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Abstract: To improve the viability of nuclear power plants, there is a need to reduce their operational
costs. Operational costs account for a significant portion of a plant’s yearly budget, due to their
scheduled-based maintenance approach. In order to reduce these costs, proactive methods are
required that estimate and forecast the state of a machine in real time to optimize maintenance
schedules. In this research, we use Bayesian networks to develop a framework that can forecast the
remaining useful life of a centrifugal pump. To do so, we integrate survival analysis with Bayesian
statistics to forecast the health of the pump conditional to its current state. We complete our research
by successfully using the Bayesian network on a case study. This solution provides an informed
probabilistic viewpoint of the pumping system for the purpose of predictive maintenance.

Keywords: machine learning; remaining useful life; condition monitoring; probabilistic estimation;
Bayesian networks; survival analysis; vibration analysis; fault analysis

1. Introduction

In this article, we develop a machine health forecasting system for nuclear power plants
(NPPs). Nuclear plants have scheduled maintenance outages at regular intervals. When
a machine starts developing faults and stops operation, it requires repair or replacement.
If the timeline of machine repair does not fall within the scheduled outages, the NPP
needs to have an unplanned outage to inspect the machine, causing NPPs to lose potential
revenue [1]. Even during planned outages, the maintenance process can be conservative
and time-consuming, which can potentially increase operational costs [2]. In order to
reduce these costs, a proactive condition monitoring approach is needed that improves
operations and maintenance (O&M) using advancements in data analytics.

Condition monitoring is the process of estimating the health of a machine based on
available parameter data, such as sensor measurements. Analyzing different parameters
provides a range of information about developing faults and inefficiencies in the machinery.
Condition monitoring is composed of three parts: monitoring, diagnosis, and forecasting.
Monitoring observes a component, device or process and sends an alert when failure occurs.
Diagnosis determines the root cause of failure which can be addressed by performing
informed maintenance. Forecasting provides an estimate of the remaining useful life (RUL)
of a machine and its components.

Deep learning methods have been used in RUL prediction of machines because of
their ability to automatically map the relationship between raw data and machine life [3–8].
These methods are capable of revealing the underlying correlations between machine
phenomenon and its reason. Therefore, they can be advantageous over physics-based or
model-based approaches when the analyzed system becomes very complex. However,
these approaches usually require a lot of raw data for training the network. They are also
inherently “black box” in nature. Their internal logic can be unexplainable, which can
hinder their potential to be deployed to a power plant and used by operators.
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Probabilistic RUL estimation has been considered for machines due to its potential to
be integrated into a larger decision-making framework [9–12]. These methods incorporate
data driven machine learning with dynamic models to quantify prediction uncertainty.
The uncertainty information is then used for decision making or to improve prediction
results. These approaches are useful in decision making due to their probabilistic results,
but the RUL predictions are not conditional to the current state of the machine. There is a
need to account for the effect of different faults on the RUL because each fault degrades the
machine in a unique manner.

Knowing the cause of degradation will directly improve O&M by removing the need
for manual trial and error [13]. If we know what caused the failure, we can directly
repair that specific defect. Knowing the cause of failure also has impacts on the supply
chain by allowing the affected parts to be ordered well in advance. Therefore, a more
comprehensive picture of the pumping system is required. An updated model would map
system parameters to different faults, and their probability of occurrence would alter the
RUL appropriately.

By performing this research, we establish the advantages of probabilistic uncertainty
that can be leveraged by decision-makers. We demonstrate how to combine survival
analysis with Bayesian statistics to conditionally update a machine’s RUL. Finally, we
provide a condition monitoring solution to optimize O&M for NPPs, and by extension,
other industrial plants.

2. Background

In order to develop a probabilistic forecasting tool, we integrate survival analysis with
Bayesian networks. This allows us to create survival models for various modes of operation
and relate them to the current state of the pump using conditional probabilities.

2.1. Bayesian Networks

Bayesian networks are probabilistic graphical models that represent a set of variables
by their conditional probabilities. They allow for various types of information to be incor-
porated into a common probabilistic framework. The types of information include sensor
data, uncertainties, expert opinion, and mathematical equations [14]. Bayesian networks
allow us to analyze systems causally. This lets us describe complex and dynamic behavior
without requiring elaborate physics-based models. The ability to describe the cause and
effect relationship between different variables is a key advantage of Bayesian networks.
They use statistical inference to estimate the occurrence of phenomenon based on observa-
tions or evidence. Inference is performed according to Bayes’ rule (Equation (1)), which
describes the probability of an event conditional to some prior knowledge about the event.
Bayes rule also allows us to update the event probability after obtaining new evidence.

P(A|B) = P(B|A)P(A)

P(B)
(1)

where

• A and B are events and P(B) 6= 0;
• P(A|B) is the posterior probability; the probability of event A occurring if B is true;
• P(B|A) is the likelihood; the probability of event B occurring if A is true;
• P(A) is the prior; the probability of event A without having any knowledge of B;
• P(B) is the marginal likelihood; the total probability of the evidence B.

Bayesian networks expand this idea to multiple variables that have a cause and effect
relationship with each other. By identifying which variables influence others, conditional
probabilities are propagated throughout the network. This lets us determine the probability
of an event from the combined probability of its influencing evidence.

In this network,
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A

B
C

variables A and B cause event C. The likelihood of event C occurring is affected by the
likelihood of A and B both according to Equation (2).

P(C) = ∑
A,B

P(C|A, B)P(A)P(B) (2)

This lets us determine the probability of C given our knowledge of A and B. We can also
infer the probability of A or B given our knowledge of C [14].

Bayesian networks can be used to address the challenges of pump life forecasting.
Estimating the RUL is not a trivial task since each fault degrades the pump at a different
rate. The RUL is conditional on the type of fault occurring in the pump. This behavior
can be modeled using Bayesian networks by developing conditional probability tables
(CPT), given enough information about the system. Therefore, we diagnose the type of
fault occurring in the pump first, then update the RUL accordingly.

2.2. Survival Analysis

Survival analysis is a collection of techniques to determine the expected amount of time
before an events occurs, and this is accomplished by developing the survival function for
the system. The survival function is the probability of an event occurring after a specified
time. Mathematically, given that a machine fails before time T, with cumulative distribution
F(T), and probability density f (T) = F’(T), the survival function S(t) is the probability that
time T is after the current time t; i.e., S(t) is the probability that the device survives past
time t.

S(t) = P(T > t) =
∫ ∞

t
f (τ) dτ = 1− F(t) (3)

For our research, we define the life of the pump as the life of the impeller. The impeller
faces constant dynamic forces that cause warping and chipping over its lifetime. Eventually,
the impeller wears significantly and stops providing enough energy to the fluid to meet
the required duty points. Abnormal operation exacerbates this process and degrades the
impeller faster. After a certain threshold the worn impeller is no longer of use and the
pump is said to have failed.

Survival analysis is suitable for machine forecasting because it can provide acceptable
estimates even with incomplete data sets. This is beneficial since machine lifetime data is
hard to obtain. To develop a prediction model, impeller lifetime data is desired. Synthetic
lifetime data is generated to recreate the operation of an impeller rotating inside a pump.
The dataset is used to train our predictive models to provide an estimate of the future
impeller health.

3. Procedure
3.1. Pump System Specifications

The feedwater pumps in an NPP are chosen as the machine of choice for our analysis.
Feedwater pumps are a crucial part of the energy generation process [15,16]. They are also
usually very expensive, and improper maintenance can cost a lot of money.

A feedwater system typically contains pumps installed in a parallel with common
suction and discharge headers, and are usually high-pressure centrifugal type. The piping
for feedwater systems includes suction and discharge control valves that automatically
open or close depending on the steam generator supply requirements. The conditions of
service for the selected feedwater pump are 0.38 m3s−1 (6000 gpm) at 8.96 MPa (1300 psi).
These conditions are common requirements for NPPs. To meet these demands, a single
stage horizontal centrifugal pump is configured. The pumping system is shown in Figure 1,
and the pump performance parameters are specified in Table 1.
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Figure 1. The analyzed pumping system includes a suction valve that controls the flow of water into
the pump.

Table 1. A 2050.68 kW (2750 HP) single stage centrifugal feedwater pump is configured for this research.

Description Quantity

Flow, rated 0.38 m3s−1 (6000 gpm)
Head, rated 8.96 MPa (1300 psi)

Speed 59.33 Hz (3560 rpm)
Impeller diameter 0.46 m (18 in)

Efficiency 84.05 %
Temperature 20.00 ◦C (68 ◦F)

Material selected Carbon steel
Power, rated 1747.18 kW (2343 hp)

Power, maximum 2231.14 kW (2992 hp)
Motor rating 2050.68 kW (2750 hp)

3.2. Pump Fault Mechanisms

For condition monitoring, we choose three modes of operation: normal operation,
cavitation, and bent shaft occurrence [17,18]. Normal operation is the ideal state of the
pump and is used as a baseline to train our Bayesian network. Cavitation and a bent shaft
are two of the most violent faults that cause significant damage to a pump.

Fault diagnosis for centrifugal pumps is most commonly performed with vibration
analysis [19–24]. Vibration analysis is the process of monitoring vibration signals within
a machine to detect abnormal operating levels or patterns to evaluate its condition. A
vibration signature consists of the amplitude and frequency of the signal. These signatures
are unique for each pump fault detected, which in turn provide information about the
health of the machine. Vibration is often at its lowest when the pump is running at its
best efficiency point (BEP), and excessive vibration is a common indicator of a developing
fault inside a pump. Cavitation causes random high frequency vibrations in the pump
casing. A bent pump shaft will cause complex vibrations that require analysis in the
frequency domain.

3.3. Data Generation

To create the Bayesian network, the conditional probabilities of each node pair need
to be determined. In order to determine the CPTs, we use a data-driven approach. The
normal and abnormal operation of the pump are simulated to generate synthetic sensor
data. These datasets are used to compute the CPTs by applying a learning algorithm. The
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pump is modeled according to [25], with further modifications to add multiple abnormal
operating conditions. This model consists of masses of different sizes that replicate the
major parts of a pump. These masses are connected with springs and dampers to model
the vibration characteristics of the various pump components.

3.4. Diagnosing Pump Faults

Once the pump model is created, we simulate its normal and abnormal operation
to gather vibration data. Then we apply vibration analysis techniques on this data for
the purpose of diagnosing the state of the pump. Each mode of operation has a unique
vibration signature. For normal operation, we see peaks at the vane pass frequency (360 Hz)
and the motor RPM (60 Hz) (Figure 2). Cavitation causes high amplitude disturbances in
the spectra between 4 kHz and 20 kHz (Figure 3). A bent pump shaft causes high axial
vibrations that result in a large amplitude spike at two-per-revolution (120 Hz) (Figure 4).

Figure 2. The vibration signal of the pump running during normal operation shows peaks at the vane
pass and motor RPM. The motor is running at 3600 RPM (60 Hz). This is evident by the sharp peak at
60 Hz in the figure. The impeller has 6 blades, therefore the vane pass frequency is 6x RPM (360 Hz).

Figure 3. The vibration signal of a cavitating pump shows random high frequency excitation. Along
with the vane pass at 360 Hz and RPM at 60 Hz, a cavitating pump also shows a band of high
amplitude disturbance between 4 KHz and 20 KHz.
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Figure 4. The vibration signal of the pump running running with a bent shaft shows a high amplitude
spike at 2×motor RPM. This peak is indicative of a bent shaft. The other prominent peaks are the
vane pass at 360 Hz and RPM at 60 Hz.

After performing the preliminary vibration analysis in the frequency domain, the
vibration measurements are then decomposed into three features:

1. Crest factor: The crest factor is defined as the ratio of the peak value of a signal to its
RMS value (Figure 5). A crest factor value of 1 indicates no peaks. Crest factor is
calculated as

cf =
xp

xrms
(4)

where xp is the maximum absolute value of the signal and xrms is the root mean
squared value of the signal.

2. Skewness: Skewness is used to measure whether the signal is negatively or positively
skewed (Figure 6). It is obtained from the mean value of the probability density
function of the signal. Skewness is calculated as

s =
E{x− µ3}

σ3 (5)

where µ is the mean of x, σ is the standard deviation of x, and E{x} is the expected
value of x.

3. Kurtosis: Kurtosis is used to quantify the peakness of a signal (Figure 7). A higher
kurtosis value corresponds to a signal with more peaks that are greater than three
times the signal RMS. Kurtosis is calculated as

k =
E{x− µ}4

σ4 (6)
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Figure 5. The crest factor values of the signal are distinct for cavitation. The y-axis is the normalized
crest factor values. The x-axis is the number of samples extracted from vibration data. Each sample
contains 10,000 data points consisting of vibration measurements from the pump casing.

Figure 6. The skewness values of the signal are distinct for a bent shaft. The y-axis is the normalized
skewness values. The x-axis is the number of samples extracted from vibration data. Each sample
contains 10,000 data points consisting of vibration measurements from the pump casing.

Figure 7. The kurtosis values of the signal are distinct for each of the three modes of operation. The y-axis
is the normalized kurtosis values. The x-axis is the number of samples extracted from vibration data. Each
sample contains 10,000 data points consisting of vibration measurements from the pump casing.
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These features are dimensionless normalized quantities. In order to analyze the
machine state, these values need to be compared to an established baseline. In our research,
we estimate the state of the pump by computing the features for normal operation and then
comparing them to the values from cavitation and a bent shaft.

For the purpose of this article, we emphasize that the estimated state of the pump is
probabilistic; i.e., the output of our diagnosis is the probability of normal operation, cav-
itation, or a bent shaft. Estimating the state of the pump probabilistically rather than
deterministically is crucial because it allows the addition of uncertainty in condition
monitoring-based decision-making.

3.5. Bayesian Network Creation for Forecasting

To develop a Bayesian network for condition monitoring, we use the GeNIe modeler
and SMILE engine from BayesFusion [26]. The Bayesian network is developed using
Figure 1 as reference. The evidence for the network are vibration measurements. The
vibration information is added in the form of features. From these inputs, we can diagnose
one of two faults, and forecast the pump’s health.

There is a unique combination of skewness, kurtosis, and crest factor values for each
of the three simulated modes of operation. When the appropriate values are entered into
these nodes as evidence, the Bayesian network can determine the current state of the pump.
This relation is shown in Figure 8. The state of Bent Shaft and Cavitation directly affect the
state of the Skewness, Kurtosis, and Crest factor. The state of the two faults also directly affect
the Pump RUL.

Figure 8. In the Bayesian network, the state of the pump affects the observed values of the vibration
features as well as the RUL.

3.6. Data Structuring for the Bayesian Network

In order to perform Bayesian inference using GeNIe and SMILE, the Bayesian network
needs to contain discrete states. Discretization also allows parameter learning algorithms
to create CPTs from data. Each node in the Bayesian network is discretized according to the
states listed in Tables 2–4. The Cavitation and Bent shaft nodes are discretized into binary
states as either occurring or not occurring. This is because the occurrence of the fault is itself
a binary phenomenon. However, the extent of a fault is not binary. For example, cavitation
can cause high frequency disturbances at various amplitudes and a bent shaft can be askew
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by various degrees. The effect of the magnitude of fault is an open topic for future work. In
this paper, we consider faults to be binary processes with constant magnitudes.

The CPTs for each node pair are created using a learning algorithm that is trained on
the data generated previously. In order to create CPTs and perform parameter learning, we
use the expectation-maximization (EM) algorithm [27].

Table 2. The occurrence of cavitation is discretized into binary states to create the cavitation node.

Cavitation Pressure Range

Yes 0 to 0.21 MPa (0 to 30 psi)
No 0.21 to 9.65 MPa (30 to 1400 psi)

Table 3. The occurrence of a bent shaft is discretized into binary states to create the bent shaft node.

Bent Shaft Temperature Range

No −17.8 to 343.3 ◦C (0 to 650 ◦F)
Yes 343.3 to 482.2 ◦C (650 to 900 ◦F)

Table 4. The vibration features are normalized and then discretized to create their respective nodes.

Skewness Range Kurtosis Range Crest Factor Range

0.75 to 1.00 3.25 to 3.50 4.25 to 4.50
0.50 to 0.75 3.00 to 3.25 4.00 to 4.25
0.25 to 0.50 2.75 to 3.00 3.75 to 4.00
0.00 to 0.25 2.50 to 2.75 3.50 to 3.75
−0.25 to 0.00 2.25 to 2.50 3.25 to 3.50
−0.50 to −0.25 2.00 to 2.25 3.00 to 3.25
−0.75 to −0.50 1.75 to 2.00 2.75 to 3.00
−1.00 to −0.75 1.50 to 1.75 2.50 to 2.75

2.25 to 2.50
2.00 to 2.25
1.75 to 2.00
1.50 to 1.75

3.7. Forecasting Health Using the Bayesian Network

To forecast pump RUL, we perform survival analysis on the pump lifetime data. The
python package Lifelines is used for computing the survival functions [28]. The dataset
contains run-to-failure data for a hundred pumps experiencing two different faults. The
pumps begin operation with normal amounts of initial wear, but develop a fault over time.
These faults persist through the time series until total failure.

A common preliminary method in survival analysis is to develop the Kaplan–Meier
estimator, which computes the the Kaplan–Meier survival plot from data. It is defined as

Ŝ(t) = ∏
ti<t

ni − di
ni

(7)

where di is the number of failure events at time ti and ni is the number of machines that
have survived up to time ti.

From the Kaplan–Meier plots (Figures 9 and 10), we can observe that all the pumps
run for at least 130 operational cycles, then the likelihood of surviving rapidly declines. The
Kaplan–Meier estimator provides an accurate description of the survival function of the
pump, but due to its non-parametric nature it is difficult to implement in a comprehensive
statistical model. To overcome that limit, a parametric model is derived that provides
similar estimates.
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Figure 9. From the Kaplan–Meier plot, we determine that the median life of cavitating pumps is
200 operational cycles.

Figure 10. From the Kaplan–Meier plot, we determine that half of the pumps fail around 220 opera-
tional cycles due to a bent shaft.

In this research, the parametric Weibull model is fit to the lifetime data. The Weibull
model is defined as

S(t) = exp
[
−
(

t
λ

)ρ]
(8)

where λ and ρ are the scale and shape parameters, respectively.
From the Weibull plots (Figures 11 and 12), we observe that the survival function

of a pump experiencing cavitation is different than of a bent shaft. This is because each
fault affects the pump and its impeller in different ways. Cavitation is much more violent
therefore it degrades the impeller quicker that a bent shaft. Thus, the RUL estimate of an
impeller due to each fault is also different. Based on this analysis, the survival models are
added into the Bayesian network.
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Figure 11. The resulting λ and ρ values for the cavitation Weibull model are 225.03 and 4.41, respectively.

Figure 12. The resulting λ and ρ values for the bent shaft Weibull model are 276.82 and 2.93, respectively.

Adding the survival functions for normal and abnormal operation into the Bayesian
network provides us with a holistic view of the pump RUL. Figure 13 shows the trajectory
of the pump RUL based on a 100% likelihood estimation of the operation mode; i.e., if
the Bayesian network estimates that the given vibration measurements are 100% due
to cavitation, the pump RUL will follow the green trajectory. Similarly, if the network
estimates that the given evidence is 100% due to a bent shaft or normal operation, the pump
RUL will follow the appropriate trajectory.

However, a 100% estimate of the state of the pump is usually not likely. This is because
of sensor noise as well as the some overlap between the vibration feature values for each
operating mode. Therefore, once we provide the network with vibration evidence, it
provides a probabilistic estimate of the current state of the machine. Thus, the true RUL
lies somewhere between the values shown in Figure 13. This process is further explained
in a case study.
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Figure 13. The curves in this plot show the RUL forecast for a pump, if the Bayesian network
estimates a 100% likelihood for each mode of operation.

4. Case Study

The completed condition monitoring Bayesian network is validated through a case
study. To begin testing, additional data sets are created for cavitation. This testing data is
then used to diagnose faults and forecast machine health.

The cavitation testing data consists of vibration information about the high amplitude
and frequency disturbances experienced by the impeller. This frequency data is then
converted into vibration features so they can be added into the Bayesian network as
evidence. However, these vibration features are not constant throughout the collected data
as shown in Figures 5–7. Furthermore, there is some overlap between the feature values for
cavitation, bent shaft, and normal operation. Thus, it is necessary to convert the feature
values into a measurement distribution before we can perform the condition monitoring
analysis. The overlap in feature values also implies that we cannot estimate the current
mode of operation with a 100% certainty.

Once these features are translated into a measurement distribution (Figures 14–16),
they are entered directly into the Bayesian network using SMILE. After we provide evidence,
the Bayesian network infers that there is a 95.8% likelihood of cavitation. This is the
expected probabilistic result based on the testing data.

Figure 14. The crest factor validation data is converted into a probability distribution for the case study.
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Figure 15. The kurtosis validation data is converted into a probability distribution for the case study.

Figure 16. The skewness validation data is converted into a probability distribution for the case study.

The computation of the pump RUL similarly involves probabilistic estimation. As
shown in Figure 13, if the pump is 100% experiencing cavitation, it will follow the green
curve. However, since the Bayesian network estimates that the likelihood of cavitation is
95.8%, the estimated survival plot deviates from the green curve, as shown in Figure 17.

Figure 17. Given the current vibration measurements, the Bayesian network estimates that a fault
resembling cavitation is most likely occurring. Thus, the forecasted RUL closely follows the cavitation
curve, with some deviations due to the inherent uncertainty of probabilistic estimation.
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5. Results

The case study shows the conditional dependency between the health forecast and the
current state of the pump. A set of noisy vibration measurements is provided as evidence
to the Bayesian network. The network estimates that there is a 95.8% likelihood for the
pump to be experiencing cavitation. Then, the network computes the RUL of the pump
based on the survival functions that were developed previously. Given its current state, the
pump has a 4% likelihood of survival past 450 operational cycles due to a 95.8% likelihood
of cavitation.

6. Discussion

The case study validates the effectiveness of the Bayesian network in inferring the
condition of hidden states. Hidden states are processes that are impossible to directly
observe. In our condition monitoring system, the occurrence of faults is a hidden state.
Using Bayesian networks, we are able to use sensor data and operation information to
diagnose and infer the state of the pump.

Using Bayesian networks, we were able to integrate survival models for normal and
abnormal operation to predict the RUL of the pump. This integration allowed the health forecast
to change conditionally with the state of the pump, thus increasing the estimation accuracy.

This research can be incorporated into a larger asset management framework for
industrial machines. Once we know when a machine is expected to fail, we can coordinate
with supply chain logistics and business objectives to provide the optimal decision that
results in the highest value gained. This would allow us to optimize maintenance resources
and reduce operating costs.

7. Conclusions

In this research, we created a condition monitoring framework using Bayesian net-
works that can estimate and forecast the state of a pump. By doing so, we developed a
framework for predictive maintenance using conditional probabilities, sensor data, and
operational information. This framework could be deployed to industrial plants where it
would be integrated with a probabilistic decision-making system [29].

We determined that a hybrid approach can be used to provide accurate machine health
assessments. Incorporating domain expertise to develop models can significantly decrease
the amount of data required, as well as improve the transparency of the model. Domain
expertise also allows the addition of conditional dependencies, which can be leveraged to
infer hidden information.

8. Materials and Methods

The details for this research have been described in Section 3: Procedure.
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Abbreviations
The following abbreviations are used in this manuscript:

NPP Nuclear Power Plant
O&M Operations and Maintenance
RUL Remaining Useful Life
LSTM Long Short-Term Memory
GPR Gaussian Process Regression
CPT Conditional Probability Table
GeNIe Graphical Network Interface
SMILE Structural Modeling, Inference, and Learning Engine
EM Expectation Maximization
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