate production
SSE Sum of squared errors
TES Thermal energy storage
WP Wind power
Symbols
C Cooling (kW)
CS Cost (CNY)
E Electricity (kW)
F Energy consumption (kW)
Q Heating (kW)
G Gas consumption (kW)
V CO2 emissions
N Number
I Object function
η Efficiency
ω Release threshold
θ Minimum load coefficient
Subscripts
ach Absorption chiller
ech Electric chiller
gas Natural gas
he Heat exchanger
th Thermal
e Electrical
b Gas boiler
dis Distance
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