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Abstract: Accurately predicting well productivity is crucial for optimizing gas production and maxi-
mizing recovery from tight gas reservoirs. Machine learning (ML) techniques have been applied to
build predictive models for the well productivity, but their high complexity and low interpretability
can hinder their practical application. This study proposes using interpretable ML solutions, SHapley
Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME), to pro-
vide explicit explanations of the ML prediction model. The study uses data from the Eastern Sulige
tight gas field in the Ordos Basin, China, containing various geological and engineering factors. The
results show that the gradient boosting decision tree model exhibits superior predictive performance
compared to other ML models. The global interpretation using SHAP provides insights into the
overall impact of these factors, while the local interpretation using SHAP and LIME offers individual-
ized explanations of well productivity predictions. These results can facilitate improvements in well
operations and field development planning, providing a better understanding of the underlying phys-
ical processes and supporting more informed and effective decision-making. Ultimately, this study
demonstrates the potential of interpretable ML solutions to address the challenges of forecasting well
productivity in tight gas reservoirs and enable more efficient and sustainable gas production.

Keywords: well productivity; machine learning; interpretability; SHAP; LIME

1. Introduction

China’s reserves of onshore tight gas are substantial, with an estimated more than
20 trillion m3 of proven reserves as of 2021 [1,2]. The applications of hydraulic fractur-
ing technology have facilitated the extraction of the natural gas, and accounted for ap-
proximately 24.4% of China’s total natural gas production in 2020, which amounted to
47 billion m3 [3]. The Ordos Basin in western China has experienced significant growth in
the tight gas production over the past decade, with several giant gas fields having more
than 4 trillion m3 reserves. Notably, the Sulige stands out as the largest tight gas-producing
field in China, with proven natural gas reserves of more than 600 billion m3 [4,5].

Accurate well productivity forecasting (WPF) is crucial for the effective evaluation
and development of the tight gas fields as the productivity is closely linked to optimizing
hydraulic fracturing design, well spacing, and investment decision-making. However, due
to the complex pore structure and intricate transport mechanisms of natural gas in the
tight formations, flow mechanisms remain insufficiently understood. Therefore, the WPF
has been a significant subject of research for the tight gas reservoirs. Several predictive
methods have been proposed and can be classified according to the degree of reliance on
physical information and the necessary data for modeling [6]. The mechanistic method,
which leverages the underlying physics, builds rigorous mathematical models that describe
the complex physical phenomena during natural gas extraction from the tight forma-
tions [7–10]. The model parameters are built upon the physical concepts. Consequently,
the mechanistic models offer plausible explanations for the physical phenomena and have
strong generalization ability due to their strict adherence to the first principle [11].
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Analytical and reservoir simulation methods are two examples of mechanistic mod-
eling techniques used in the WPF. Most analytical methods rely on idealized assumption
such as homogeneous reservoirs, single-phase flow, and simple fracture geometries, to
derive analytical equations for the well productivity [12–14]. However, these simplifica-
tions may lead to significant predictive errors, particularly in heterogeneous reservoirs
with complex fracture networks and multi-phase flow. For the scenario, reservoir simu-
lation method can achieve reasonable results by simulating the flow processes of oil, gas,
and water phases through the tight matrix and fracture networks. Even so, accurately
characterizing underlying flow mechanisms in nanoscale and micro-scale pores presents
challenges to the simulation method. For example, traditional Darcy’s law may be insuffi-
cient in these cases. In addition, the effectiveness of the reservoir simulation relies upon
correct reservoir characterization and time-consuming history matching results [15–17].
The simulations usually require the utilization of fine-scale grids and iterative solutions
of the partial differential equations of multiphase flow, which lead to computationally
expensive and time-consuming. Thus, the reservoir simulation method cannot meet the
time-efficient demand of tight gas field development. In summary, the problems have
limited the application and promotion of the mechanistic models in the real gas fields.

The advancement of artificial intelligence (AI) technology, coupled with the increasing
availability of data resulting from rapid gas field development, has shown significant
potential in the development of machine learning (ML) models for the WPF [18,19]. Such
models are particularly effective in addressing the complex problems, particularly when
the current seepage theory is not mature enough to accurately model the gas flow behavior.
The data-driven approach enables the capture of intricate nonlinear relationships between
fractured well productivity and various contributing factors, such as formation properties,
drilling and completion procedures, and fracturing treatments. Compared with the mecha-
nistic models, the ML algorithms require only historical data instead of detailed physical
information, making them easier to develop and apply. Various supervised learning al-
gorithms, such as support vector machines (SVM), decision trees (DT), artificial neural
networks (ANN), and ensemble learning such as random forest (RF) and gradient boosting
decision tree (GBDT), have been investigated for the WPF as shown in Table 1.

Table 1. Machine learning algorithms to predict well productivity.

Author (Year) Well
Productivity

ML
Techniques Data Description R2

Wang & Chen
(2019) [20]

First-year oil
production

RF, AdaBoost,
SVM, ANN 3610 Wells, 6 features RF outperforms other

algorithms 0.63

Wang et al.
(2022) [21]

Absolute open
flow potential PCA with LSSVR 84 wells, 18 features Select main

parameters with PCA 0.98

Morozov et al.
(2020) [22]

3-month oil
production CatBoost More than 5000 wells,

92 features
Extract 35 features

after RFE 0.82

Porras et al.
(2020) [23]

First-year oil
production Random forest 875 wells, 8 features Model-agnostic

interpretation 0.63

Rahmanifard et al.
(2020) [24]

Average gas
production rate

Artificial neural
network 603 wells, 16 features ANN with different

training algorithms 0.82

Luo et al.
(2019) [25]

First-year oil
production

artificial neural
network 2000 wells, 13 features Use geological and

completion features 0.6

The predictive performances of the developed models exhibit a high level of accuracy,
as evidenced by the coefficient of determination (R2) on the testing data sets in Table 1.
In addition to high prediction performance, a significant advantage of the data-driven
approach is its speed of prediction. Once the predictive models are successfully built, the
predictions can be made within a matter of seconds. This allows for timely decision-making
in the tight gas field development where many wells need to be drilled and then stimulated.
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Although the applications of ML algorithms have demonstrated considerable potential
for enhancing the efficiency and reliability of the WPF, the lack of interpretability in
these “black box” models has hindered petroleum engineers from understanding the
rationale behind the model prediction. In addition to knowing the productivity of the
fractured wells from the models, it is also crucial for the engineers to know how the
primary parameters impact the well productivity to improve hydraulic fracturing design
and well spacing. Further, it is also essential to investigate the degree of influence of each
feature on an individual well productivity prediction to identify potential errors or biases.
Unfortunately, previous ML applications offer little insight into the rationale behind the
prediction outcomes at both global and local levels. It is, therefore, necessary to improve
model interpretability to enhance the applicability of the ML techniques in the WPF.

Recent studies have focused on interpretability to comprehend how ML models learn
from data, the learned patterns, and how they generate specific predictions [26,27]. In this
research, we utilized three supervised ML algorithms to predict the well productivity in the
Eastern Sulige gas field. Furthermore, the study employed Shapley additive explanations
(SHAP) and local interpretable model-agnostic explanations (LIME) techniques to reveal
the important features and provide an underlying rationale for the prediction results at the
global and local levels. These approaches are described in Section 3.

2. Data Preparation

The study utilized data obtained from the hydraulically fractured vertical wells in the
Eastern Sulige gas field, which is situated in the Ordos basin, China (see Figure 1).
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Figure 1. The study area in the Sulige gas field.

The gas field spans an exploration area of 11,000 km2, stretching from the Ordos
district in the Inner Mongolia autonomous region to the Yulin district of Shaanxi province,
China. The primary producing zone in the study area is the He8 Member of the lower
Shihezi formation, which consists of multiple and thin gas-bearing layers, with thicknesses
ranging from 20 m to 60 m. The lithology of the formation is sandstone of the fluvial-delta
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facies, with strong heterogeneity. The average matrix porosity is between 4% to 12%, and
the average matrix permeability ranges from 0.01 mD to 1 mD. The average depth of the
gas reservoirs in the northern and southern parts of the study area varies from 2500 m to
3300 m [28]. Since 2010, more than 2000 wells have been drilled and put into production in
the Shihezi Formation, with vertical wells accounting for over 80% of the total number of
fractured wells [29].

The study involved the collection of production data from more than 700 fractured
vertical wells operated by different departments. The productivity of these gas wells
is quantified using absolute open flow potential (AOFP), a common indicator of well
productivity. The well AOFP is usually determined with a one-point well test method
that is widely employed in the Chinese gas field. Three types of important features that
affect the AOFP were investigated including geological properties of the formation, well
test constraints and fracturing treatment parameters. Each of the fractured vertical wells
includes 18 input features. Table 2 summarizes the statistical properties of the response
variable and the selected features.

Table 2. Statistical properties of input and target variables used in the study.

Type Parameter (Unit) Abbrev. Range Mean Std Dev.

Target Absolute open flow potential
(104 m3/day) AOFP [0.40, 26.95] 5.94 4.85

Geological
properties

Formation thickness (m) TH [1.70, 719.30] 28.17 63.49
True vertical depth (m) TVD [2534.00, 4486.00] 3046.79 213.36
Formation porosity (%) PO [4.13, 14.30] 8.80 1.65

Matrix permeability (mD) PERM [0.03, 10.69] 0.80 0.91
Gas saturation (%) SG [35.00, 83.66] 58.71 6.75

Rock breakdown pressure (MPa) BP [26.00, 73.70] 50.68 10.00
Perforation Thickness (m) PFTH [1.20, 100.00] 12.55 14.73

Well test

Tubing pressure (MPa) SOP [0.20, 21.70] 13.31 3.64
Casing pressure (MPa) CP [2.2 0, 22.20] 14.35 3.17
Static pressure (MPa) SP [11.20, 32.04] 23.65 3.18

Bottomhole pressure (MPa) BHP [3.00, 28.20] 17.74 3.91

Fracturing
treatment

Slurry fluid volume (m3) SFV [88.20, 5167.20] 384.69 384.69
Total fluid volume (m3) TFV [144.20, 5423.70] 722.42 668.16
Pad fluid volume (m3) PFV [39.00, 2484.00] 301.26 289.58
Flowback volume (m3) FBV [51.50, 4998.00] 577.50 506.06
Proppant fluid ratio (%) PFR [2.03, 317.33] 27.42 14.24
Injection pressure (MPa) AIP [9.10, 99.40] 55.09 10.08
Injection rate (m3/min) AIR [1.40, 12.00] 3.23 1.31

3. Methodology
3.1. Workflow of Developing Interpretable ML Models

The workflow for developing interpretable ML models is presented in Figure 2 and
involves four main steps.
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In Step 1, the raw data gathered from the study area is transformed into a dataset
suitable for ML applications. The data types and statistical characteristics of the collected
data have been shown in Table 1.

In Step 2, feature engineering is a crucial step in developing effective ML models. The
model performances are largely determined by the quality and relevance of the features.
Feature engineering includes data cleaning and preprocessing, feature scaling and selection.
In data cleaning and preprocessing, the raw data are preprocessed for predictive modeling
through the removal of inconsistent data points and the handling of missing values and
outliers. The details of the data preprocessing in this investigation were discussed in a
previous study [30].

In Step 3, a multitude of ML algorithms are available in the literature. Nonetheless,
each algorithm possesses its own strengths and weaknesses, and may be better suited for
certain problems. Hence, it is imperative to compare multiple ML models and determine
the most effective one for each study. Random forest (RF), support vector regression (SVR),
and gradient boosting decision tree (GBDT) were employed to address complex regression
problems in WPF.

In Step 4, the evaluation of each established model is carried out to determine the most
accurate model, which can then be utilized for model interpretability. Three commonly
adopted statistical metrics, namely the coefficient of determination (R2), mean squared
error (MSE), and mean absolute error (MAE) are selected for this purpose. The calculations
of these metrics are based on the following formulas:

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(1)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

(2)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

where n signifies the number of data points, yi and ŷi represent the ith observed and
predicted target values, respectively, and y denotes the mean value of the observed target
data. The coefficient of determination ranges from 0 to 1, with higher values indicating
better performance. Conversely, smaller values of MSE and MAE correspond to higher
accuracy levels.

Finally, in Step 5, the chosen model from the preceding step is explained through
the SHAP and LIME methods to provide insights into how the model makes predictions
globally and locally, thereby facilitating a deeper understanding of the model’s prediction
process. This step is crucial as it provides valuable information for optimal hydraulic
fracturing design to maximize gas recovery.

3.2. Predictive Model Building

We developed black-box models for evaluating the productivity of fractured wells by
employing three powerful machine learning algorithms, namely Support Vector Regression
(SVR), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT). The following
subsections provide a brief theoretical background of these algorithms.

3.2.1. Random Forest

Random forest (RF) is an ensemble method that is composed of multiple decision trees,
which are constructed using both bootstrapped samples from a training set and feature
bagging [31]. The approach of using an ensemble of decision trees in the RF algorithm
allows it to improve the predictive performance of a single decision tree. Furthermore, the
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RF model has the advantage of preventing overfitting and reducing variance by aggregating
the output of multiple decision trees. For regression problems, the output of a RF model
is the average of individual decision tree outputs. To train the RF model, several tuning
parameters must be specified, including the number of decision trees to grow in the RF
(N_estimators), the number of randomly defined predictor variables at each node when
searching for the best split (Max_features), and the minimum number of observations
required to split an internal node (min_samples_split) [32]. In this study, the RF predictive
model was developed using the Scikit-Learn package in Python [32].

Random Forest is well-suited for handling high-dimensional data since it employs
a technique that randomly selects subsets of features for each split, reducing the risk of
overfitting. Furthermore, it can efficiently handle large datasets with a high number of
input features and can produce results in a reasonable amount of time. Additionally, the
model can handle both continuous and categorical features and can identify the most
important features for prediction.

3.2.2. Gradient Boosting Decision Tree

Gradient boosting decision tree (GBDT) is an also ensemble learning algorithm that
belongs to the family of boosting algorithms by combining multiple decision trees sequen-
tially [33]. GBDT works by iteratively adding decision trees to the ensemble, where each
subsequent tree is built to correct the errors made by the previous trees. The algorithm
starts with a simple decision tree, and then the subsequent trees are added and trained
on the residuals of the previous trees. The residuals are the differences between the true
values and the predicted values of the previous trees.

The prediction of the ensemble of decision trees can be written as:

F(x) =
M

∑
m=1

fm(x) (4)

where F(x) is the predicted value for a given input x, M is the total number of decision trees
in the ensemble, and fm(x) is the prediction of the mth decision tree.

A loss function measures the difference between the predicted values and the true
values, and can be written as:

L(y, F(x)) =
N

∑
i=1

r(yi, F(xi)) (5)

where N is the total number of training samples, yi is the true label of the ith training
sample, F(xi) is the predicted value for the ith training sample, and r(yi, F(xi)) is the loss
function for the ith training sample. This training process continues until a predefined
stopping criterion is met, such as the maximum number of trees to be created. Most tuning
hyperparameters used for RF are applied for GBDT as well.

GBDT is a widely recognized machine learning algorithm for its high predictive accu-
racy, particularly due to its capacity to model complex non-linear relationships between
variables. This algorithm also has the ability to handle missing data efficiently and can
process different types of data, including numerical and categorical variables. This versatil-
ity makes GBDT a useful tool for various applications. Additionally, GBDT automatically
performs feature selection by assigning higher importance to the most relevant features,
which can improve the overall accuracy of the model. In contrast, random forest, gives
equal importance to all features, which can result in lower accuracy when dealing with
datasets containing irrelevant features.

3.2.3. Support Vector Regression

Support Vector Regression (SVR) is a regression method based on support vector
machines that construct two separating hyperplanes on either side of a regression function.
Given a set of training data where xi is a multivariate set of M observations with corre-
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sponding response values yi, SVR constructs a nonlinear function f (x) that can be expressed
as follows [34,35]:

L f (x) = wT∅(x) + b (6)

Subject to:
wT∅(xi) + b− yi ≤ ε + ξi
yi − wT∅(xi)− b ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0, i = 1, 2, · · · , M

(7)

where C is the box constraint that controls the penalty imposed on observations that lie
outside the epsilon margin (ε) and helps to prevent overfitting (regularization). and ξi, ξ

∗
i

are the slack variables that provide the lowest and highest range training errors, respectively.
In this study, the radial basis function (RBF) kernel was used to construct the SVR model,
which can be expressed as follows:

k
(
xi, xj

)
= exp

(
−γ||xi − xj||22

)
, γ > 0 (8)

where γ is a parameter that sets the spread of the kernel.
SVR is a suitable method for high-dimensional datasets where the number of features

significantly exceeds the number of samples. This is because SVR considers only the
support vectors, which are the samples closest to the decision boundary, and disregards the
remaining samples. Additionally, SVR can handle non-linear data by utilizing a non-linear
kernel function, allowing it to capture complex patterns in the data. Another advantage
of SVR is its ability to handle outliers, as it is relatively insensitive to data points that do
not lie near the decision boundary. However, SVR may not perform well when dealing
with datasets that have many samples, as the computational cost can become prohibitive in
solving a quadratic optimization problem.

3.3. Model Interpretability

Model interpretability refers to the degree to which the predictions of a ML model can
be understood by a human [25]. In recent years, various interpretable ML techniques have
been proposed. These techniques can be classified into different groups based on applica-
tion stage, interpretability scope, and model dependency as illustrated in Figure 3 [36,37].
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3.3.1. Scope

Interpretability scope refers to the range of black-box ML model output that needs to
be interpreted, which can be at a global or local level. At the global level, interpretation
is made based on a full view of the model structures and parameters, providing a holistic
understanding by estimating the global effects of input features on model predictions. This
requires both the black-box model and the entire training data. In the context of WPF,
global interpretability is essential for explaining which features are most significant in
controlling well productivity. On the other hand, local interpretability focuses on a single
prediction or a group of predictions to investigate how the predictions are made. Both the
black-box model and the prediction values are needed. Local interpretation is crucial to
trust the predictions. For example, local interpretability can help explain how the input
features contribute to the well productivity.

Some techniques can provide both local and global interpretation, such as Shapley ad-
ditive explanations (SHAP), while local interpretable model-agnostic explanations (LIME)
obtain local interpretation for individual predictions by building local surrogate models.
The details of these methods are described in the next subsection.

3.3.2. Dependency

Model dependency pertains to the extent to which an interpretable technique can be
utilized on any ML model or specific models. Certain interpretation techniques consider
ML models as black-box models and are thereby applicable to any model, thus qualifying
as model-agnostic techniques. Conversely, other techniques are model-specific, as they can
only be employed for the interpretation of certain ML models. Model-agnostic techniques
require solely the input and output of the ML model, disregarding its inner structures, thus
enabling their application to any ML model. In contrast, model-specific techniques can
investigate the specific characteristics or architecture of the ML model, providing detailed
interpretability that may not be attainable with model-agnostic methods.

3.3.3. Stage

Interpretable ML techniques can also be categorized into ante-hoc and post-hoc meth-
ods based on when they are employed in the model building process. Ante-hoc inter-
pretable techniques involve using algorithms with high transparency during the training
process, resulting in a model that is inherently interpretable. For example, linear regression
is an ante-hoc model since the coefficients of the linear model can be interpreted as the
extent of influence of individual features on the prediction [25]. However, this approach
may result in models that are overly simplistic and have inadequate prediction accuracy. In
contrast, post-hoc interpretable ML techniques are applied to established models after the
training process.

3.4. Shapley Additive Explanations (SHAP)

SHAP is a post-hoc interpretive tool that was introduced by Lundberg and Lee in
2017 [38]. This technique is designed to facilitate the interpretation of the output generated
by any ML model. SHAP is based on the concept of Shapley value and has a strong
foundation in cooperative game theory. The computation of the Shapley value for each
feature is based on a conditional expectation function, which allows for the representation
of the feature’s marginal contribution. By calculating the Shapley value for each input
feature, SHAP provides an interpretation of the model’s predicted values as the sum of the
Shapley values, as given by Equation (9):

f (x∗) = ∅0 +
M

∑
j=1

∅∗j (9)

where, f (x*) is ML predicted value, ∅0 is average prediction for the training dataset, and
∅∗j is the Shapley value for a feature j.
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The SHAP technique allows for both global and local explanations of ML models.
Global explanations summarize the impact of each feature across the entire dataset, while
local explanations identify the impact of each feature for a specific instance or subset of
instances. In this study, we employed the SHAP Python package, which is compatible with
tree-based models from the scikit-learn machine learning library. The package includes
visualization tools such as summary plots and dependence plots, which aid in improving
the interpretability of the ML models.

Local Interpretable Model-Agnostic Explanations (LIME)

LIME was introduced by Ribeiro et al. in 2016 as a model-agnostic approach to
obtaining local interpretations for individual predictions [39]. Given an instance x and a
black-box model f, LIME generates an interpretable model g(x) that approximates prediction
f (x) in a local neighborhood of x. The local neighborhood is defined by a kernel function,
which assigns weights to instances based on their similarity to the instance x, and is
expressed as:

πx(z) = exp

(
−D(x, z)2

σ2

)
(10)

where D corresponds to a chosen distance metric, z is a perturbed instance in the local
neighborhood of x, and σ is the kernel’s width.

The weights are used to sample instances from the training set, and the interpretable
model g(x) is then fit to the sampled instances by optimizing the following objective R(x):

R(x) = ∑
g∈G

L( f , g, πx) + Ω(g) (11)

where G denotes the different families of interpretable models, L is a loss function, measur-
ing the reliability of the surrogate model g(x) to the prediction f (x) locally, and Ω denotes
the complexity of the interpretable model. LIME can be used with any black-box model
and has been shown to provide accurate and intuitive local explanations for a variety of
ML applications.

4. Results and Discussion

After performing data preprocessing, a total of 757 horizontal wells were carefully
selected to develop interpretable ML models. In this study, three machine learning methods,
namely Support Vector Machine (SVM), Gradient Boosting Decision Tree (GBDT), and
Random Forest (RF), were chosen for model training.

4.1. Feature Selection with RFECV

Feature selection plays a crucial role in identifying the most relevant subset of features
for well productivity forecasting while reducing the dimensionality of the input space.
To obtain the optimal number of features for well productivity prediction, Recursive
Feature Elimination with Cross-Validation (RFECV) was applied to the entire dataset.
Figure 4 demonstrates the prediction performance of the model with respect to the number
of features used in training the model, utilizing five-fold cross-validation. The results
show that the prediction scores decrease when the number of features is less than eight.
However, increasing the number of features beyond eight does not result in any significant
improvement in the prediction scores. Therefore, eight features were selected as input
variables, including bottom-hole pressure, matrix permeability, slurry fluid volume injected
per well, perforation thickness, tubing pressure, casing pressure, well true vertical depth,
and proppant fluid ratio per well. Furthermore, three parameters from the one-point well
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test, namely bottom-hole pressure, tubing pressure, and casing pressure, were selected as
the AOFP was determined by the following empirical model [40].

qAOF =
0.7189qg√

1 + 1.9545
(

p2
R−p2

w f

p2
R

)
− 1

(12)

where qg is the gas production rate in the one-point well test; pR is the reservoir pressure,
pwf is the bottom-hole pressure.
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Figure 4. Results of feature screening by RFE with 5-fold CV.

The matrix permeability and perforation thickness were two most important geological
properties of the tight formation. Moreover, the volumes of slurry fluid and proppant
injected per well is two of the most important fracturing treatment parameters in predicting
the well AOFP.

4.2. Hyperparameter Tuning for ML Models

ML models involve many hyperparameters, but only a few crucial parameters are
necessary to be tuned to achieve optimal performance. In this study, a grid search technique
with five-fold cross-validation was employed to find the optimal tuning hyperparameters
based on the root mean square error (RMSE) value for each ML method. The hyperparame-
ters used in developing the three predictive ML models were presented in Table 3.

Table 3. The hyperparameters for tuning the ML models.

Model Parameter Specific Search Range Optimal Values

GBDT

N_estimator [20, 400] 300
Max_features [5, 10] 7
Max_depth [1, 20] 3

Min_samples leaf [1, 30] 3
Min_samples split [1, 10] 3

RF

N_estimator [20, 300] 200
Max_features [5, 10] 8
Max_depth [1, 40] 30

Min_samples leaf [1, 5] 1
Min_samples split [1, 10] 4

SVR
γ [2.5 × 10−8, 2.5 × 10−2] 7.4 × 10−7

C [500, 3000] 2100
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4.3. Performance of Each ML Model

Table 4 presents the results of the three statistical indicators of the model prediction
in both the training and test datasets, which include MAE (Mean Absolute Error), MSE
(Mean Squared Error), and coefficient of determination (R2). It was observed that the GBDT
model outperformed the other two methods on both the training and test sets. As a result,
the GBDT algorithm was selected to construct the prediction model. Figure 5 illustrates
the prediction fitting results of the GBDT model. Further interpretability analysis will be
conducted on the GBDT model in the subsequent subsection.

Table 4. Statistical results of evaluation indicators for the three models.

Model
Train Test

R2 MSE MAE R2 MSE MAE

SVR 0.50 11.56 2.16 0.50 12.83 2.38

GBDT 0.98 0.42 0.47 0.67 8.48 2.19

RF 0.94 1.49 0.88 0.65 8.88 2.09
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4.4. GBDT Model Interpretations
4.4.1. Global Interpretation with SHAP

Figure 6a shows global feature importance according to the average of the absolute
SHAP values for each input variable. A larger mean SHAP value corresponds to a greater
influence on the well AOFP. It can be clearly observed from Figure 6a that variable FP
(flowing bottom-hole pressure) is the most significant variable, followed by variables PERM
(matrix permeability) and SFV (slurry fluid volume).

Figure 6b shows the SHAP summary plot, where each point is a Shapely value for
each feature and individual data point. The vertical color bar demonstrates low to high
transition from blue to red. The plot allows us to analyze the feature’s importance together
with its magnitude and effect direction. Figure 6b shows that the variable FP has a positive
impact on the well AOFP. As the value of FP increases, the SHAP value increases, increasing
well productivity. By contrast, an increase in TVD (well true vertical depth) will decrease
the value of well AOFP.
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(b) SHAP summary plot for the well AOFP.

Figure 7 provides a more detailed understanding of the impact of input variables on
the AOFP and the correlation between them. The analysis of SHAP values reveals that
perforation thickness (PFTH) and slurry fluid volume (SFV) has a positive correlation with
the AOFP, as indicated by the increasing SHAP values with increasing SFV as shown in
Figure 7a. Additionally, the plot suggests that for thicker gas zones, it is necessary to
increase the usage of slurry fluid. The analysis of SHAP values for matrix permeability
demonstrates that for formation with matrix permeability less than 2 mD, increasing the
amount of proppant during hydraulic fracturing is essential as demonstrated in Figure 7b.
These insights into the impact of input variables on the well AOFP provide valuable
guidance for optimizing hydraulic fracturing design and maximizing gas recovery in tight
gas reservoirs.

Energies 2023, 16, x FOR PEER REVIEW 13 of 16 
 

 

in Figure 7a. Additionally, the plot suggests that for thicker gas zones, it is necessary to 

increase the usage of slurry fluid. The analysis of SHAP values for matrix permeability 

demonstrates that for formation with matrix permeability less than 2 mD, increasing the 

amount of proppant during hydraulic fracturing is essential as demonstrated in Figure 

7b. These insights into the impact of input variables on the well AOFP provide valuable 

guidance for optimizing hydraulic fracturing design and maximizing gas recovery in tight 

gas reservoirs. 

  

(a) (b) 

Figure 7. Feature dependence plots: (a) Perforation thickness (PFTH) vs. Slurry fluid volume (SFV); 

(b) Matrix permeability (PERM)vs. Proppant fluid ratio (PFR). 

4.4.2. Local Interpretation with SHAP and LIME 

To illustrate the interpretability of the GBDT model using SHAP and LIME methods, 

one fractured vertical well from the test dataset, Sudong 59-11E, was provided. The ar-

rows in Figure 8a show the influence of each factor on the prediction, with blue and red 

indicating whether the factor reduced or increased the prediction, respectively. The length 

of the bar indicates the extent of the related increases and declines, and the base value is 

the average of the predictions of the database, which is 5.891(104 m3/d). The figure shows 

that the value of perforation thickness (PFTH) in this sample would increase the predicted 

productivity by 4.807 (104 m3/d) relative to the baseline value, while the value of casing 

pressure in this sample would decrease the predicted value by 0.8458 (104 m3/d) relative 

to the baseline value. By combining the base value and the SHAP values for all the fea-

tures, the final prediction of 16.93 (104 m3/d) was obtained, which is very close to the real 

value of 15.51(104 m3/d). These results demonstrate the potential of SHAP in providing 

detailed insights into the effects of different features on the well productivity and quanti-

tatively analyzing their contributions. 

In Figure 8b, the LIME local interpretation technique is employed to summarize the 

factors contributing to the AOFP prediction of well Sudong 59-11E. The orange-colored 

factors indicate a positive contribution to productivity prediction, while the blue-colored 

factors indicate a negative contribution. The table on the right of the figure provides a 

rank of the contribution of each feature to the prediction along with the feature’s actual 

value. The results show that bottom-hole pressure, slurry fluid volume, perforation thick-

ness, and casing pressure all positively contribute to the productivity prediction, which is 

consistent with the SHAP local interpretation. On the other hand, matrix permeability, 

true vertical depth, proppant fluid ratio, and tubing pressure all have a negative impact 

on the AOFP prediction. The use of LIME and SHAP together provides a more detailed 

and comprehensive understanding of the model’s decision-making process, which can aid 

in improving the model’s performance and building trust among petroleum engineers. 

Figure 7. Feature dependence plots: (a) Perforation thickness (PFTH) vs. Slurry fluid volume (SFV);
(b) Matrix permeability (PERM)vs. Proppant fluid ratio (PFR).

4.4.2. Local Interpretation with SHAP and LIME

To illustrate the interpretability of the GBDT model using SHAP and LIME methods,
one fractured vertical well from the test dataset, Sudong 59-11E, was provided. The arrows
in Figure 8a show the influence of each factor on the prediction, with blue and red indicating
whether the factor reduced or increased the prediction, respectively. The length of the
bar indicates the extent of the related increases and declines, and the base value is the
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average of the predictions of the database, which is 5.891 (104 m3/d). The figure shows
that the value of perforation thickness (PFTH) in this sample would increase the predicted
productivity by 4.807 (104 m3/d) relative to the baseline value, while the value of casing
pressure in this sample would decrease the predicted value by 0.8458 (104 m3/d) relative to
the baseline value. By combining the base value and the SHAP values for all the features,
the final prediction of 16.93 (104 m3/d) was obtained, which is very close to the real value
of 15.51 (104 m3/d). These results demonstrate the potential of SHAP in providing detailed
insights into the effects of different features on the well productivity and quantitatively
analyzing their contributions.
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In Figure 8b, the LIME local interpretation technique is employed to summarize the
factors contributing to the AOFP prediction of well Sudong 59-11E. The orange-colored
factors indicate a positive contribution to productivity prediction, while the blue-colored
factors indicate a negative contribution. The table on the right of the figure provides a rank
of the contribution of each feature to the prediction along with the feature’s actual value.
The results show that bottom-hole pressure, slurry fluid volume, perforation thickness, and
casing pressure all positively contribute to the productivity prediction, which is consistent
with the SHAP local interpretation. On the other hand, matrix permeability, true vertical
depth, proppant fluid ratio, and tubing pressure all have a negative impact on the AOFP
prediction. The use of LIME and SHAP together provides a more detailed and comprehen-
sive understanding of the model’s decision-making process, which can aid in improving
the model’s performance and building trust among petroleum engineers.

4.5. Reflections and Implications

The case study provided valuable insights into the use of machine learning techniques
in the oil and gas industry. First, the interpretability of predictive models is crucial for model
transparency and accountability in the petroleum industry. Furthermore, the utilization of
multiple interpretability techniques, such as SHAP and LIME, can provide complementary
insights and improve the overall reliability of the model. Finally, the importance of domain
knowledge and expert input in the feature engineering process cannot be overstated, as
this can significantly enhance the model’s accuracy and interpretability. These findings
have important implications for the development and deployment of machine learning
models in the petroleum industry and can inform best practices for future projects.

The study provides practical insights for petroleum engineers involved in the field
development and optimization of tight gas production. By using ML models and interpret-
ing the feature importance, the key reservoir parameters and completion strategies can be
identified that impact well productivity. This can help them make more informed decisions
about the well completion and stimulation practices, leading to more efficient and effective
tight gas field development.

The study has the potential to contribute to the sustainable development of tight gas
reservoirs. By improving the understanding of the factors that influence well productivity,
The development and production of these resources can be optimized while minimizing
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their environmental impact. This can help to ensure the long-term viability of tight gas
reservoirs as a source of energy for society.

5. Conclusions

This study provides a comprehensive methodology for evaluating the well produc-
tivity prediction models for tight gas reservoirs using an interpretable machine learning
approach. The complex non-linear relationship between the input features and the ab-
solute open flow potential (AOFP) was investigated by interpretable ML modeling. The
performance of various ML models is assessed based on the MSE, MAE, and R2. The GBDT
model, which exhibited the best prediction efficacy among all trained models, was selected
for further analysis.

The SHAP-based model interpretability technique was employed to provide a clear
interpretation of the predicted results in terms of the relative importance of different
input features. Based on the SHAP values, it was identified that bottom-hole pressure,
matrix permeability, and slurry fluid volume have the most significant impact on the
well productivity. This evaluation of the relative importance of different features and
their influence on well productivity is expected to help petroleum engineers optimize
field operations.

In addition, the assessment of feature contribution to the productivity prediction of a
single fractured well by SHAP and LIME provided a detailed understanding of the model’s
decision-making process. The local interpretation techniques were valuable for identifying
potential errors, biases, or areas for improvement in the model, which is essential for
building trust among engineers, and will potentially facilitate the development of better
physics-based predictive models for undrilled wells.

Overall, this study highlights the potential of the ML techniques in predicting well
productivity in tight gas reservoirs. The integration of the ML with the interpretation
methods can provide a comprehensive understanding of the model’s performance and
decision-making process, leading to the effective development of the tight gas field.
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