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Abstract: A smart hybrid energy system (SHES) is presented using a combination of battery, PV
systems, and gas/diesel engines. The economic/environmental dispatch optimization algorithm
(EEDOA) is employed to minimize the total operating cost or total CO2 emission. In the face of
the uncertainty of renewable power generation, the constraints for loss-of-load probability (LOLP)
and the operating reserve for the rechargeable battery are taken into account for compensating the
imbalance between load demand and power supplies. The grid-connected and islanded modes of
SHES are demonstrated to address a low-carbon community. For forecasting load demand, PV power,
and locational-based marginal pricing (LBMP), the proper forecast model, such as long short-term
memory (LSTM) or extreme gradient boosting (XGBoost), is implemented to improve the EEDOA. A
few comparisons show that (i) the grid-connected mode of SHES is superior to the islanded-connected
mode of SHES due to lower total operating cost and less total CO2-eq emissions, and (ii) the forecast-
assisted EEDOA could effectively reduce total operating cost and total CO2-eq emissions of both
modes of SHES as compared to no forecast-assisted EEDOA.

Keywords: power dispatch; forecasting; optimization; operating reserve; smart hybrid energy system

1. Introduction

Nowadays, the worldwide power system would rapidly develop towards a low-
carbon smart community energy system where intermittent renewable energy sources such
as solar PV and wind energy should rely on energy storage systems to keep an uninter-
rupted energy supply [1,2]. In coping with peak loads of the community energy system
with non-renewable and renewable energy resources, the hybrid energy management sys-
tem has become a crucial mechanism to ensure distributed energy resources in intelligent,
secure, reliable, and coordinated ways [3–5]. The hybrid energy management system was
responsible for power dispatching, energy savings, and allocating power among gener-
ators, so a prediction-based optimization strategy could play a role in balancing the use
of diesel generators and emergency batteries [6]. Regarding the optimal dispatching of
intermittent renewable energy sources, a probabilistic approach was used to solve the
economic dispatch problem considering the uncertainty of wind power generation and
generators’ reliability [7]; however, the uncertainty and variability problem of these sources
has brought many complications to handling the complex hybrid energy systems. From
economic, energy, and environmental perspectives, the integration of renewable energy
sources in the electrical grid was a promising way to reduce the total operating cost ac-
cording to different operational scenarios [8], but the optimal dispatching of intermittent
renewable energy and non-renewable sources was not addressed.

For addressing a smart hybrid energy system, a machine learning-based optimized
energy dispatch scheme was implemented to maintain the voltage stability in a power
plant operated in an islanded mode [9], a smart hybrid energy system used the genetic
algorithm and artificial neural networks to predict hourly electricity demand of the US cities
of Fargo and Phoenix [10], and an evolutionary hybrid system which combined statistical
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and machine learning techniques was used to predict the energy consumption in smart grid
network installed in a residential building [11]. For improving the load demand forecasting,
the artificial neural network technique was validated for short, medium, and long-term
load forecasting [12], a deep learning framework was implemented to forecast electricity
demand by taking care of long-term historical dependencies [13], the ensemble aggregation
algorithms composed of wavelet learners were trained with a subset of selected features
to execute the short-term load forecasting [14], and the uncertainty analysis of forecasting
errors of PV power and load demand could be compensated by setting an adequate
operating reserve (OR) [15] or treated as the dispatchable unit to cover uncertainties in load
forecasting [16].

Regarding intermittent renewable energy forecasting, a deep learning-based ensemble
approach was demonstrated to learn the uncertainties in wind power data [17], the machine
learning models of random forest (RF) and extra trees were well suited for predicting
stochastic photovoltaic (PV) generation [18], and a combination of neural networks and
support vector machine (SVM) could increase the reliability of wind power forecasting [19],
and the Gaussian process regression (GPR) as a probability density forecasting method
could handle the uncertainties in power load data in a principled manner [20]. Regarding
the technological issues for the smart hybrid energy system, an optimal load dispatch
of a community-based hybrid energy system using deep learning for solar power and
load forecasting could reduce total cost [21], the renewable energy sources in microgrids
could ensure the environmental benefits due to the low avoided social costs of carbon [22],
the presence of the battery storage system in the power generation sector could reduce
the operating cost and improve energy utilization of community-based hybrid energy
system [23], and the variance of state-of-charge (SOC) of the battery was tested according
to quantifying cumulative impacts of stochastic forecasting errors [24].

In this paper, a smart hybrid energy system (SHES) using a combination of battery, PV
system, and gas/diesel engines is served as the sustainable microgrid. The SHES is operated
in the grid-connected or islanded modes for a community in New York City. The proposed
configurations of SHES are shown in Section 2. The predictions of load demand, PV power,
and locational-based marginal pricing (LBMP) by using selected forecast models such
as linear regression (LR), logistic regression (LogR), feedforward neural network (FNN),
recurrent neural network (RNN), nonlinear autoregressive exogenous model (NARX),
Gaussian process regression (GPR), support vector machine (SVM), random forest (RF),
extreme gradient boosting (XGBoost), and long short-term memory (LSTM) are shown
in Section 3. The hour-ahead and day-ahead forecasting strategy is built from Level 1 to
Level 3. Notably, Level 3 shows the blending models by using proper forecast models
such as NARX, LSTM, and XGBoost. The economic/environmental dispatch optimization
algorithm (EEDOA) for minimizing the total operating cost or CO2 emissions of the SHES
system is shown in Section 4. In order to address the reliable electricity supply and cope
with forecasting uncertainties, the loss-of-load probability (LOLP) and the operating reserve
(OR) are involved in the EEDOA. The comparisons of SHES in grid-connected or islanded
modes are described in Section 5. The results show that the grid-connected mode is superior
to the islanded mode due to the main grid with lower LBMP.

2. Smart Hybrid Energy System

In this study, the grid-connected mode of the smart hybrid energy system (SHES) is
depicted in Figure 1, where the power source is a combination of a highly efficient gas
engine (Pge), a diesel engine (Pde), a photovoltaic (PV) system (Ppv), an environmentally-
friendly liquid battery (Psb), and the main grid (Pmg). Notably, the DC/DC converter
with prescribed efficiency (ηcon), the DC/AC inverter with prescribed efficiency (ηinv), and
the efficiency of the electrical generator with the prescribed efficiency (ηge) are specified.
Natural gas and diesel are assumed to be sufficient for the gas engine and diesel engine,
respectively. The DC and AC buses are responsible for dispatching power sources to meet
the load demand (Pload) according to capacities of devices of power and energy storage, fuel
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prices, and CO2-eq emissions. To address the off-the-grid electricity system for locations
not fitted with an electricity distribution system, the islanded (standalone) mode of the
SHES does not connect to the main grid. The SHES in the face of the probability of fault
occurs due to the uncertainty of renewable power production, so the energy storage system
(rechargeable battery) becomes a critical option by restoring the excessive renewable power
and compensating for the power gap.
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3. Forecasting

The short-term or long-term forecasting of load demand and renewable energy is a
useful approach for addressing the SHES operation at lower total operating cost and greater
reduction of carbon emissions. In this study, the forecasting algorithms with selected
forecast models are addressed as follows.

3.1. Forecast Models

(i) Linear regression (LR): LR is denoted as a forecast model which is directly described by

yLR = Xβ + ε (1)

where yLR is the predicted variable, X is the input matrix, β is the parameter vector as
the regression coefficient, and ε represents the error vector. The values of β are often
fitted using the least-squares approach.

(ii) Logistic regression (LogR): LogR is denoted as a forecast model in which the function
is described by

f (x) = β0 + β1x1 + · · ·+ βnxn (2)
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and the predicted variable y is shown by [25]

yLogR = δ( f (x)) =
1

1 + e− f (x)
(3)

where xi (i = 1, . . . , n) is the input element, and δ represents the standard logistic
function. yLogR is used to model and predict categorical values through the optimiza-
tion tools in Matlab®.

(iii) Feedforward neural network (FNN): A three-layer FNN is described by [26]

h = σh(Whx + wb)
yFNN = σy

(
Wyh + wy

) (4)

where h represents the hidden layer vector, and σh and σy are the activation func-
tions. Wh, wb, Wy, and wy are undetermined weight matrices and vectors. Moreover,
Bayesian optimization is utilized to adjust the parameters of the FNN model and
improve the validation accuracy of FNN.

(iv) Recurrent neural network (RNN): yRNN in the discrete-time settings is described
by [27]

ht = σh(Whxt + Uhht−1 + wb)
yRNN |t = σy

(
Wyht + wy

) (5)

where Uh is additional weight. Moreover, Bayesian optimization is utilized to adjust
the parameters of the RNN model and improve the validation accuracy of RNN.

(v) Nonlinear autoregressive exogenous model (NARX): This model relates the current
and past values of the time series of input and outputs as described by [28]

yNARX |t = f
(

yNARX |t−1, yNARX |t−2, . . . , ut, ut−1, . . .
)
+ εt (6)

Notably, εt represents the error term due to disturbances, and f is some nonlinear
functions such as neural network, sigmoid function, and so on. Moreover, Bayesian
optimization is implemented to optimize the hyperparameters of NARX and ensure
the validation accuracy of NARX.

(vi) Gaussian process regression (GPR): yGPR is usually described by [29]

yGPR = h(x)T β + f (x) (7)

where h(x) is the explicit basis function, and f (x) ∼ GP(0, k(x, x′)). The Gaussian
process (GP) is a set of random variables, and k is the covariance matrix. Moreover,
Bayesian optimization is utilized to adjust the parameters of the GPR model and
improve the validation accuracy of GPR.

(vii) Support vector machine (SVM): SVM is a supervised learning algorithm. ySVM classi-
fies data by finding the best hyperplane β [30]

ySVM = xT β + b (8)

where β is determined by solving the following optimization algorithm

min
1
2
‖β‖2

subject to
‖y− ySVM‖ ≤ ε (9)

Moreover, Bayesian optimization is utilized to adjust the parameters of the SVM
classifier and improve the validation accuracy of SVM.

(viii) Random forest (RF) [31]: RF is an ensemble learning method for classification and
regression. yRF is evaluated through three steps: (i) A decision tree using all the
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features/variables of interest as an entire dataset; (ii) Bagging is used to reduce the
variance of a decision tree; (iii) The random subspace method for constructing decision
forests. Moreover, Bayesian optimization is utilized to adjust the parameters of the RF
model and improve the validation accuracy of RF.

(ix) Extreme gradient boosting (XGBoost) [32]: XGBoost is a decision-tree-based ensemble
machine learning algorithm that uses a gradient boosting framework. yXGBoost is
evaluated through a combination of software and hardware optimization techniques
to yield superior results using fewer computing resources in the shortest amount of
time. Moreover, Bayesian optimization is utilized to adjust the parameters of XGBoost
and improve the validation accuracy of XGBoost.

(x) Long short-term memory (LSTM): LSTM is a recurrent neural network (RNN) archi-
tecture used in the field of deep learning. yLSTM is evaluated by [33]

it = σh(Wixt + Riht−1 + bi)

ft = σh(W f xt + R f ht−1 + b f )

ot = σh(Woxt + Roht−1 + bo)

c̃t = tanh(Wcxt + Rcht−1 + bc)

ct = ft × ct−1 + it × c̃t

yLSTM|t = ht = ot × tanh(ct)

(10)

where the matrices R = (Ri, Rf. Ro, Rc), W = (Wi, Wf, Wo, Wc), and b = (bi, bf, bo, bc) represent
weights of input, recurrent, and bias, respectively. Moreover, Bayesian optimization is
implemented to optimize the hyperparameters of LSTM networks and ensure the validation
accuracy of LSTM.

The forecast accuracy is validated by measuring the mean absolute scaled error (MASE)

MASEj =

1
n ∑t

∣∣∣yj
∣∣
t − At

∣∣∣
1

n−1 ∑n
i=2|Ai − Ai−1|

(11)

where t = 1, n is the set of forecasting sample periods. yj
∣∣
t is the output of forecast

model j at a given period t and j = i, ii, . . . . At represents the real-time value at a given
period t. Notably, n = 2 and n = 24 are denoted as hour-ahead and day-head forecasts,
respectively. The Bayesian optimization algorithm is a sequential design strategy for the
global optimization of a probabilistic model of the objective function, which is available
in Matlab®.

In this study, the SHES, a class of community-based hybrid energy systems, is im-
plemented to serve a community in New York City, where load demand, PV power, and
locational-based marginal pricing (LBMP) dominate the energy management strategies.
Notably, LBMP is the electricity price of the main grid, usually composed of the energy
price, transmission congestion cost, and loss cost. Feasible forecasting strategies contribute
to reducing greenhouse gas emissions by allocating the priorities of power units and
ultimately reduce the operating costs and environmental impacts of SHES.

3.2. Forecasting Algorithm

Under the limitations of data sources at prescribed time intervals and the importance
of influence, the factors for the hour-ahead and day-ahead forecasting of load demand,
PV power, and LBMP are categorized with load demands of one hour, two hours, three
hours, and 24 h ahead, (max/min) ambient temperatures, current ambient temperature,
temperatures of the heat index, dew point, wind chill, and feels like. Moreover, the
forecasting strategy is built from level 1 to level 3.

Level 1: A total of seven forecast models from (i) to (vii) are trained and validated
according to selected eleven factors. The corresponding MASE of the hour-ahead and
day-ahead forecast models regarding seven forecast models are shown in Tables 1 and 2,
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respectively. It is noted that the forecast models of FNN, RNN, GPR, SVM, and RF could
find the MASE for forecasting load demand, PV power, and LBMP at the minimum levels
by using Bayesian optimization.

Table 1. Comparisons of hour-ahead forecast models of load demand, PV power, and LBMP.

Forecast Model
Predictions Load Demand

(MASE)
PV Power
(MASE)

LBMP
(MASE)

Level 1 Training Validation Training Validation Training Validation
LR 1.0126 0.9467 0.8046 0.7526 0.9981 0.9043
LogR 1.0318 0.9474 0.7193 0.6930 0.9604 0.8733
FNN 0.9563 0.9062 0.4474 0.4953 0.9328 0.8504
RNN 1.0154 0.9357 0.4803 0.5000 0.9060 0.8639
GPR 0.9710 0.8965 0.4531 0.4882 0.9975 0.9042
SVM 0.9771 0.9077 0.4839 0.5060 0.8190 0.8049
RF 0.9570 0.8981 0.4352 0.5013 0.9241 0.8186
Level 2
LSTM 0.9350 0.8819 0.4223 0.4790 0.9192 0.8243
XGBoost 0.9406 0.8722 0.4169 0.4860 0.8793 0.8098
Level 3
Blending 0.9224 0.8664 0.4111 0.4778 0.8180 0.7985

Table 2. Comparisons of day-ahead forecast models of load demand, PV power, and LBMP.

Forecast Model
Predictions Load Demand

(MASE)
PV Power
(MASE)

LBMP
(MASE)

Level 1 Training Validation Training Validation Training Validation
LR 0.8392 0.8557 1.0770 1.0780 0.7788 0.7127
LogR 0.9003 0.9094 0.6382 0.7976 0.7766 0.6980
FNN 0.7123 0.7195 0.6159 0.7613 0.8938 0.7055
RNN 0.7211 0.6920 0.6380 0.7691 0.7774 0.6988
GPR 0.8304 0.7563 0.6182 0.7692 0.7856 0.761
SVM 0.7655 0.6919 0.6504 0.7442 0.6618 0.6673
RF 0.7642 0.7649 0.5474 0.6445 0.7946 0.6866
Level 2
LSTM 0.4538 0.5201 0.6786 0.6348 0.6866 0.6690
XGBoost 0.9150 0.7958 0.5436 0.6107 0.7846 0.6970
Level 3
Blending 0.4081 0.5012 0.5157 0.6012 0.6515 0.6558

Level 2: Based on the same eleven factors and the outputs of seven forecast models
in Level 1 for an hour-ahead forecast by using XGBoost and LSTM, the corresponding
MASE of forecasting load demand, PV power, and LBMP through training and validation
are shown in Table 1. It is noted that the XGBoost ensures a lower MASE than LSTM in
Level 2. Based on the same factors and forecast models for the day-ahead forecast by using
XGBoost and NARXNN, the corresponding MASE of day-ahead forecasting load demand,
PV power, and LBMP through training and validation are shown in Table 2. It is noted
that the NARXNN ensures the lowest MASE of forecasting load demand than XGBoost in
Level 2, and XGBoost ensures the lowest MASE of forecasting PV power and LBMP than
NARXNN in Level 2.

Level 3: Referring to a feature-weighted linear stacking method that incorporates
meta-features for improved accuracy [34], the blending model adopts the information from
Levels 1 and 2 to improve the prediction accuracy. The blending model by LSTM and
XGBoost with prescribed coefficients (a, b, c) for the hour-ahead forecasts is shown as

yblend(1)

∣∣∣
t
= b(yLSTM|t)

a(yXGBoost|t)
1−a + c (yLSTM|t) + (1− b− c)yXGBoost|t (12)
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Similarly, the blending model by NARX and XGBoost with prescribed coefficients (α,
β, γ) for the day-ahead forecast is shown as

yblend(2)

∣∣∣
t
= β(yNARX |t)

α(yXGBoost|t)
1−α + γ(yNARX |t + (1− β− γ)yXGBoost|t (13)

Notably, these coefficients in Equations (11) and (12) are determined by minimizing
MASE of forecasting load demand, PV power, and LBMP using Bayesian optimization.
Moreover, the forecast strategies from Level 1 to Level 3 are described by a flowchart which
is shown in Figure S1 in Supplementary Materials. Based on the hour-ahead and day-ahead
forecasts in Tables 1 and 2, the blending model could ensure the lowest MASE of forecasting
load demand, PV power, and LBMP than other models used in Levels 1 and 2.

The comparisons of the hour-ahead and day-ahead forecasting performances of load
demand, PV power, and LBMP are shown in Figure 2a–c, respectively. By using the
blending models for hour-ahead and day-ahead forecasting, Figure 2a shows that the
hour-ahead load demand forecasting is superior to the day-ahead load demand forecasting
as compared to the real-time data of load demand, Figure 2b shows that the hour-ahead
PV power forecasting is superior to the day-ahead PV power forecasting as compared the
real-time data of PV power, and Figure 2c shows that the hour-ahead LBMP forecasting
is superior to the day-ahead LBMP forecasting as compared the real-time data of LBMP.
Notably, the day-ahead load demand forecasting fails when they exceed 18 h, and the
hour-ahead and day-ahead LBMP forecastings are not qualified, while two LBMP peaks
appear at specific periods.
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4. Optimal Power Dispatch Strategy

The priority of power supplies according to the intermittent energy source, carbon
emissions, and fuel/electricity prices is taken into consideration to address the optimal
power dispatch strategy for the SHES. In this approach, the PV power is the priority unit
due to free solar energy and zero emissions, and the battery is the second priority unit to
cope with the power gap and meet the limits of the state of charge (SOC) of the battery
simultaneously; the gas engine or diesel engine or main grid is the third priority unit to
achieve the cost balancing among parallel energy sources.

4.1. Operating Reserve

The operating reserve (OR) is added to compensate imbalance between load demand
and power supplies and the unpredictable imbalance due to the forecasting uncertainties.
For the assessment of forecasting uncertainty, the normal probability density function (npdf )
is shown by [15]

npd f (ε) =
1

σ
√

2π
e−

(ε−µ)2

2σ2 (14)

where ε represents the forecasting errors of load demand (εt
L) and PV power (εt

PV). Both
forecasting errors are expressed by

εt
L = Lt

A − Lt
F (15)

εt
PV = PVt

A − PVt
F (16)

where Lt
A and Lt

F represent the real-time and forecasting load demand at a time period t,
respectively. Similarly, PVt

A and PVt
F represent the real-time and forecasting PV power at a

time period t, respectively. The first npdf of the forecasting errors of load demand and PV
power is specified to address the operating reserve quantification. Second, the forecasting
error of net demand (εt

ND) is described by

εt
ND = NDt

A − NDt
F (17)

and
NDt

A = Lt
A − PVt

A × ηcon × ηinv (18)

NDt
F = Lt

F − PVt
F × ηcon × ηinv (19)
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where NDt
A and NDt

F represent the net real-time and net forecasting load demand at a time
period t , respectively. ηcon and ηinv represent the efficiencies of the converter and inverter,
respectively. Third, the loss-of-load probability (LOLP) or risk is specified where the LOLP
is expressed by

LOLP = ∑n
t=1 Pr(ε

t
ND > 0) (20)

where Pr(εt
ND > 0) represents the probability of NDt

F while εt
ND > 0, t = 1, 2, . . . , 24.

For accessing the forecasting uncertainty at 12 o’clock (t = 12), Figure 3a,b shows that
the forecasting errors of load demand and PV power are symmetric probability distribu-
tions, respectively. By Equations (17)–(20), the probability distributions of net load demand
(εt

ND) is depicted in Figure 3c, notably the green part while εt
ND > 0 is adjusted to evaluate

LOLP. Through the inverse of the normal cumulative distribution function of NDt
F, the

daily ORt with 5~30% of LOLP is obtained, which is depicted in Figure 4a. It is noted that
the higher LOLP implies a lower ORt. Figure 4b shows the profile of OR (t = 12 h) vs. LOLP;
notably, in this study, OR (t = 12 h) is determined at the accepted risk (LOLP) with 10%.
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4.2. Optimization

The economic/environmental dispatch optimization algorithm (EEDOA) is described
as follows.

min
Pt

ge ,Pt
de ,Pt

mg

{wCT + (1− w)λET} (21)

Subject to

(i) The grid-connected mode:(
Pt

ge + Pt
de

)
× ηge +

(
Pt

sb + PVt
F
)
× ηcon × ηinv + Pt

mg − (Lt
F + ORt) = 0, if Pt

sb > 0 (22)(
Pt

ge + Pt
de

)
× ηge + PVt

F × ηcon × ηin + Pt
sb ×

ηinv
ηcon

+ Pt
mg − (Lt

F + ORt) = 0, if Pt
sb < 0 (23)

Or The islanded mode:(
Pt

ge + Pt
de

)
× ηge +

(
Pt

sb + PVt
F
)
× ηcon × ηinv − (Lt

F + ORt) = 0, if Pt
sb > 0 (24)(

Pt
ge + Pt

de

)
× ηge + PVt

F × ηcon × ηin + Pt
sb ×

ηinv
ηcon
− (Lt

F + ORt) = 0, if Pt
sb < 0 (25)

(ii) The upper and lower bounds of power units

Pge,min < Pt
ge < Pge,max (26)

Pde,min < Pt
de < Pde,max (27)

Psb,min < Pt
sb < Psb,max (28)

In Equation (21), the conflicting objectives are converted into a single goal with weight
coefficients w and λ, CT represents the total operating cost ($/kWh) of the SHES, which
includes the price of main grid electricity and operating costs by using the power of
the gas engine and diesel engine, and ET represents the total CO2 emissions (kg CO2-
eq/kWh) which involve CO2 emissions from the gas engine, diesel engine, and main grid.
In Equations (22)–(25), ORt can be found if LOLP is fixed at 10% in Figure 4a, and the
hour-ahead forecasting of load demand and PV power can be found in Figure 2a,b.



Energies 2023, 16, 3698 12 of 19

According to average prices in December 2018 from the U.S. Energy Information
Administration (EIA) [35], the fuel prices of natural gas and diesel are given at 0.412 $/m3

and 0.888 $/L, respectively. According to the information from the New York Independent
System Operator (NYISO) [36], the floating grid price (Cmg) is determined by max{LBMP,
5 $/MWh}. Assumed that the maximum power outputs of the gas engine and diesel engine
are set as Pge,max = 250 kWh and Pde,max = 648 kWh, respectively, the operating costs of the
gas engine and diesel engine are obtained according to the following regression models

CNG = 0.412×
(

17.35 + 0.2184× Pi
ge + 0.0002688×

(
Pi

ge

)2
)

(29)

Cdiesel = 0.888×
(

13 + 0.2088496Pi
de + 0.0000192

(
Pi

de

)2
)

(30)

Moreover, the total operating cost (CT) of the SHES is described by

CT = ∑n
i=1 Ci

NG + Ci
diesel + Ci

mg (31)

According to the IPCC 2013 100-year GWP report by using SimaPro®, CO2 emissions of
gas engines, diesel engines, and main grid are 0.738 kgCO2-eq/kWh, 1.138 kgCO2-eq/kWh,
and 0.788 kg CO2-eq/kWh, respectively. Moreover, the total CO2 emissions (ET) of the
SHES are described by

ET = ∑n
i=1 0.738× Pi

ge + 1.138× Pi
de + 0.788× Pi

mg (32)

For the islanded mode of SHES with the prescribed period, Ci
mg and Pi

mg are removed
from two objectives in Equations (31) and (32), respectively. The state of charge (SOC) of
the battery for the grid-connected and islanded modes is described by

SOC(t) = SOC(t− 1) + (Pt
sb/Ec)× η−1

d , i f Pt
sb > 0 (33)

SOC(t) = SOC(t− 1) + (Pt
sb/Ec)× ηc, i f Pt

sb < 0 (34)

where ηd and ηc represent the discharging and charging efficiencies of the battery, respec-
tively. Ec represents the fixed battery capacity.

5. Results and Discussion

First, the accepted risk or LOLP is fixed at 10%, and ORt can be found in Figure 4b,
the SHES of efficiencies with ηcon = 0.98 and ηinv = 0.88 are specified, and the minimum
power outputs of the gas engine and diesel engine are set with Pge,min = Pde,min = 0. Second,
the specifications of rechargeable batteries include battery efficiencies with ηd = ηc = 0.7,
the battery capacity with Ec = 2400 kW, and the operating bounds of charge and discharge
of rechargeable battery between Psb,min = −1000 kWh and Psb,max =750 kWh. Third, the
EEDOA with specified w is solved by using a GAMS® solver named the Branch-and-
Reduce Optimization Navigator (BARON) [37]. Notably, the EEDOA with w = 1 is treated
as the economic dispatch optimization problem, and the EEDOA with w = 0 becomes the
environmental dispatch optimization problem. Moreover, the optimal dispatching of a
smart hybrid energy system via uncertainty analysis, operating reserve, and hour-ahead
and day-ahead forecasting strategies described by a flowchart are shown in Figure 5.

5.1. Daily Forecasting Comparisons

In order to meet the real-time daily load demand, the economic/environmental power
dispatch strategies for the grid-connected and islanded modes of SHES by solving EEDOA
are shown in Figure 6a,c and Figure 7a,c, respectively.
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Figure 6. The grid-connected mode of SHES using economic dispatching by showing (a) power dis-
patch stacking and (b) SOC responses for one day and using environment dispatching by showing 
(c) power dispatch stacking and (d) SOC responses for one day. 
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Figure 6. The grid-connected mode of SHES using economic dispatching by showing (a) power
dispatch stacking and (b) SOC responses for one day and using environment dispatching by showing
(c) power dispatch stacking and (d) SOC responses for one day.

(a) In the grid-connected mode, the main grid (gray bar) in Figure 6a,c dominates the
main power supply due to limits of energy storage capacity and intermittent solar
energy. Due to the main grid with lower LBMP, conventional gas/diesel engines are
absent. Using the environmental dispatch strategy by solving EEDOA with w = 0, the
power supply from the battery shown in Figure 6c is higher than in Figure 6a, such
that the corresponding SOC in Figure 6d is lower than in Figure 6b.

(b) In the islanded mode, the gas turbine (orange bar) and diesel engine (gray bar) in
Figure 7a,c become the main power supplies due to no main grid. Using the economic
dispatch strategy by solving EEDOA with w=1, the diesel consumption (diesel engine)
in Figure 7a is higher than in Figure 7c, such that the corresponding SOC in Figure 7b
is higher than in Figure 7d.

In the grid-connected mode, the lower bounds of SOC in Figure 6b,d can maintain
over 0.1; notably, the power dispatch with a forecast can reduce the upper bounds of SOC
as compared to the power dispatch without a forecast. In the islanded mode, the power
dispatch with a forecast can reduce the upper bounds of SOC as compared to the power
dispatch without a forecast, but it may induce a very low battery (close to 0) risk during a
period of one day as shown in Figure 7b,d. It is noted that the hour-ahead forecast power
dispatch strategy can reduce QR and decrease operating costs.
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Figure 7. The islanded mode of SHES using economic dispatching by showing (a) power dispatch
stacking and (b) SOC responses for one day and using environment dispatching by showing (c)
power dispatch stacking and (d) SOC responses for one day.

5.2. Monthly Forecasting Comparisons

In order to meet the real-time monthly load demand, the economic/environmental
power dispatch strategies for the grid-connected and islanded modes of SHES by solving
EEDOA are addressed, and the corresponding SOC of the battery is shown in Figure 8a–d.
These figures show that the day-ahead forecast power dispatch strategy can reduce the
upper bounds of SOC as compared to the power dispatch without forecast. Similarly, the
day-ahead forecast power dispatch strategy may induce a very low battery (close to 0) risk
during a period of one month. It is verified that the power dispatch for the grid-connected
and islanded modes of SHES using the long-term forecasting algorithm is feasible.

Moreover, Table 3 shows that the forecast-based economic dispatch optimization
strategy can reduce the monthly operating costs (CT) of SHES in both modes by 1.8~6.1% as
compared to it without the use of forecast methods, and the forecast-based environmental
dispatch optimization strategy can reduce the monthly CO2-eq emissions (ET) of SHES in
both modes by 1.9~5.1% as compared to it without the use of forecast methods. Notably,
the monthly operating costs of the grid-connected mode are lower than the islanded mode
by 72.6%. From the economic aspect, the grid-connected mode of SHES is superior to the
islanded mode of HMG.
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Table 3. The grid-connected and islanded modes w.r.t. total operating cost and CO2-eq emissions.

Evaluation

EEDOA Economic Dispatch Optimization Environmental Dispatch Optimization

Forecast No Forecast Forecast No Forecast

Grid-connected mode
CT $/mon 18,589.21 19,061.08 21,578.47 21,956.97

ET kg/mon 404,914.61 412,465.08 403,682.54 412,028.02

Islanded mode
CT $/mon 74,991.03 79,087.03 78,639.83 83,427.78

ET kg/mon 416,585.41 437,626.21 413,979.07 433,580.64
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6. Conclusions

The power dispatch of the grid-connected and islanded modes of SHES, according to
the forecast-assisted EEDOA, is successfully addressed. Through the training and test of
the forecasting strategy from Level 1 to Level 3, the blending model by using LSTM and
XGBoost is validated to effectively improve the prediction accuracy. Accounting for the
loss-of-load probability and the operating reserve in the EEDOA, the simulations show that
both modes of SHES not only keep feasibility but also the monthly operating costs of SHES
are reduced by 1.8~6.1%, and the corresponding monthly CO2-eq emissions are reduced
by 1.9~5.1% when the forecasting strategy is taken into account. To address the low total
operating cost or total CO2-eq emissions for SHES, gas/diesel engines play a key role in
the SHES.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en16093698/s1, Figure S1: Flowchart of forecasting process from
Level 1 to Level 3.
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Nomenclature

EEDOA Economic/environmental dispatch optimization algorithm
FNN Feedforward neural network
GPQR Gaussian process quantile regression
GPR Gaussian process regression
LBMP Locational-based marginal pricing
LOLP Loss-of-load probability
LogR Logistic regression
LR Linear regression
LSTM Long short-term memory
MASE Mean absolute scaled error
NARX Nonlinear autoregressive exogenous model
OR Operating reserve
RF Random forest
RNN Recurrent neural network
SHES Smart hybrid energy system
SVM Support vector machine
SOC State-of-charge
XGBoost Extreme gradient boosting
CT Total operating cost, $/kWh
CNG, Cdiesel operating costs of gas engine and diesel engines, respectively, $/kWh
Pge Gas engine power, kWh
Pde Diesel engine power, kWh
Psb Rechargeable battery, kWh
Pmg Main grid, kWh

https://www.mdpi.com/article/10.3390/en16093698/s1
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ηcon Converter efficiency, %
ηinv Inverter efficiency, %
ηge Electrical generator efficiency, %
β Regression coefficient
δ Standard logistic function
σh,σy Activation functions in hidden layer and output layer, respectively
Wh, wb,Wy, wy Weights in FNN and RNN
npdf Normal probability density function
εL, εPV Forecasting errors of load demand and PV power, respectively, kWh
LA, LF Real-time and forecasting load demand, respectively, kWh
NDA, NDF Net real-time and net forecasted demand, respectively, kWh
Pr Probability
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