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Abstract: This paper presents a holistic Reynolds-averaged Navier–Stokes (RANS) turbulence model-
ing framework for the computational fluid dynamics (CFD) simulations of complex wall-bounded
turbulent flows. Based on the elliptic relaxation idea, the deployed eddy viscosity turbulence model
reconstructs the near-wall stress anisotropy and nonviscous effects. The appropriate selection of the
turbulent quantities that are being solved for, together with the zero value wall boundary condition for
the related turbulent quantities, renders the model less sensitive to the near-wall grid nonuniformities
and resolution. The unified near-wall velocity profile, obtained based on the boundary layer theory,
is used to devise the compound near-wall treatment that ensures the robustness of the numerical
simulation. The proposed turbulence modeling framework is implemented into the general-purpose
open-source CFD code and validated against the generic test cases with satisfactory agreement.

Keywords: computational fluid dynamics (CFD); Reynolds-averaged Navier–Stokes (RANS)
turbulence modeling; wall functions

1. Introduction

The accuracy of computational fluid dynamics (CFD) simulations applied to the turbu-
lent wall-bounded flows is determined by the correct physical description of wall-related
fluid flow effects. Furthermore, in this case, the boundary layer needs to be sufficiently
resolved, since most of the flow variation takes place in a thin region in the immediate
vicinity of the solid boundary. In this regard, there are highly accurate yet computationally
very demanding and time-consuming modeling approaches, such as large-eddy simulation
(LES), which are based on resolving the energy-containing eddies and modeling only the
interaction between the smallest flow scales [1]. Here, different rationales can be used
for subgrid-scale modeling, such as the viscosity type of Smagorinsky [2], the dynamic
Smagorinsky [3] or the structure function [4]. In an attempt to reduce the computation
cost, more recent trends in wall-bounded flows turbulence modeling range from hybrid
approaches (which blend the eddy-resolving and eddy interaction modeling procedures [5])
to emerging machine learning approaches (where deep neural networks are used to train
the replacing elements of the fluid flow interaction at scales that are affected by the loss of
resolution [6]).

This paper is restricted to the conventional Reynolds-averaged Navier–Stokes (RANS)
approach which, due to its moderate mesh requirements, results in much lower compu-
tation time and resources demand. In this statistical approach, the turbulent interaction
is modeled across the entire range of flow scales. Looking at the standard k− ε model [7],
which is widely used in the engineering practice, the turbulent motion is characterized
through the turbulent kinetic energy k and its dissipation rate ε. The deficiency of this
model is its isotropic nature, which is inappropriate for capturing wall effects. Moreover,
it is not designed to resolve the near-wall region; instead, the wall functions are used for
bridging the flow region in the wall vicinity. Early attempts to correct this shortcoming
were based on empirical near-wall damping functions [8]. To obviate the need for damping
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functions, Durbin [9] introduced (in addition to k and ε) the wall-normal Reynolds stress
component υ2 as the turbulent velocity scale, which is sensitized to inviscid wall-blocking
effects through the elliptic relaxation function f . Although the original υ2 − f model signif-
icantly improved the CFD predictions of wall-bounded flows, its applicability in complex
engineering problems was hampered by the stiff boundary conditions and thus related
near-wall behavior and mesh sensitivity.

After Durbin’s elliptic relaxation near-wall model was presented, a number of modifi-
cations were proposed in the literature aiming to improve the model’s numerical perfor-
mance. Lien et al. [10] reformulated the definition of the elliptic relaxation function in order
to obtain the zero value boundary condition, and even though the resulting formulation
is not identical to the original one, this certainly improves the computation stability of
the model. Durbin [11] put under scrutiny the turbulent time and length scale, deriving
constraints in order to assure their appropriate behavior under different flow conditions.
Davidson et al. [12] proposed the turbulent velocity scale to be controlled by the equilib-
rium value; however, in addition to rather rude implementation, this attempt does not
provide entirely correct behavior.

In order to overcome the weakness of the υ2 − f model, Popovac and Hanjalic derived
the ζ − f modification of Durbin’s eddy viscosity model [13], in which the transport
equation for the velocity scale ratio ζ = υ2/k is solved instead of the equation for υ2.
With this change, the power of a variable’s variation near the wall is reduced, which has a
positive impact on the sensitivity of the model. Furthermore, the application of an advanced
quasi-linear pressure–strain model in the equation for the elliptic relaxation function was
introduced, resulting in better numerical stability when solving the transport equation for
the new velocity scale ratio (as compared with its parent transport equation). In conclusion,
in order to derive a modeling approach suitable for complex engineering computations,
the authors discussed the unified near-wall treatment with a pragmatic implementation of
the wall boundary conditions [14].

With the aim to provide a high accuracy of numerical simulations for complex engi-
neering flow problems at reasonably low computational cost, this paper presents a holistic
near-wall turbulence modeling approach with the advantages of the numerically stable
simulation of complex near-wall turbulent flow physics, as well as robust performance
regarding the mesh requirements for the wall boundary and initial flow conditions. As
a gap-filling novelty, this modeling framework includes a physically sound near-wall
treatment, which ensures adequate closure irrespective of the near-wall mesh quality and
resolution. Following this introductory overview, the subsequent sections introduce the
formulation of the proposed turbulence modeling framework. Section 2 gives the fluid
flow governing equations and the basic concept of turbulence modeling, with more details
of the developed wall-bounded flow turbulence model provided in Section 2.1 and the
near-wall treatment in Section 2.2. The presented approach was implemented into an
open-source CFD solver, and its performance tested on generic flow cases which feature
relevant near-wall flow effects. In Section 3, a comparison between the obtained results
and the reference measurements or numerical data for the plane shear flow (Section 3.1),
the two-dimensional separating flow (Section 3.2), and the axisymmetric impinging jet
(Section 3.3) is given. The paper closes with the discussion and conclusions in Section 4.

2. Governing Equations

The isothermal incompressible turbulent flow of Newtonian fluid is governed by the
Navier–Stokes equations, describing the conservation of mass and momentum. By de-
composing the instantaneous turbulent flow quantities into the mean and fluctuating part
(φ̃ = Φ + φ) and subsequently applying the Reynolds averaging procedure (φ̃ = Φ + φ),
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the system of equations that yields the mean flow velocity vector Ui and the pressure P is
obtained [15]:

∂Ui
∂xi

= 0

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P
∂xi

+ ν
∂2Ui

∂xj∂xj
−

∂uiuj

∂xj

(1)

where ρ is the fluid density, ν is the kinematic fluid viscosity, and uiuj is the Reynolds or
turbulent stress tensor (Einstein notation applies for indices i and j).

Arising from the Reynolds averaging of the convective term in the momentum equa-
tion, the second moment tensor uiuj represents the effects of turbulent motion on the mean
flow. Namely, due to nonlinear interaction between the velocity components in the Navier–
Stokes equations (Equation (1)), in addition to the first moment (mean), the Reynolds-
averaged equations also include the second moment (covariance). This leads to the closure
problem for the Reynolds-averaged equations: the Reynolds stress needs to be expressed
through the mean flow variables and related turbulent quantities that characterize the flow.
The linear model for Reynolds stress tensor, using the Boussinesq assumption [16], reads:

−uiuj = 2νtSij −
2
3

kδij (2)

where the average kinetic energy of the velocity fluctuations k = 1
2 uiui contributes to the

isotropic part of the tensor (δij is the Kronecker delta), and the deviatoric part of the tensor

is proportional to the mean rate-of-strain tensor Sij =
1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
, with the coefficient

of proportionality νt being the kinematic eddy or turbulent viscosity. Using Equation (2),
the final form of the momentum equation reads:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P
∂xi

+
∂

∂xj

(ν + νt)︸ ︷︷ ︸
νe f f

(
∂Ui
∂xj

+
∂Uj

∂xi

) (3)

with the effective momentum diffusivity νe f f = ν + νt comprising the kinematic and
turbulent viscosity.

2.1. Turbulence Model

The eddy viscosity idea for the Reynolds stress modeling is introduced in analogy
to the viscous stress: just like the fluid viscosity is proportional to the mean free path
and mean speed of molecules, the turbulent viscosity is a function of the characteristic
turbulent velocity and length scale. The analogy ends with the dimensional consistency,
however, because ν is the property of the fluid, while νt is the property of the flow. In the
two-equation eddy viscosity modeling approach, the turbulent contribution to the effective
momentum diffusivity is obtained from the transport equations for two turbulent quantities:
one for calculating the velocity scale V and the other for defining the time scale of turbulent
motion T (yielding thus the length scale ` = V T ). In the present work, the turbulent
quantities required for the definition of the turbulent viscosity νt are devised within the
k− ε turbulence model family:

νt = cµkT ζ

ζeq
(4)

where the turbulent kinetic energy k is used for defining the characteristic time scale (T ∼ k
ε )

and velocity scale (V2 ∼ k):

∂k
∂t

+ Uj
∂k
∂xj

= P − ε +
∂

∂xj

[(
ν +

νt

σk

)
∂k
∂xj

]
(5)
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together with the turbulent kinetic energy dissipation rate ε:

∂ε

∂t
+ Uj

∂ε

∂xj
=

Cε1P − Cε2ε

T +
∂

∂xj

[(
ν +

νt

σε

)
∂ε

∂xj

]
(6)

whereby P = −uiuj
∂Ui
∂xj

is the production of the turbulent kinetic energy, and the normal-
ized fluctuating velocity ζ provides the correct near-wall behavior of νt, while cµ, σε, σk,
Cε1, Cε2, and ζeq are the model coefficients.

The production of the turbulent kinetic energy, typically calculated as P = νtS2,
using the modulus of the mean rate-of-strain tensor S =

√
2SijSij, quantifies the kinetic

energy of the mean flow transferred to the turbulent stresses. While the transport equation
for k (Equation (5)) can be derived exactly from the Reynolds stress equations, the ε
transport equation (Equation (6)) is constructed to have the same form as for k (only scaled
with appropriate time scale, following the definition of ε). As for the model coefficients,
Cε1 = C′ε1(1+C′′ε1/

√
ζ) accounts for a sharp variation of the dissipation rate in the near-wall

vicinity, and all other model coefficients are summarized in Table 1.

Table 1. The ζ − f0 model coefficients.

cµ σk σε σζ C′
ε1 C′′

ε1 Cε2 C f 1 C f 2 CT Cτ CL Cη ζeq Nζ nb

0.09 1.0 1.3 1.2 1.4 0.012 1.9 0.4 0.65 0.6 6.0 0.36 85 0.41 2 10/3

Durbin [9] noted that using the wall-normal fluctuating velocity component u2u2 = v2

as the velocity scale, the correct near-wall behavior of turbulent viscosity for wall-bounded
flows is recovered (here, the indices convention for ui and xi is used: u1 = u, x1 = x,
streamwise direction; u2 = v, x2 = y, wall-normal direction; and u3 = w, x3 = z, spanwise
direction). For this purpose, he derived the transport equation for v2 and introduced
the elliptic relaxation function f for pressure–strain modeling as an essential element for
describing the nonviscous near-wall effects. Although the v2 − f model brought significant
improvements in the prediction accuracy, since it resembles the Reynolds stress approach in
the direction normal to the streamlines, its near-wall mesh quality requirements remained
excessively high, and the overall model performance is sensitive to the near-wall grid
clustering. Aiming at easing the mesh requirements of the original Durbin model, Hanjalic
and Popovac derived the ζ − f modification [13] by introducing the normalized fluctuating
velocity in the direction normal to the streamlines ζ = v2/k. In the transport equation
transformation from υ2 to ζ, the cross-diffusion term is omitted, and its effect (restricted
only to the flow region very close to the wall) is compensated through the coefficient fine-
tuning. Furthermore, following the SSG formulation of Speziale et al. [17], the quasi-linear
pressure–strain model is applied in the elliptic relaxation function, as it better captures the
stress anisotropy in wall boundary layers (as compared with the linear formulation based
on the isotropization-of-production assumption).

In the present work, the ζ − f model is further reformulated in order to arrive at the
zero value wall boundary condition for the relaxation function. To mark the difference,
this reformulation is referred to as the ζ − f0 model. The adopted idea is outlined by
Lien et al. [10], by which the fluctuating velocity transport equation is constructed with the
contribution from the pressure fluctuation taken with the modifying model coefficient Nζ :

L2∇2 f0 − f0 =

(
C f 1 + C f 2

P
ε

)(
ζ − 2

3
)
+
(

Nζ − 1
)
ζ

T (7)

∂ζ

∂t
+ Uj

∂ζ

∂xj
= f0 −

ζ
[
P
ε +

(
Nζ − 1

)]
T +

∂

∂xj

[(
ν +

νt

σζ

)
∂ζ

∂xj

]
(8)
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while the characteristic turbulent time and length scales, T and L, respectively, are limited
with the Kolmogorov values as the lower bounds and the realizability constraints as the
upper bounds [15]:

T = max

[
min

(
k
ε

,
CT√

6cµ|S|ζ

)
, Cτ

(ν

ε

)1/2
]

(9)

L = CL max

[
min

(
k3/2

ε
,

k1/2
√

6cµ|S|ζ

)
, Cη

(
ν3

ε

)1/4]
(10)

Looking at the ζ − f0 model set of coefficients (Table 1), note that Durbin introduced
the turbulent viscosity coefficient Cµ = 0.22, which is different from the standard k− ε
value cµ = 0.09 (also used here for the ζ − f0 model). Cµ differs from cµ by the constant
ζeq = 0.41, which is the equilibrium value of ζ identified as the plateau in its wall-normal
profile. In other words, the near-wall correction of the standard k− ε turbulent viscosity
is introduced through the ζ scaled to unity (Equation (4)). For completeness, from SSG
comes an additional term in Equation (7), however, its coefficient being C f 3 = 0.008, which
is two orders of magnitude smaller than the other coefficients in the f0 equation, it is safe
to neglect it. Putting Nζ = 1 in the ζ − f0 formulation, the model reverts to its initial ζ − f
form, whereby the case with zero value wall boundary condition is not identical to the
nonzero value one (due to the elliptic nature of the relaxation function), but this alteration
has a very limited effect on general mesh types (for which it is intended to be used).

2.2. Compound Wall Treatment

To complete the set of the ζ − f0 model equations (Equations (5)–(8)), the appropriate
boundary conditions have to be provided. In the case of the integration to the wall (ItW)
of the transport equations on a fine mesh, the exact boundary conditions are imposed
on the solid boundary surface, while the mesh resolution applied near the wall recovers
the sharp gradients of flow quantities occurring there. For insufficient near-wall mesh
resolution, on the other hand, one has to assume certain fluid flow behaviors in the near-
wall region, and from there derive the wall functions (WF) which will reconstruct the desired
wall boundary condition on the coarse mesh [18]. Depending on the characteristics of
the analyzed flow and geometry, it is probable that for a complex wall-bounded flow, the
applied numerical mesh will involve both ItW and WF in different flow sections. This is
where the compound wall treatment (CWT) comes into play to provide a continuous and
accurate distribution of the flow quantities throughout the near-wall region, as is needed
for the appropriate specification of the boundary conditions irrespective of the local mesh
resolution [14].

For the approximation of the near-wall flow conditions, the fully developed 2D equi-
librium turbulent boundary layer can be taken [19]. From the available experimental and
numerical data, one can identify different flow regions with distinct velocity profiles: the
inner sublayer, where the viscous forces dominate; the outer layer, where the inertial forces
are dominant; and in between the buffer region, where both forces are equally significant.
For the inner and outer flow regions (green dotted and dash-dotted lines, respectively, in
Figure 1a), the normalized velocity profiles are given as:

U+ =
U
uτ

=

{U+
vis =y+ viscous sublayer

U+
log =

1
κ

ln(Ey+) logarithmic layer
(11)

where the friction velocity uτ is the representative velocity scale for the wall shear stress, the
Von Karman constant κ = 0.41 reflects the increment of the effective near-wall momentum
diffusivity, E = 8.9 is the logarithmic constant related to the thickness of the viscous
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sublayer, and y+ is the normalized distance of the cell center to the solid boundary yc,
expressed in terms of the dimensionless wall units:

y+ =
ycuτ

ν
(12)

Following the differences between the inner sublayer (viscous dominated, extending
up to approximately y+ < 5) and outer logarithmic layer (inertia dominated, observed for
approximately y+ > 30), the friction velocity is defined as:

uτ =

{
uvis

τ =

√
|τw|

ρ
=

√
ν

Uc

yc
viscous sublayer

ulog
τ =

√
|uv| = c1/4

µ k1/2
c logarithmic layer

(13)

either directly from the wall shear stress τw if the wall-adjacent cell center c lays within the
viscous sublayer (resulting from the correct reconstruction of the velocity gradient, as the
prerequisite for the correct τw), or indirectly through the Reynolds shear stress uv in case
the near-wall cell is in the logarithmic layer (making use of the assumption that the wall
shear stress τw is balanced with the turbulent shear stress uv in that region).

(a) (b)

Figure 1. Boundary layer flow distribution along dimensionless wall-normal distance y+: (a) normal-
ized velocity U+ (U+) and (b) normalized velocity gradient dU+/dy+ (dU+).

The boundary layer velocity profile (Equation (11)) can be derived analytically in its
generalized form by introducing in the momentum equation (Equation (3)) the bound-
ary layer assumptions: the nonhomogeneity of the wall-tangent velocity component U is
in the wall-normal direction y, the nonequilibrium effects are linearized (time variation,
convection, and pressure gradient are known from the previous time step and constant
throughout the near-wall cell), up to the viscous sublayer thickness yv the effective mo-
mentum diffusivity reduces to the kinematic viscosity νe f f = ν, while further into the
boundary layer it linearly increases with the wall distance νe f f = κuτy. Thus, integrating
Equation (3), after some mathematical manipulation (continuity and smoothness require-
ment for the integration constants), yields the wall shear stress when yc > yv (coarse mesh):

τw = ρ
Uc −

CU

(
yc −

yv

2

)
κuτ

yv

ν
+

ln
(

yc

yv

)
κuτ

(14)

whereby CU = ∂U
∂t + U ∂U

∂x + V ∂U
∂y + 1

ρ
∂P
∂x gathers momentum nonequilibrium terms

(related, e.g., to the adverse or favorable pressure gradient).
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Invoking the normalization definitions (Equations (12) and (13)), the generalized wall
shear stress expression (Equation (14)) can be rewritten in the standard log-law form:

U+
logψ

=
1

κψ
ln(Ey+) (15)

by which the common value of the effective viscous sublayer thickness y+v = 11 recasts
into the widely adopted logarithmic constant value E = 8.9 in the standard log-law,

while ψ = 1 −
CU

(
yc −

yv

2

)
Ucκuτ

is the nonequilibrium factor. As the linearization of the
nonequilibrium effects encompassed by ψ in the derivation of Equation (14) might affect
the stability, the bounding ψmin < ψ < ψmax is considered.

One can note the equivalency between Equations (14) and (11), since in the equilibrium
flow conditions CU = 0 yields ψ = 1, and Equation (15) boils down to U+

log for yc > yv

(coarse mesh). On the other hand, for yc < yv (fine mesh), the velocity profile integration
(Equation (14)) does not go beyond the viscous sublayer; hence, on the right-hand side,
both in the nominator and the denominator, the second term is eliminated, and the τw
expression is reduced to U+

vis.
On a coarse mesh, the resolution near the wall is insufficient for the correct reconstruc-

tion of the velocity profile. Hence, to impose the correct wall shear stress in the momentum
equation, the effective momentum diffusivity at the wall νwall

e f f is derived from the WF ex-
pression (Equation (14)), accounting for the locally available wall-normal velocity gradient:

τw = ρνwall
e f f

Uc

yc

τ+
w = 1 =

νwall
e f f

ν

U+

y+

νwall
e f f = ν

y+

U+

(16)

which comes to be the consistent formulation both for the ItW and WF cases. Namely,
Equation (11) in the viscous sublayer U+ = y+ yields νwall

e f f = ν, and in the logarithmic layer,

U+ = 1
κψ ln(Ey+) gives νwall

e f f = κψuτy
ln(Ey+) , provided there is an appropriate normalization

(Equations (12) and (13)) and correct U+ distribution throughout the near-wall region
from CWT.

The mathematical requirement for CWT is to satisfy the limit condition: in the respec-
tive velocity region where its flow effect is dominant, the unified profile has to yield the
limiting U+

vis or U+
log as the prevailing value (Equation (11)). This is a minor issue when the

prevailing flow effect exists: the problem arises in bridging the buffer region between two
distinct regions (approximately 5 < y+ < 30 in the boundary layer), since, in between, both
effects are of equal importance. In mathematics, it is appropriate to work with harmonic
means when the average ratios are desired, as is the case here to quantify the intensity of
one flow effect over the other. In that view, for the blending of the two limiting normalized
velocity definitions, a generalized harmonic mean is put forward (blue line in Figure 1a):

U+
blend =

 1(
1

U+
vis

)nb

+

(
1

U+
log

)nb


1/nb

(17)

where the blending coefficient nb = 10/3 is obtained by minimizing the root-mean-square
difference between the velocity blending expression and the available reference velocity
data (red symbols in Figure 1).
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In addition to the unified velocity distribution (Equation (17)), the wall-normal velocity
gradient is also sought from CWT, since the turbulent kinetic energy production reduces to
Pc = |uv|(dU/dy) in the homogeneous boundary layer, while the Reynolds shear stress
is related to the turbulent kinetic energy |uv| = c1/2

µ k (Equation (13)). The wall-normal
velocity gradients from Equation (11) are derived as the limiting values for the respective
flow regions (green dotted and dash-dotted lines in Figure 1b for the inner and outer flow
regions, respectively):

dU+

dy+
=

{(dU+

dy+

)
vis

=1 viscous sublayer(
dU+

dy+

)
log

=
1

κy+
logarithmic layer

(18)

whereas the analytical differentiation of the blended velocity profile (Equation (17)) leads
to the following expression for the blended wall-normal velocity gradient (blue line in
Figure 1b): (

dU+

dy+

)
blend

= U+
blend

(nb+1)

 U+
vis

nb

κ + U+
log

(nb+1)

U+
vis

(nb+1)U+
log

(nb+1)


1/nb

(19)

which confirmed the best fit against the available reference velocity gradient data (red
symbols in Figure 1b) with nb = 10/3.

For the kinetic energy and the normalized fluctuating velocity, the wall boundary
conditions kw = 0 and ζw = 0 follow directly from the kinematic requirement for the wall
velocity fluctuations (no-slip). Here, the diffusive flux through the walls is eliminated
by adjusting the respective diffusivity coefficient (analogous to imposing the effective
diffusivity for the momentum). For the dissipation rate and relaxation function, however,
the wall boundary conditions εw and f0w are obtained from the near-wall analysis of the
transport equations for k and ζ, respectively, (expressed in terms of the values at the
near-wall cell center).

On the coarse mesh, the cell-center value εc is assumed to be in equilibrium with the

turbulent kinetic energy production Pc =
c3/4

µ k3/2
c

κyc
= εc, and for both quantities, this value

is to be fixed in the center of the wall-adjacent cell. As for P , this represents a satisfactory
approximation throughout the near-wall region. However, ε is not in equilibrium with
P very close to the wall: instead, there, it is balanced with the diffusion of k. Therefore,
the exact wall boundary condition εw is to be imposed at the wall surface of the fine mesh
εw = 2νkc

y2
c

. An effective way to reconcile these two wall treatment rationales (the definition
at the wall surface and in the near-wall cell center) is to fix the blended value in the center
of the near-wall cell:

εblend = εwΓ + εc(1− Γ) (20)

where, for the blending factor Γ = (dU+/dy+)blend, the normalized velocity gradient can be
used (Equation (19)) because of its transition between the inner and outer layer (Figure 1b:
it goes to unity for small y and tends to zero for large y). This gives, for the blended value,
the equilibrium definition at large y (coarse mesh), and at small y (fine mesh), it tends to
the wall value with the assumed zero gradient (no diffusive flux).

Looking at the wall boundary condition for the relaxation function, its form is the
same as the ε wall boundary condition, and it can be tuned to zero value through the
appropriate selection of Nζ :

f0w = (Nζ − 2)
2νζc

y2
c

(21)

whereby this same definition can be taken as the wall boundary condition irrespective
of the distance from the wall of the near-wall cell center, on the grounds that the wall
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blocking effect (that f0 represents) decreases sharply with the distance to the wall, just like
Equation (21) will tend to zero with increasing y.

Compared with the starting modeling approach [13], the presented ζ − f0 formulation
of the elliptic relaxation function (Equations (7) and (8)) yields the wall boundary condition
(Equation (21)) that ensures the model robustness despite the mesh quality and resolution
insufficiency. Furthermore, unlike in the original idea [14], the compound wall treatment
presented here (Equation (17)) provides a smooth and accurate transition between the inner
and outer scaling. This physically sound near-wall strategy enables stable inclusion of the
nonequilibrium near-wall flow effects (Equation (15)) and ensures the robustness of the
numerical simulation with respect to the near-wall mesh quality.

3. Results

The ability of the deployed physical description to capture near-wall flow phenom-
ena can be seen from recovering the underlying flow effects. For this purpose, both the
ζ − f0 model (Equations (4)–(10)) and CWT near-wall treatment (Equations (11)–(21)) were
implemented into the open-source CFD library suite OpenFOAM [20,21]. Subsequently,
the presented turbulence modeling approach was validated on the generic test flow cases,
which are representative of the flows featuring the principal wall-bounded flow phenomena:
wall boundary layer, flow separation, recirculation and reattachment, and impingement and
streamline curvature. The analyzed test cases were extensively examined experimentally
and/or numerically, and the reference data were taken from the best available sources:
either measurements or direct numerical simulation (DNS).

As the reference data for fully developed turbulent channel flow (Figure 2b), the DNS
results with Reτ = 800 were used [22]. The backstep flow configuration H/h = 4 based
on the step height h and the bulk velocity Reynolds number Reh = 28,000 was analyzed
(Figure 2d), and the results are compared with the available experimental data [23]. The
impinging jet with a distance to plate H/D = 2 was simulated with the bulk velocity
Reynolds number ReD = 23,000 based on the pipe diameter D (Figure 2f) and compared
with the experimental studies [24,25].

(a) (b)

(c) (d)

Figure 2. Cont.
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(e) (f)

Figure 2. The sections of the meshes (left) used for the simulation of the generic test flow cases (right):
(a,b) plane channel flow; (c,d) backward-facing step flow; and (e,f) axisymmetric impinging jet.

3.1. Plane Channel Flow

In a simple parallel-plate channel geometry, the fully developed turbulent steady-
state flow has nonhomogeneity in the wall-normal direction only (Figure 2b). With a
constant streamwise pressure gradient driving this shear flow, the streamwise and spanwise
gradients of the statistical quantities are zero, and modeling is needed to reconstruct the
turbulence generation near the wall.

Figure 2a shows regular numerical mesh, which is used for the plane channel simula-
tions. By changing the mesh clustering, the wall-adjacent cell center is placed in the viscous,
buffer, and log-law region (y+ = 1, 10, 30 respectively), putting CWT to test. The obtained
normalized velocity (Figure 3a) and turbulent kinetic energy (Figure 3b) recover DNS
wall-normal profiles well in case the cell center is in the viscous or log-law region (y+ = 1
and y+ = 30 mesh, respectively). When the cell center is located in the buffer region
(y+ = 10 mesh), even if the velocity in the wall-adjacent cell is captured well, there are
not enough computational points throughout the near-wall region to reconstruct the steep
velocity variation there, resulting in somewhat overpredicted wall shear stress (following
the explanation of Equation (16)).

(a) (b)

Figure 3. Plane channel flow DNS results (symbols) and ζ − f0 simulations with different mesh clus-
tering (lines): wall-normal distribution of the (a) normalized velocity and (b) normalized turbulent
kinetic energy.
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3.2. Backward-Facing Step Flow

As the incoming stream flows over a sharp step, it separates on its edge and creates
the recirculation zone underneath. The resulting flow pattern, including the position of
the reattachment point and the subsequent flow recovery, depend on the incoming flow
characteristics and the geometry configuration (Figure 2d).

From the profiles of the streamwise velocity (normalized with the inlet bulk velocity)
taken at different distances from the step (Figure 4), one can see that the flow pattern in the
recirculation zone is reconstructed well, and the reattachment length prediction is good. It
can be noted, though, that in the recovery zone, the flow develops somewhat more slowly.
With the deployed mesh structure (Figure 2c), the average y+ at the bottom wall was kept
around 100; however, it inevitably changes due to the variation in the streamwise flow
conditions. Nevertheless, the proposed near-wall treatment (Equation (17)) assures the
correct wall boundary condition definition, regardless of the near-wall mesh resolution.

Figure 4. Backward−facing step flow experiments (symbols) and ζ − f0 simulations (lines): wall-
normal distribution of the streamwise velocity normalized with the bulk velocity at the streamwise
distance x/h = 0.37, 0.53, 0.66, 0.74 from the step.

3.3. Axisymmetric Impinging Jet

In a fully developed axisymmetric jet impinging into a plate, the streamline curvature
effects are dominant. Flowing onto a target wall under the right angle, it generates the
cylindrical shear layer (separating the jet core from the entraining ambient fluid), and in
the stagnation region, the axial flow decelerates and deflects it into the radial wall jet
(Figure 2f).

The mesh resolution was intentionally kept insufficient for an adequate reconstruction
of the near-wall flow pattern (Figure 2e) in order to test the capability of the turbulence
model. From the obtained profiles of the velocity magnitude normalized with the bulk
velocity, obtained at different radial distances from the jet axis, shown in Figure 5, good
agreement is observed in the stagnation region. However, in the wall jet region, the shear
layer could not be resolved sufficiently: although the velocity profiles are recovering the
main flow features, for a better reconstruction of the flow gradients, a finer mesh resolution
is required. What proves the robustness of the model, however, is that during the flow
development phase, the simulation was running stably. The full convergence was smoothly
reached, which is not a common experience with other models: very often, a careful
flow initialization is required (and/or low under-relaxation parameters) to stabilize the
numerical process involving rapid flow variations.
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Figure 5. Axisymmetric impinging jet experiments (symbols) and ζ − f0 simulations (lines): wall-
normal distribution of the velocity magnitude normalized with the bulk velocity at the radial distance
r/D = 0.5, 1.0, 2.5, 3.0 from the jet axis (r =

√
x2 + z2).

4. Conclusions and Discussion

The modeling of the near-wall flow effects has a decisive role for the accurate prediction
of wall-bounded flow characteristics. In this paper, a turbulent modeling framework
is presented, which reproduces nonviscous pressure wall blocking effects (through f0),
the viscous damping of turbulent fluctuations (using ζ), and the dissipation adjustment
(in ε equation) very close to the wall. In order to provide the numerical stability of the
model, time and length scale constraints are used. The numerical parameters that control
the simulation can be appropriately selected for the given flow conditions and mesh,
and the relaxation function wall boundary condition can be tuned to zero in order to
improve the simulation performance.

For robust simulations of complex engineering flows, the presented turbulent mod-
eling framework incorporates a physically sound near-wall treatment, which handles
arbitrary mesh quality and clustering. Namely, while a fine mesh resolution of the bound-
ary layer allows for imposing the exact wall boundary conditions (ItW), with insufficient
near-wall mesh resolution, the flow effect approximation is reconstructed from the bound-
ary layer assumptions (WF). To enable seamless switching in the turbulence modeling
operation regardless of the near-wall mesh characteristics, CWT based on the generalized
harmonic mean provides accurate and continuous variation of turbulent quantities be-
tween their limiting definitions (ItW on fine mesh, WF on coarse mesh) throughout the
near-wall region. It is important to note, however, that the physical correctness of the
turbulence model with near-wall treatment cannot compensate the numerical requirement
for resolving the fluid flow gradients.

Inspecting more deeply the adopted blending through the generalized harmonic mean,
it is observed that the outer log-layer (log-law) is somewhat analogous to the inertial sub-
range of Kolmogorov [15]: the momentum transfer undergoes the transition from the outer,
over the intermediate, towards the inner region—the same as when the turbulent energy
cascades from large to small scales over the energy-containing inertial subrange. The energy
spectrum describes a transfer of energy from low to high wavenumbers K through the en-
ergy cascade E(K) = CEεmEKnE , and numerous investigations have confirmed the negative
slope of the velocity fluctuations spectrum nE = −5/3 [26]. Similarly, the pressure fluc-
tuations in a turbulent flow can be characterized as P(K) = CPεmPKnP , and the pressure
fluctuations spectrum falls off as nP = −11/3 in the inertial subrange of the shear flow [27].
On the other hand, the generalized harmonic mean can be conveniently reformulated as
(U+

blend)
nb = (U+

vis)
nb + (U+

log)
nb for the negative exponent nb = −10/3, which yielded

the best fit with the reference data. It is worth noting that the blending exponent value
corresponds to the turbulence cascade slope coefficient range for the observed turbulent
fluctuations, which can be an indication that similar interaction mechanism guides the
transition between the inner (viscous) and outer (logarithmic) flow distribution.
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Nomenclature
The following symbols are used in this paper to denote variables and constants and as subscripts:

Variables
Ui mean flow velocity vector
P mean flow pressure
k turbulent kinetic energy
ε turbulent kinetic energy dissipation rate
P turbulent kinetic energy production
ζ normalized fluctuating velocity
f0 elliptic relaxation function (zero wall BC)
ρ fluid density
ν kinematic fluid viscosity
νt kinematic turbulent viscosity
νe f f effective momentum diffusivity
T characteristic turbulent time scale
L characteristic turbulent length scale
V characteristic turbulent velocity scale
Sij rate-of-strain tensor
τw wall shear stress
uiuj turbulent stress tensor
υ2 wall-normal turbulent stress component
U+ normalized velocity
y+ normalized wall distance
uτ friction velocity
ψ nonequilibrium factor
CU linearized nonequilibrium term
Subscripts
i, j, k vector components in streamwise, wall-normal, and spanwise direction
c value in the near-wall cell center
w value at the wall surface
log logarithmic layer
vis viscous sublayer
Constants
κ Von Karman constant
E logarithmic constant
cµ turbulent viscosity coefficient
ζeq equilibrium normalized fluctuating velocity
Nζ wall boundary coefficient for f0
nblend CWT blending coefficient
σvariable Prandtl number (in equation for given variable)
Cvariable model coefficients (in equation for given variable)
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