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Abstract: The expansion of end-to-end Industry 4.0 technologies in various industries has caused a
technological shock in the mineral resource sector, wherein itsdigital maturity is lower than in the
manufacturing sector. As a result of the shock, the productivity and profitability of raw materials
extraction has begun to lag behind the industries of its deep processing, which, in the conditions of
volatile raw materials markets, can provoke sectoral crises. The diffusion of Industry 4.0 technologies
in the mining sector (Mining 4.0) can prevent a technological shock if they are implemented in all
segments, including quarrying (Surface Mining 4.0). The Surface Mining 4.0 technological platform
would connect the advanced achievements of the Fourth Industrial Revolution (end-to-end digital
artificial intelligence technologies, cyber-physical systems and unmanned production with traditional
geotechnology) without canceling them, but instead bringing them to a new level of productivity,
resource consumption, and environmental friendliness. In the future, the development of Surface
Mining 4.0 will provide a response to the technological shock associated with the acceleration of
the digital modernization of the mining sector and the increase in labor productivity, which are
reducing the operating costs of raw materials extraction. In this regard, the given review is an
attempt to analyze the surface mining digital transformation over the course of the diffusion of
Industry 4.0 technologies covered in scientific publications. The authors tried to show the core and
frontiers of Surface Mining 4.0 development to determine the production, economic, and social effect
of replacing humans with digital and cyber-physical systems in the processes of mineral extraction.
Particular attention was paid to the review of research on the role of Surface Mining 4.0 in achieving
sustainable development goals.

Keywords: Surface Mining 4.0; Industry 4.0; technological shock; Internet of Things; artificial
intelligence; unmanned equipment

1. Introduction
1.1. The Role of Surface Mining Digitalization in Energy Production in 21st Century

Fossil fuels perform a key role in the production of electricity and heat in Poland,
the European Union (EU), and the world [1]. This review attempts to show a wide range
of discussions about the role of the digitalization of surface mining in the global energy
supply while taking into account the technological shocks that arise with the expansion of
Industry 4.0 technologies in the mining sector (Mining 4.0). This role is significant, and is
explained, on the one hand, by the connections of Mining 4.0 with the digital revolution
in the energy industry [2], which have been built around end-to-end digital technologies
(artificial intelligence, Internet of Things, machine vision, digital twins, etc.). On the
other hand, the energy transition has caused shocks in the energy sources and electricity
markets, which can destabilize power consumption in the medium term. In this regard,
it is important to ensure the accelerated modernization of fossil energy production (more
productive, environmentally friendly, and complementary to renewable energy) on a new
digital basis.
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A significant portion of fossil fuels (hard and brown coal, oil-bearing sand) is mined
using surface methods. For example, A. Duda, G. Fidalgo Valverde wrote: “Coking coal
has been on the European list of critical raw materials since 2014 due to its high economic
importance and high supply risk” [3]. Therefore, the energy transition with a characteristic
increase in the share of renewable energy, in which Industry 4.0 technologies are widely
used, cannot be separated from the synchronous modernization of mining [4].

In the era of the Fourth Industrial Revolution, this makes the fuel energy industry
dependent on the success of the transition to Surface Mining 4.0: “ . . . the hard coal
sector worsened the eco-efficiency because of the lack of investment in technology of
manufacturing in production and consumption. This situation is typical for many countries
of the European Union and the world” [1]. The direct connection of the fossil fuels mining
sector with ensuring energy security is understood by the public in countries with a
developed resource complex (for example, in Poland [5]).

The transition from fuel to renewable energy can take some time; therefore, to avoid
shocks in the energy market, it is important to ensure the innovative development of
surface mining to level 4.0, with its characteristic full fossil extraction, high productivity and
reduced negative environmental impact. Thus, the energy transition is largely associated
with electric vehicles running on lithium batteries [6]; at the same time, a significant
portion of lithium-containing rocks (spodumene, amblygonite, etc.) is mined by surface
methods [7].

The coexistence of renewable and fuel power producing is made possible with the
parity development of the basic technologies of Industry 4.0 (artificial intelligence and
neural networks, Big Data, digital twins, drones, machine learning, etc.) for the surface
mining of fossil fuels [8,9].

The innovative development of fossil energy source surface mining to the 4.0 level is
of paramount importance for developing countries, wherein the transition from fossil fuels
to renewable energy will take longer [10].

1.2. Surface Mining 4.0 as a Form of Industry 4.0 Implementation in Fossil Energy
Resources Supply

Since the beginning of the 21st century, surface mining has been going through a
technological transformation of being saturated with digital technologies, cyber-physical
systems, and artificial intelligence. Since the mid-2000s crises of the world commodity
market, the demand for raw materials became fluctuative, and the economic requirements
for mining efficiency tightened. This process has been superimposed by an unprecedented
increase in requirements for labor safety and a reduction in harmful effects on the envi-
ronment [11]. Under such conditions, mining enterprises have a great chance to maintain
profitability through the introduction of intelligent mining systems developing on the
Industry 4.0 platform (Mining 4.0). There are such advantages to surface mining, upgraded
to the level of Mining 4.0, as the possibility of the complete robotization of equipment with
ultra-high specific productivity, the relatively easy access of artificial intelligence devices
with smart sensors to the places of operation of the equipment, and the possibility of the
prompt correction of virtual 3D models of surface mine workings [12]. All these advantages
are summed up in the new technology platform Surface Mining 4.0.

Despite the rarity of the term Surface Mining 4.0, we see the possibility to consider
it as a separate component of the Mining 4.0 technological platform, and we will try
to prove its expediency in this review. The qualitative sign of Surface Mining 4.0 is
its development on the Industry 4.0 technology platform with greater intensity than in
underground mining. We see such a “window of opportunity” in the emergence of optimal
conditions for the diffusion of end-to-end Industry 4.0 digital technologies into surface
mining that results from an increase in investments by the largest manufacturers of quarry
equipment in advanced R&D [13]. Examples include the Internet of Things, smart sensors,
3D visualization, artificial intelligence and neural networks, digital twins, and unmanned
equipment with machine vision and learning.
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The digital transformation of the mineral resource sector has reached the boundary of
the convergence of human and machine labor [14]. It makes it possible to launch a new
control system for the main processes of open-pit mining based on Surface Mining 4.0, in
which the impact of humans on technological processes tends to zero. This is especially
important for the development of Surface Mining 4.0 in countries that are “catching up”
in technological development, in which the demand for modern mining engineers is not
satisfied despite the fact that new equipment is constantly being put into operation [15].

In fact, in the expansion of Industry 4.0, the key technologies that allow for creating
industrial cyber-systems radically increase labor productivity. This causes a technological
shock for the raw materials sector, in which the saturation with digital technologies, and
the added value created, is much lower than in the manufacturing sector of the economy.
As a result, the profitability of raw materials extraction, the profits of mining companies,
and their attractiveness for investors are reduced in the long term [16], and, under the
conditions of volatility in prices for raw materials, future crises in the commodity markets
cannot be ruled out.

The reason for the technological shock for the mining industry, arising in the process
of Industry 4.0 technologies expansion, should be found in the heterogeneity of its im-
plementation in the mining and manufacturing sectors of the economy, as evidenced by
the outstripping demand of the latter for end-to-end digital technologies, such as product
lifecycle management, SMART factories, and software interoperability [17]. Therefore,
at present, when in such industries as software, electronics and machines production,
and communications, there is a dramatic increase in productivity, the conditions for this
process in the mining sector just begin to form by reducing the consumption of energy and
materials. As a result, the gap in the productivity of the most widely used technologies
in the manufacturing and minerals extractive sectors of the economy is growing, and the
ratio of their effectiveness is changing not in favor of the latter. This enhances the impact of
the technological shock on the mining sector, thereby forcing companies to look for ways
to accelerate the implementation of Mining 4.0 technologies, as well as for researchers to
reconsider approaches to the development of surface geotechnology in the context of total
digitalization and robotization (Surface Mining 4.0).

In general, overcoming the technological shock is possible if the quarrying is upgraded
to the level of Surface Mining 4.0. This means that the following requirements are met: ubiq-
uitous coverage by Industry 4.0 technologies of all processes of surface mining operations
(drilling and blasting, excavation, transport, dumping, logistics, design, and management),
as well as the development of a digital ecosystem for the extraction and primary processing
of minerals.

The Surface Mining 4.0 digital ecosystem reflects the opportunities provided by Indus-
try 4.0 technologies, which stimulate the transition from centralized decision making to
autonomous smart robots and self-learning cyber-physical systems. In this model of quar-
rying organization, the goal of development is to achieve a new high level of labor safety
with a radical increase in productivity [16]. The digital essence of Surface Mining 4.0 is
also manifested in solving the cybersecurity problems facing enterprises in the context of
digitalization, which includesecure data exchange, protection against cyber attacks, sharing
of cloud computing resources [18].

Expanding the boundaries of the technological efficiency of surface mining calls for
gaining control over the main processes in real time, more precise control of product quality,
monitoring the operating performance and condition of mining machines, safety, and the
well-being of workers. The technological platform for such development—Surface Mining
4.0—is the result of the convergence of cyber-physical production systems (machine vision
and learning, smart robots, and drones), the industrial Internet of Things, and the latest
achievements in the field of mechanics and hydraulics, as well as digital controllers, which
are embodied in modern quarry equipment [19]. Prospects for the development of the
Surface Mining 4.0 technological platform as an important segment of Industry 4.0 have
been confirmed by the success of the initial stage of digitalization of mining enterprises in
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a number of countries in the 2010s. The number of accidents was reduced by 20–25%, the
loss of mineral raw materials decreased by up to 15%, and costs were reduced by 10% [20].
Taking into account the forecast about the share of Mining 4.0 in world mining by 2050 at
80–90%, in surface mining clusters, the integration of digital technologies and unmanned
equipment will transform these territories, thereby solving many urgent environmental
and social problems [21].

Therefore, it is worth highlighting those studies that consider the implementation of
the Industry 4.0 concept in mining as a multi-sectoral task, for which its solution goes far
beyond the development of digital technologies and cyber-physical systems. This task
is connected with the formation of a technological and social-and-economic platform for
sustainable development in the context of growing demand for minerals (in the last 40 years,
the volume of coal and non-ferrous metals production around the world has doubled [22]).
An important role in this is given to surface mining, wherein its volume has increased
by 30% in the world over the past three decades [23]. This is quite consistent with the
transitional stage for the mining industry as a whole from Mining 3.0 to 4.0 (Table 1 [24]).

Table 1. Relationship between the stages of industrial development, geotechnology, and the evolution
of Mining 4.0 [24].

Century Stages of Industrial
Development Key Innovations Stages of Development

of Geotechnology Mining Innovations

First half of the
19th century Industry 1.0 Coal and coke, steam engines Mining 1.0 Mechanization of

auxiliary processes

Second half of
the 19th—early
20th centuries

Industry 2.0
Electricity, in-line production,

oil and gas production,
internal combustion engines

Mining 2.0 Mechanization of the
main processes

Second half of
the 20h century Industry 3.0

Automation, analog
computing and
control systems

Mining 3.0 High capacity equipment,
analog telemetry

Beginning of
the 21st century Industry 4.0

Digitalization, Internet of
Things, Artificial Intelligence,
Machine Vision, Blockchain

Mining 4.0
Unmanned technologies,
remote process control,

smart robots

Despite almost two hundred years of geotechnology evolution from Mining 1.0 to 4.0,
surface mining has only been developing in its modern form since the beginning of the 20th
century (starting from Industry 2.0 and Mining 2.0). In fact, only with the full-scale spread
of electric machines (1930s) did the construction of quarries with an annual productivity
comparable to the modern one begin [25]. At the same time, the specificity of the transition
to from Surface Mining 3.0 to 4.0 lies in the faster development of surface mining compared
to underground mining, which is largely due to the need to simultaneously automate and
robotize both the main and auxiliary processes in quarries.

2. Methodology

Surface Mining 4.0 is based on the requirements for overcoming technology shocks
in the industry, which are associated with the development of the following domains
(“application points” of end-to-end digital technologies):

- Artificial intelligence and neural networks, which allow for the development of ma-
chine vision and learning, as well as decision making without human intervention;

- The access of engineers, designers, government control representatives to Big Data in
the form of digital twins using appropriate mobile devices;

- Augmented reality that combines virtual models of mine workings and machines with
their physical prototypes;

- Advanced 3D modeling technologies that are based on distributed and cloud computing.
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The thematic range of research papers analyzed in this review is connected to both
the expansion of break-through end-to-end technologies of Industry 4.0 in surface mining,
as well as the problems and obstacles for their implementation. Therefore, this review
contains a critical, but constructive, analysis of a significant body of publications in the
field of Industry 4.0, Mining 4.0, and Surface Mining 4.0, which is aimed at identifying
problems and prospects for future research in the field of the technological modernization
of surface mining.

The purpose of this review is a multilateral analysis and generalization of innovative
ideas of various authors in the field of surface mining development using Industry 4.0 tech-
nologies in accordance with their structure, which will make it possible to outline a new
technological platform—Surface Mining 4.0—and highlight the key trends in its devel-
opment. To achieve this goal, the article consists of six sections: the introduction (a brief
description of the current area of research); the methodology (analysis of the range of scien-
tific publications on the topic); a review of the end-to-end technologies of Industry 4.0 in
Surface Mining 4.0 (overview of trends and areas of digitalization of various surface mining
processes); a review of machine vision and learning for unmanned systems in Surface Min-
ing 4.0 (achievements and prospects for the implementation of machine vision and learning
systems, autonomous equipment, and drones); a review of intelligent decision-making
systems in Surface Mining 4.0 (analysis of research in the field of new mining business
models); a review of green techniques and post-mining in Surface Mining 4.0 (trends in
ecosystem restoration, social and business activity in surface mining clusters, development
of ESG investment); and the conclusions section (summarizing and generalizations).

The review was compiled on the basis of scientific articles indexed from the sciento-
metric databases Web of Science, Scopus, Google Scholar, Science Direct, Springer Link,
etc. using keywords such as Surface Mining 4.0, Mining 4.0, Industry 4.0, Internet of
Things, digital twins, neural network, artificial intelligence, Big Data, blockchain, cloud
computing, machine vision and learning, smart mining, autonomous machines, drones, 3D
visualization, post-mining, and ESG.

According to their content, the considered articles were distributed as follows: tech-
nologies of virtual and augmented reality—5; Internet of Things—13; digital twins—5; simu-
lation modeling—4; Big Data and cloud computing—12; smart sensors—20; blockchain—6;
neural networks and artificial intelligence—23; machine vision and learning—29; drones
and autonomous equipment—9.

3. Review of End-to-End Technologies of Industry 4.0 in Surface Mining 4.0

The main difference between the current trend of surface mining digitalization within
Industry 4.0 and the previous round of automation (Industry 3.0) lies in the addition of
human intelligence with digital (machine) intelligence, in which engineering and manage-
ment decision making are transferred to cybernetic systems. Previously, it was a connection
of man and machines with the help of intermediary devices—controllers [26]. As a result,
in the last decade, there has been a steady increase in labor productivity in quarries around
the world [27].

The key end-to-end technology that is changing the digital landscape of surface mining
is Computer Integrated Mining (CIM), which represents a new frontier of digital maturity
for companies engaged in open pit mining [28]. This technology combines surface mine
design, planning and management, equipment control, safety, and product quality. CIM
is, in fact, an end-to-end information technology that opens up the transformation of
traditional geotechnology into Surface Mining 4.0 by eliminating the “gray” areas in which
Industry 4.0 technologies do not find their application.

The digitalization of surface mining is being formed not only as digital automation
and robotization tools are developed and implemented, but also as new competencies are
being formed among workers, which, in total, yield “digital maturity”—the key criterion
for Surface Mining 4.0 [29]. It is characterized by a transition from the fragmented imple-
mentation of programmable controllers to artificial intelligence, digital twins, etc., which



Energies 2023, 16, 3639 6 of 31

together lead to the creation of a Smart Surface Mine where processes are controlled with
the assistance of artificial intelligence, and minerals are mined in the required volumes and
in the required time.

The Surface Mining 4.0 digital ecosystem meets the conditions of scalability and
adaptability to various surface mining systems and types of minerals, and consists of
interactive information systems for mining processes (drilling and blasting, excavation,
transportation, dumping, and primary processing of raw materials) that are recombined
using 3D visualization, multi-interface digital twins, and smart self-learning robots [30].

The advanced end-to-end technology of Surface Mining 4.0 includes augmented
reality [31], which makes it possible to radically transforming the role of a person in the
control of mining machines and mechanisms—from Operator 3.0 to 4.0.

Unlike an employee—Operator 3.0—who receives large flows of information from
controllers and sensors installed on complex high-performance equipment, an Opera-
tor 4.0 employee integrates physical digital reality (for example, through interactive VR
glasses, biomechanical systems, wearable sensors fixing the state of health, etc.) and obtains
the opportunity for rapid self-learning, interaction with other operators, and collaboration
with robots [32,33].

At the same time, the transformation of digital technologies into end-to-end systems
for surface mining is hindered by the fragmentation of software from different manufactur-
ers designed for individual technological processes, as well as the complexity of system
integration resulting from their domain structure. Deep digitalization of mining processes
involves software products from different vendors, such as IBM (Maximo is a product for
managing business assets of enterprises), ABB (a family of software products for industry,
including mining), Microsoft (Azure—programs for cloud computing, Dynamics 365—
management of client databases and relationships, Power BI—integrated business analysis,
etc.), and OSIsoft (data integration systems), etc. [34]. These and similar tools for data
processing and analysis are based on the technology stack and data formats. Therefore, they
have a rigid corporate binding in terms of the effectiveness of inter-software interaction.
The data exchange between programs from different manufacturers is very limited in terms
of functionality (for example, exchange through MS Excel spreadsheets, which violates the
principle of a single digital eco-system Surface Mining 4.0) (Figure 1 [34]).
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The issue of the integration of disparate information systems for the deep digitalization
of surface mining is also related to the need for artificial intelligence systems to control the
main processes (preparation and excavation of rocks, transportation and dumping), which
control dynamic multi-loop and multi-component objects in real time. The greatest success
regarding the integration of artificial intelligence components has been demonstrated by
the use of controllers based on methods of fuzzy logic using the Flight Control Language
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(FCL) [35]. With its help, each variable is assigned not only a quantitative, but also a
qualitative value, which can significantly improve the process of making engineering
decisions using artificial intelligence.

Another end-to-end digital technology that constitutes Surface Mining 4.0 is the
Internet of Things (IoT), which excludes people from managing auxiliary processes in
the operation of mining machines and equipment, which, thereby, reduces the impact of
harmful and dangerous conditions on workers. Smart sensors for temperature, humidity,
light, speed, and infrared radiation represent the frontier of the Internet of Things in
Surface Mining 4.0 [36]. The core of the Internet of Things technologies, as applied to
surface mining, is connected with the management of the power supply of equipment
with high productivity using the principles of plug-and-play, full feedback from energy
consumers, involvement of renewable energy sources in the power supply processes of
quarries, and machine-to-machine interactions [27,37]. The real-time monitoring of the
technical condition and performance of mining equipment with the introduction of Internet
of Things technologies can obtain the maximum efficiency [38].

In general, the Internet of Things in Surface Mining 4.0 makes it possible to not only
integrate production, but also integrate economic and stuff management processes, as well
as manage the control and supervision of mining operations. Built on the IoT platform, a
digital surface mine integrates dynamic planning and scheduling, automated supply chains,
equipment predictive maintenance, assets visualization, the use of unmanned equipment,
etc. [39] (Figure 2).
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The integration of various equipment complexes based on the Internet of Things
requires the processing of incomparably larger amounts of information than that generated
by individual devices, which is intended to be facilitated by the use of the Distributed
Frequent Itemset Mining Algorithm [40]. It makes it possible to fill in the missing data in
the flow of digital information coming from smart sensors without failures in the operation
of its analysis systems based on the reliable extraction of key data from the general array
(Data Mining [41]). An example of the use of such technologies in Surface Mining 4.0 is
Apache Spark, which successfully uses the SWEclat algorithm to accelerate and parallel
data scaling and the balanced loading of information analysis systems [42].

Digital twins as an end-to-end technology for Surface Mining 4.0 are subordinate to
the Internet of Things and Computer Integrated Mining. At the same time, digital clones
with asynchronous requirements for the software interface make it possible to connect
various users (machine operators, mining engineers, state mining inspectors) with artificial
intelligence systems that process information from smart sensors and mining equipment
of various types [43]. Digital twins—complex cyber-physical systems—can significantly
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increase the annual productivity of mining machines and labor safety by overcoming the
“bottlenecks” of unequal transmission and the data processing rates of various information
systems and equipment controllers [44]. Digital twins, by processing and visualizing large
amounts of data about real physical processes asynchronously and on different devices,
transform linear production chains into digital networks that allow “plugged” users to take
part in management and control (Figure 3).
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Large amounts of information about the entire complex of technological processes that
form surface mining require the simplification of its flows for adequate display without
“overloading the picture” and replacement of the understanding of real phenomena with
its digital models [46]. This actualizes the use of virtual reality to reduce the number of
physical processes taken to make managerial decisions [47].

Simulation modeling of surface mining processes with the display of results using dig-
ital twins allows for moving from autonomous assistance in making engineering decisions
using artificial intelligence systems to network systems with more verified information. An
example of simulation modeling based on Big Data obtained using the Internet of Things
is the creation of a knowledge graph for the maintenance of mining equipment using the
BERT-BiLSTM-CRF neural network [48], which recognizes and classifies problems more
quickly compared to modeling based on data from autonomous sensors.

In general, neural networks occupy a special place in the platform of end-to-end digital
technologies for Surface Mining 4.0. They allow for managing the transfer of information
about the state of mining processes in real time on a multi-channel and multi-user basis, thus
organizing the creation of high-precision digital clones of processes and their continuous
additional training [49], which is especially important for assessing the possibilities to
reduce energy and resource consumption in quarries.

Big Data and cloud computing form the basis for the key Surface Mining 4.0 technol-
ogy of advanced geographic information systems (GISs), which are changing the digital
landscape of mining and creating “application points” for machine vision and learning [50].
Along with this, fast Big Data analytics make it possible to fully taking into account changes
in global markets while considering the gradual transition to alternative energy sources
in strategic and operational planning [51]. It is important to note that the recalculation of
the load of equipment, the operation of individual units, and the entire fleet of mining
machines are not available when relying on autonomous computing centers of mining
companies. On the contrary, Cloud Computing Services (CCS) make it possible to increase
the performance of quarry equipment by 25–30% [52].

Big Data analytics also have a significant effect on the development of intelligent
geological exploration, which begins to rely on conceptual models of big spatial data that
allow for moving on to ultra accurate geological and mine surveying documentation to
improve the quality of a mineral and reduce its losses during extraction. This is of particular
importance in the development of complex structural mineral deposits [53]. The physical
sources of information that form Big Data are represented by smart sensors—these define
modern means of monitoring the operation of quarry machines and equipment, natural
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and man-made rock arrays, and the state of health and working productivity of employees.
In particular, smart sensors for the in-depth analysis of mine and quarry conveyors (belts,
flights, and drives—Belt 4.0) allow for avoiding unscheduled stops and optimizing the
load, thereby increasing it by 11–12% [54].

In surface mining, smart sensors make it possible to form an almost complete picture
of the sustainability of bench slopes, dump tiers, quarry roads, and the impact of equipment
on rock arrays. This is achieved by connecting LiDAR and GPS systems, which jointly
generate saturated 3D point clouds, based on which virtual digital models of benches,
quarry sides, and dumps are formed; they make it possible to predict screes, landslides,
and collapses in an ultra-quick manner, as well as to take additional measures, thereby
increasing the stability of rock arrays at the design stage [55].

In coal clusters with a high concentration of surface mining, frequent displacements
of blocks of the Earth’s surface are observed, which are initiated by massive explosions.
The use of smart sensors such as D-InSAR (Differential Interferometric Synthetic Aperture
Radar) makes it possible to create saturated point clouds that form realistic digital models
that are used to predict surface disturbances near quarry fields and man-made earthquakes,
thereby taking into account the lead angles and distribution of residual deformation along
various axes [56]. Moreover, InSAR (Interferometric Synthetic Aperture Radar) technology,
which was originally used to predict the reverse effect of the displacement of rock blocks on
the quarry, makes it possible to determine the risks of benches, pit walls, and internal dump
stability loss during natural earthquakes [57]. DSAR (Differential Radar Interferometry)
smart sensors make it possible to combine satellite photographs and geoscanning data with
an accuracy of 0.04 m [58].

The real-time scalability of digital quarry models, which is a hallmark of Surface Min-
ing 4.0, is based, firstly, on the use of a large number of smart sensors of various kinds, as
well as on the creation of visual attention models using the GrabCut method for processing
large volumes of remote sensing data [59]. In fact, the use of online scalable models makes
it possible to switch to fully automated excavator and dump truck systems that operate
without a person due to the ultra precise positioning of not only equipment, but also the
mining front. Great prospects in this segment of the Surface Mining 4.0 technological plat-
form include the connection of mining geo-scanners for the local positioning of fragments
of rock arrays that are subject to excavation (collapse of blasted rocks, quaternary deposits)
with GNSS (Global Navigation Satellite System) receivers, and a PPS (Pulse Per Second)
time synchronizer. The resulting modeling accuracy was sufficient to exclude a person from
the process of managing mining equipment [60]. Improving the accuracy of geo-scanning
in surface mining was made possible by modeling the spatial distribution of the bands of
the interferogram created by a Single Look Complex SAR using the EMDD-PSI (External
Model-based Deformation Decomposition of Persistent Scatterer Interferometry) method.
As a result, the accuracy of digital modeling increased by 35% [61].

The next step in the smart sensors development in surface mining is the combination
of flying drones and ground geo-scanners into multisensor aircrafts, which make it possible
to integrate photo images with magnetometer data. As a result, it became possible to
geologically map land plots for the construction of first-stage quarries in places covered
with dense forests or in the glacial part of the Arctic [62].

The evolution of surface mining geo-scanners has been associated with an increase in
the accuracy of scanning for the deformation of bench slopes to the submillimeter range
of the displacement of rock particles by improving the data processing algorithms from
Doppler range scanning. A certain stage in geo-scanners as smart sensors evolution in
Surface Mining 4.0 can be considered as the development of a new type of Frequency
Modulated Continuous Wave Ground-Based Synthetic Aperture Radar (FMCW-GBSAR)
by the North China University of Technology (Beijing), which is shown in Figure 4 [63].
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The development of 3D modeling of objects in a quarry field in the context of un-
manned processes (the most advanced segment of Surface Mining 4.0) has one significant
limitation. It is the heterogeneity of rock arrays, which requires a constant adjustment of
the parameters of the mining method. For its accuracy, it is important to take into account
changes in the properties of the host rocks as the mining front moves. Increasing the
accuracy of considering the physical and technical parameters of rocks (strength, fracturing,
density, abrasiveness, etc.) has been possible with nano-indexing using methods such as
the Differential Effective Medium, Mori–Tanaka, Self-Consistent Scheme methods, and 3D
printing of rock samples [64]. In addition, the modeling of rock properties using the Digital
Speckle Correlation Method in the study of uniaxial compressive strength, performed for
different ratios of elevations, made it possible to predict the deformations of complex coal-
and-rock benches, landslides, and collapses in coal-saturated zones with high accuracy [65].
Moreover, the use of 3D laser scanning and CAD/MBS modeling technologies in designing
objects for placing unmanned equipment will eliminate the collision of robotic dump trucks
and other equipment [66].

Improving the display of real objects in virtual interactive 3D models has been possible
with the use of Lidar SLAM laser scanning methods, processing of the received SegMatch
and Simultaneous Location and Mapping point clouds, and LeGO-LOAM feedback re-
production. As a result, the accuracy of modeling increased by 5%, and the detail of the
display of volumetric rotated objects in static drawings was 1 cm [67]. Dynamic 3D models
of mining equipment can take into account vibration (a factor harmful to human health) by
modeling the transmission of vibrations between individual units and machine nodes at
the design stage [68].

In surface mining areas that develop ore deposits, traditional methods of modeling
complex concurrent ore bodies are based on the interpolation of data from exploration
wells, which is not distinguished by the high accuracy required for 3D modeling in Surface
Mining 4.0. It is possible to increase the accuracy of 3D models of ore bodies by building
a model of the body with spatial interpolation using the Hermite Radial Basis Function
technology. It is also expedient to combine heterogeneous changes in the underlying ore
bodies—this includes data from magnetometric surveys, geological observations, and
multispectral images [69].

The implementation of 3D models in the management of quarry cargo flows using
unmanned equipment requires a radical increase in the coordination of its work. The
analysis of geo-location sensor data for mining machines and equipment using Fresnel
three-dimensional indices, provided that the mining field is covered with wireless commu-
nication, makes it possible to take a new step in robotization—that is, control from a single
source (Figure 5) [70].
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An important information technology for the Surface Mining 4.0 platform is the
blockchain, which makes it possible to create conditions for reliable and confidential
data exchange. This is especially in demand in the organization and conduct of mining
and environmental inspections, as well as in the analysis and investigation of man-made
accidents and natural disasters. Blockchain integration with digital twins of open-pit
mining processes and individual equipment displayed on devices of various types (laptops,
desktops, tablets, smartphones) with different software interfaces (MS Windows, Android,
IOS, etc.) makes it possible to create an inter-sectoral “cross-chain” digital ecosystem [71].
With its help, information about various processes can be transferred to other participants in
the extraction and processing of minerals, which not only include equipment manufacturers,
mechanics, electricians, environmentalists, etc., but also company owners. The high level of
blockchain and Internet of Things integration makes it possible to connect the capabilities
of digital peripherals, cloud computing, mobile devices, and applications (Figure 6) [72].
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Blockchain technologies are also in demand for the analysis of labor safety threats
using distributed computing. For example, it is expedient to analyze and predict the accu-
mulation of hazards in the atmosphere of deep quarry fields using the SPARS forecasting
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infrastructure due to the accelerated processing of a large number of data streams. In partic-
ular, the Spark Streaming framework, Autoregressive Integrated Moving Average (ARIMA)
model, and Support Vector Machine (SVM) [73] have proven themselves positively. At the
same time, all the movement of information in distributed nodes of the blockchain network
guarantees the safety of information and cybersecurity of surface mining [74].

The basis of artificial intelligence technologies, which, along with the Internet of
Things, build the future frontier for Surface Mining 4.0, is represented by neural net-
works [75,76]. Their developing cognitive abilities extend far beyond managing individual
mining processes without human intervention. With the help of neural networks, it is
possible to transfer the management of entire quarries to artificial intelligence in the face
of increasing uncertainty and fluctuations in the raw material market, thereby solving
mixed-integer linear programming problems in two stages. The first stage is an iterative
selection of combinations of mineral production volumes and prices in the markets of
different countries (including the terms of supply and insurance); the second stage is the
use of a parametric graph closure algorithm to obtain the final solution [77].

Modern computational methods underlying neural networks include discrete event
simulation, which has made it possible, based on the sensors’ swarm, to coordinate pro-
cesses in the development of depleted gold deposits with a relatively low metal content
and profitability compared to rich gold deposits [78]. Furthermore, deep learning based on
lightweight convolutional neural networks allowed for the timely detection of the damage
of machines and equipment by analyzing a large number of images (up to 100) every second
with a test accuracy of 93.22% when integrating MobileNet and Yolov4 networks [79]. The
use of a convolutional neural network (1D CNN) to analyze the causes of breakdowns in
drilling equipment made it possible to use artificial intelligence to eliminate the human
factor and search for technical and mining sources of breakdowns with an accuracy of
88.7% [80]. To eliminate the human factor and the subjectivity and bias in the planning of
mining operations, as well as limit the soil, water, and air pollution by quarries and find
the most effective solutions for reclamation, Kohonen’s neural network has proven itself
well. Based on the results of its application, promising directions for the adjustment of
“The European Green Deal” (modern climate strategy) were identified [81].

3.1. Mining Machines Intelligent Monitoring

The intelligent monitoring of machines plays an important role in the development of
the Surface Mining 4.0 platform, which constitutes an applied aspect of the application of
smart sensors, neural networks, and artificial intelligence. The interest of researchers in
intelligent monitoring is primarily related to the optimization of machine energy consump-
tion (for example, using ARM7 to control from a remote location) [82]. Remote intelligent
monitoring for mining safety providing is of unsurpassed importance, as was proven in
China, which suffers the worst coal mine disasters in the world. To improve the safety
of miners, research into the promotion of intelligent coal mining to coal mine safety was
conducted, and a model of visual remote intervention was introduced (Figure 7) [83].

The intelligent monitoring of rotary machines is important for ensuring smooth oper-
ation and increasing labor productivity in connection with the original two-step method
that was proposed. It consists, firstly, of checking two signals, the monitored one and the
referential one (they must have the same distribution), and, secondly, of measuring the
dynamics reflecting changes in the nature of the incompatibilities of the given signal and the
referential ones [84]. Advanced three stages method includes multi-reference preliminary
analysis, auto reference preliminary analysis, and probabilistic analysis of the signals [85].
In addition, industrial MEMS-based accelerometers have proven their perceptiveness for
the intelligent monitoring of mining equipment [86].
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To achieve real-time intelligent analysis for coal mine surveillance videos, the Channel-
Attention-Based Pruning YOLO and Adaptive Image Enhancement Parameter Selection
Module were proposed [87]. Another advanced intelligent monitoring system comprises a
video acquiring unit, a working face dip angle detection unit, and a coal seam geological
detecting instrument [88]. Such systems can be successfully used for large quarry shovels
and dump trucks complexes for safe and productive dispatching [89]. For a similar purpose,
the “Diagnoprzem” and “HELMOS” computer-knowledge-based expert systems have
been used for fault diagnostics and the detailed monitoring of mine haulage and hoisting
equipment [90].

Recently, the operational monitoring of tunnel boring machines is becoming increas-
ingly perfect [91], so it is becoming possible to even use it in space missions [92].

3.2. Neural Networks in Mining Safety

Despite the fact that labor safety in surface mining is a priori higher than in under-
ground mining, neural networks, as a way to ensure accident-free operation of enterprises,
are reflected in Surface Mining 4.0. Neural networks such as Long Short-Term Memory, the
Recurrent Neural Network, and the Gated Recurrent Unit make it possible to simultane-
ously process a large amount of retrospective and current data, compare them, and find the
most effective solution based on both experience and forecasts (deep learning) [93].

An important aspect of surface mining safety is the accurate and long-term prediction
of seismic events, both natural and those caused by the mining operations themselves. At
the moment, such neural networks as the Wavelet Scattering Decomposition and Support
Vector Machine make it possible to form artificial intelligence recognition models for the
intelligent recognition of seismic phenomena with the highest possible accuracy that is
sufficient to completely avoid the impact on coal seams. The BP Neural Network Model
makes it possible to avoid rock bumps in areas with a high concentration of disjunctive
disturbances [94]. This means reducing the uncertainty that accompanies the development
of geo-technics and geo-technology due to a detailed understanding of the physical and
mechanical properties of rocks in all zones of a quarry field, wherein the training by a
neural network will make it possible to connect current and forecast data for production
planning [95].

Neural networks as the basis of artificial intelligence play a special role in drilling
and blasting work, which are physical processes in which formation, distribution, and the
use of explosion energy have not yet been completely studied. In this regard, the task of
increasing the share of energy directed to crushing and moving exploded rock masses is
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entrusted to neural networks. Today, energy losses during mass explosions in quarries are
close to 70%. With the help of a neural network, it is possible to optimize the parameters
of drilling and blasting operations, increase the share of energy directed to the rock mass,
improve the quality of crushing, reduce the cost of rock loading and transportation, and
improve labor safety [96] (Figure 8).
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It is important to note that the use of neural networks in the analysis of drilling and
blasting operations is necessary for the implementation of machine learning algorithms
in excavation and loading operations to provide excavators with high-quality crushing
and a given granulometric composition of the blasted rock mass necessary to achieve
maximum productivity. In particular, the use of network technologies such as support
vector regression and Bayesian optimization in the Keras Python library in machine learning
has significantly increased the performance of both the explosion and excavators when
extracting rock mass [97]. More details on machine vision and learning in Surface Mining
4.0 are given in Section 4.

4. Machine Vision and Learning, Unmanned Systems in Surface Mining 4.0

The great role of vision and learning of machines, connected by the Internet of Things,
in Surface Mining 4.0 makes it possible to move to a deep integration of drilling and
blasting, excavation and loading, and transportation processes among themselves, as
well as planning and management systems. It gives a chance to optimize the sequence
of preparatory, overburdened, and mineral extraction operations in the dangerous and
harmful zones performed in unmanned mode [98,99].

Machine vision technologies give mining machines a complete picture of the state
of the environment, which opens up unprecedented opportunities for robotic mining in
the course of connecting human and machine decision making as an optimization tool.
Surface mining is an almost ideal testing ground for the introduction of autonomous and
collaborative robots that are safe for people and replace them in unmanned equipment
systems. At the same time, the full disclosure of the potential of machine vision and
learning is expected in the second half of the 21st century when they, in cooperation with
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artificial intelligence and smart sensors, will completely displace humans from mining (this
is now being discussed as Mining 5.0 [100]; we call it Surface Mining 5.0).

4.1. Machine Scene Analysis and Scene Understanding

Scene analysis by machines is one of the actively used areas of machine vision [101],
which has significant prospects in mining as a part of the cyber-physical systems of Surface
Mining 4.0 [102]. This is due to the fact that, in relation to quarrying (surface workings,
faces and stopses, equipment of high specific capacity), we are talking about macro objects.
Therefore, we can say with confidence that scene analysis and scene understanding are at
the core of machine vision applications in surface mining. The latter is a more difficult task
than the studied object recognition, since the scene is a more complex and less formalized
concept; it is more difficult to identify qualitative features, even when using modern
neural networks.

Perspective scenarios of scene analysis include flying robot tasks (to find the object
in a real environment), bitmap pictures representing the scene provided in the form of
previously prepared data, obtaining vector data representing object shapes, taking several
pictures of the area using robots and vectoring them (Figure 9), calculating neighbor-
hood graphs is for each of them, and using syntactic algorithms for searching for marked
objects [103].
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Research on feature extraction for pattern recognition and multiple machine learning
models for image categorization using the intel image classification dataset can be consid-
ered as a perspective area of scene understanding [104]. Convolutional neural networks
are recognized as a perspective base for scene analysis and understanding [105].

For complicated scene images (objects in the mines refer to such ones), metric learning
can be very useful to improve the performance of a distance-dependent classifier [106].
Some authors have investigated the obstacles for vision-based obstacle detection for a
mobile robot, which primarily includes the detection of obstacles in front of the robot
within a corridor, and they have proposed algorithms for obstacle detection using image
processing techniques [107].

The use of scene analysis and scene understanding in mining is described in a relatively
small number of scientific papers. So, in relation to the autonomous mobile drilling robot,
scene analysis is considered as supplementing information about the environment by
adding three-dimensional object representations [108]. The original application of scene
analysis in the mining industry has involved the analysis of situations of unsafe behavior
of workers [109]. Scene analysis for geological data entry recognition models has been
applied to extract entities from the massive quantity of data in order to discover connections
between them [110].

Already today, machine learning is the key to the steady operation of mining equip-
ment, which is especially important for surface mining robots, where equipment with
high specific productivity is used. With the development of deep machine learning, equip-
ment diagnostics are moving under the control of unmanned self-learning systems that
receive information from smart sensors and use neural networks for analysis and decision
making [111]. This forms a system of machine vision; however, machine knowledge tech-
nologies are already being formed today, which have been accumulated and improved
without human participation, thus increasing the adequacy of decisions made by ma-
chines [112]. An example is the positive experience of partially replacing the functions
of an operator of a mining wheel loader with a machine vision and learning system that
integrated GPS signals, as well as the analytical networks CART, DBSCAN, and C5.0,
which helped to cluster and classify data to control the movement of the machine in a
quarry [113]. Machine learning based on FLAC3D finite difference software has allowed
for the convergence (merging) of various data—geological, technical, and operational—in
order to accurately predict the impact of changes in the parameters of the occurrence of
mineral bodies on productivity during the operation of mining equipment [114].

The use of machine vision and learning systems is especially valuable for preventing
the risks of spontaneous coal combustion, which are relevant not only for underground
mines, but also for surface mines, thermal power plants, and warehouses where significant
coal piles are sometimes formed. Despite the lack of research in this field, we noted the
positive experience of using the Random Forest Artificial Intellect model for coal ignition
and coal dust explosions using the Shapley Additive exPlanations method [115].

4.2. Drones and Robot Inspectors

The material embodiment of digital machine vision and learning technologies takes
the form of unmanned robotic equipment and drones. One of the contexts in which
robotic surface mining machines have been considered was to increase the accuracy of
their operations (drilling, excavation, transport, primary mineral processing) to reduce
environmental damage and energy consumption, as well as increase productivity [116]. It
is expected in the near future that autonomous unmanned quarry transport equipment will
be provided with machine vision and robotic control systems based on high-precision traffic
sign recognition devices (using LiDAR sensors with a recognition accuracy of 97.9% [117]).
That innovation will allow cyclic quarry transport (dump trucks, trains, loaders) to move
independently in the network of quarry roads, as well as approach the excavators in the
faces, dumps, and coal warehouses for unloading.
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Autonomous robotic inspectors of mining equipment are another promising direc-
tion in the development of machine vision and learning in the Surface Mining 4.0 system.
Currently, there are no problems in scaling small-scale unmanned devices for the multifunc-
tional control of equipment (not only flying drones [118], but also conveyors, mechanized
mine support, and combine harvesters) for diagnosing quarry equipment (excavators,
drilling rigs, dump trucks, etc.) [119]. An example of a small-scale inspection robot for min-
ing equipment that perceives, processes, and analyzes information in the RVIZ visualization
environment obtained from optical RGB and infrared cameras, sound, vibration, and gas
sensors is an unmanned device for complete control over the state of the conveyor [120].
The machine vision of this inspector robot allows for the mapping of interactive 3D point
clouds (Figure 10 [121]).
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The Surface Mining 4.0 platform includes the widespread use of flying drones in
quarries for the following procedures: geological exploration; surface mine surveying
and mapping; benches; dumps; mineral storage; tailings stability monitoring; drilling and
blasting operations control; etc. Structurally, the drones used in surface mining are also
diverse—they include winged and copters, open (Figure 11) and encased (Figure 12), and
those made by different manufacturers [122].
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An important point of application of robotic inspectors in quarries is the use of flying
drones to control drilling and blasting operations in ore and coal mines. The personnel of
the drilling and blasting sites that control the main parameters of explosions (the average
diameter of natural blocks, the proportion of oversized pieces of the exploded rock mass,
etc.) are exposed to harmful and dangerous factors. In contrast, robotic inspector drones
allow for pre-explosive, explosive, and post-explosive monitoring.

Drones such as hexacopters with a backup control system of the DJI Matrice family
(300 Pro and 600 Pro, made by SZ DJI Technology Co., Ltd. in Shenzhen, Guangdong
Province, China) are widely used to monitor blasting operations in quarries around the
world. The optical equipment is represented by DJI Zenmuse X5 and X5S cameras with a
DJI 15 mm f/1.7 ASPH lens (16.0 megapixels) and an Olympus M.Zuiko 45 mm f/1.8 lens
(20.8 megapixels) [90]. For the purpose of preliminary control of the drilling and blasting
works, cheaper quadrocopters such as the DJI Matrice 300 Pro and Luftera LQ-4 are used
(Figures 13 and 14 [123]).
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Along with enabling the visual control of drilled blocks and collapses of the exploded
rock mass with the help of flying drones, their participation in the development of the
Surface Mining 4.0 platform is associated with the aerial geological mapping of hard-to-
reach land areas over deposits, with dense vegetation, mountains, or wetlands. With regard
to iron ore deposits, excellent results have been obtained by surveying the magnetic field,
which is illustrated by the example of the use of a Matrice 600 Pro Hexacopter drone (SZ
DJI Technology Co., Ltd.) at the Don Jacobo iron ore deposit (Betic Cordillera, Spain). The
drone passed 24 parallel profiles at a speed of 5 m/s across the strike of the deposit, which
made it possible to obtain magnetic data, analyze them, and contour two remanent ore
bodies (A and B) (Figure 15) [124].
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In the development of autonomous mining machines and equipment, a certain transi-
tional stage can be the distancing of a person from direct control and turning him into a
remote operator in difficult situations when the risk of errors of autonomous controllers of
mining equipment increases. Thus, Orlaco EMOS cameras (Orlaco Products. B.V., Barn-
eveld, the Netherlands), Delphi ESR radars (Delphi Technologies, Pittsburg, the USA),
and GPS positioning sensors were used for the unmanned control of a BelAZ-7513R (PSC
BelAZ, Belarus) mining dump truck. In risky conditions, a remote driver can simultane-
ously control several vehicles at once manually. For manual control, 11 video cameras were
installed on the dump truck (Figure 16) [125].

An example of the most successful implementation of unmanned quarry equipment is
the Australian company “Rio Tinto Group”, which operates a large fleet of fully robotic
dump trucks (80 from 400 in total) at its surface mines. The reduction in operating costs
due to carpool robotization reached $80 million, with an additional $500 million in revenue
expected from 2022 [126].

In general, when analyzing the prospects for the development of unmanned and
robotized quarries, it is necessary to note the gradual nature of excluding a person from
surface mining processes by replacing him with artificial intelligence. In particular, the
zoning of a quarry field according to the access of a person to direct control of the equipment
and technological processes includes the following zones [127]:

- Zone I—conditionally unmanned zone (with zero entrance, ZEPA).
- Zone II—places of a person’s presence in the quarry field as needed to maintain

machines and mechanisms.
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- Zone III—places of a permanent person’s presence.

Energies 2023, 16, x FOR PEER REVIEW 21 of 32 
 

 

 
Figure 16. (a) The main elements of an autonomous control system of the dump truck movement 
(BELAZ7513R): (1) GPS receiver; (2) information panel; (3) power box monitoring unit; (4) power 
box; (5) GPS receiver; (6) camera; (7) motion sensor; (8) parctronic; (9) radar; (10) LiDAR; (11) 
parctronic; (12) camera; (13) round-view camera. (b) Remote driver workplace [125]. 

An example of the most successful implementation of unmanned quarry equipment 
is the Australian company “Rio Tinto Group”, which operates a large fleet of fully robotic 
dump trucks (80 from 400 in total) at its surface mines. The reduction in operating costs 
due to carpool robotization reached $80 million, with an additional $500 million in 
revenue expected from 2022 [126]. 

In general, when analyzing the prospects for the development of unmanned and 
robotized quarries, it is necessary to note the gradual nature of excluding a person from 
surface mining processes by replacing him with artificial intelligence. In particular, the 
zoning of a quarry field according to the access of a person to direct control of the 
equipment and technological processes includes the following zones [127]: 
− Zone I—conditionally unmanned zone (with zero entrance, ZEPA). 
− Zone II—places of a person’s presence in the quarry field as needed to maintain 

machines and mechanisms. 
− Zone III—places of a permanent person’s presence. 

In all these zones, the presence of people is combined with robotic equipment, which 
raises the question of adjusting security requirements as Zone III expands, while Zones I 
and II shrink (Figure 17).  

 
Figure 17. Zoning of a mining engineering system with the use of industrial excavating and 
transport robots [127]. 

5. Decision-Making Systems in Surface Mining 4.0 

Figure 16. (A) The main elements of an autonomous control system of the dump truck movement
(BELAZ7513R): (1) GPS receiver; (2) information panel; (3) power box monitoring unit; (4) power box;
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In all these zones, the presence of people is combined with robotic equipment, which
raises the question of adjusting security requirements as Zone III expands, while Zones I
and II shrink (Figure 17).
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5. Decision-Making Systems in Surface Mining 4.0

The development of the Surface Mining 4.0 technology platform affects not only the
physical processes of mining, but also penetrates into the quarry management system.

First of all, Smart Quarries are the main elements of surface mining of the future, as
all participants in the global mineral market are moving into a digital economic environ-
ment [128].

A Smart Quarry is based on the selection and prioritization of financial and market
strategies, on multi-criteria decision-making systems (for example, the joining of the Z-
number theory and fuzzy weighted VIKOR technique with a fuzzy cognitive map [129]).
Furthermore, a Smart Quarry is characterized by advanced business models for optimizing
production processes (lean production, waste recycling, blockchain finance, etc.), which are
typical for the Industry 4.0 [130]. It is also specified by a flexible management methodology
that unites social innovation and ESG investment [131] in the process of integrating mining



Energies 2023, 16, 3639 21 of 31

companies, the state, civil society, and universities in a spiral innovative development (a
penta helix) [132].

An important digital technology of Surface Mining 4.0—Cloud Mining—is a combina-
tion of production, financial, market, and management processes that unite the five sectors
of the digital environment: data, technology, talents, cloud business, and cloud connections
between mining enterprises and individual processes. The cloud mining system should
implement continuous sequential modeling of the geology of the deposit and its assessment
while taking into account current market prices, designing mining operations, and planning
the transportation of mined raw materials, their sales, and their profits [133].

The use of Surface Mining 4.0 digital technologies (cloud computing, Big Data, neural
networks, virtual interactive models) is especially important for the full extraction of
minerals from deposits with a low concentration of a useful component and valuable
associated raw materials. Multi-criteria decision-making models, such as the Analytical
Hierarchical Process and Python, allow for the visualization of the production and economic
potential of poor and secondary deposits to visually determine the prospects for their
development in the context of a long-term increase in raw material prices, as well as enable
their discussion with stakeholders to make an investment decision [134].

Labor safety management in quarries is also a promising field for the introduc-
tion of Surface Mining 4.0 technologies. In particular, such machine learning models
as DAFW(Days Absent from Work – indicator of injury severity), ANN (Artificual Neural
Network), and MSE (Mean Squared Error) [135] have proven themselves for in-depth
analysis of the causes and modeling of injury factors for workers at mining enterprises. At
the same time, DAFW makes it possible to predict the need to replace workers in the case of
accidents, as well as the need to attract additional personnel. The traditional lack of data in
the analysis of the causes of specific occupational injuries may well be filled with the use of
data mining technology (the detection of previously unknown, non-trivial interpretations
of the data are obtained) [136].

6. Energy 4.0 Achievements in Surface Mining 4.0

Like Surface Mining 4.0, Energy 4.0 is the scope of the digital technologies of the Fourth
Industrial Revolution, which are discussed in this review, as well as new achievements in
the field of production, storage, and the distribution of energy [137]. Surface Mining, as an
area not only for the production of fossil fuels, but also for energy consumption, is proving
to be receptive to the achievements of Energy 4.0.

In particular, smart energy management systems based on artificial intelligence are
gradually being introduced at surface mines, which make it possible to optimize the energy
consumption of mining equipment and significantly reduce it by analyzing the incoming
data in real time (Figure 18) [138].

Microgrid clusters, which are being actively used at surface mines, are also managed by
Smart Energy Management Systems with the assistance of cloud and machine learning [139].
In addition, for Smart Energy Management Systems being implemented at surface mines,
cyber-physical energy system security is relevant, which is associated with ensuring the
uninterrupted operation of electrical equipment under conditions of optimizing energy
consumption [140].

Furthermore, the rapid development of electric propulsion systems and solid batteries
for intelligent autonomous electric vehicles [141] has led to the gradual replacement of fuel
dump trucks with electric ones, thus producing zero emissions [142].

Along with this, modern data centers of surface mines should ensure the uninterrupted
operation of the Internet of Things and machine learning servers, computers with artificial
intelligence and digital clones, blockchain nodes, etc. In this regard, one of the achievements
of Energy 4.0—the industrial power supply systems with static or dynamic uninterruptible
power sources—is being increasingly used at surface mines [143].



Energies 2023, 16, 3639 22 of 31Energies 2023, 16, x FOR PEER REVIEW 23 of 32 
 

 

 
Figure 18. Scheme of the energy and data flow in surface mine in frames of Smart Energy 
Management Systems [138]. 

Microgrid clusters, which are being actively used at surface mines, are also managed 
by Smart Energy Management Systems with the assistance of cloud and machine learning 
[139]. In addition, for Smart Energy Management Systems being implemented at surface 
mines, cyber-physical energy system security is relevant, which is associated with 
ensuring the uninterrupted operation of electrical equipment under conditions of 
optimizing energy consumption [140]. 

Furthermore, the rapid development of electric propulsion systems and solid 
batteries for intelligent autonomous electric vehicles [141] has led to the gradual 
replacement of fuel dump trucks with electric ones, thus producing zero emissions [142]. 

Along with this, modern data centers of surface mines should ensure the 
uninterrupted operation of the Internet of Things and machine learning servers, 
computers with artificial intelligence and digital clones, blockchain nodes, etc. In this 
regard, one of the achievements of Energy 4.0—the industrial power supply systems with 
static or dynamic uninterruptible power sources—is being increasingly used at surface 
mines [143]. 

7. Green Mining and Post-Mining in Surface Mining 4.0 
The development of open pit mining throughout the world should be subject to the 

achievement of the Sustainable Development Goals set by United Nations in 2015, which 
,in particular, include clean water and sanitation, affordable and clean energy, and life on 
land (“Protect, restore and promote sustainable use of terrestrial ecosystems”) [144]. 
Therefore, the concepts of Lean Manufacturing, Recycling, Green Mining and Post-
Mining should be considered as the results of the convergence of individual technologies 
on the Surface Mining 4.0 platform [145]. 

Green Surface Mining will take its place in the future human-centric economy 
(Industry 5.0, expected in the second half of the 21st century), with an emphasis on 

Figure 18. Scheme of the energy and data flow in surface mine in frames of Smart Energy Management
Systems [138].

7. Green Mining and Post-Mining in Surface Mining 4.0

The development of open pit mining throughout the world should be subject to the
achievement of the Sustainable Development Goals set by United Nations in 2015, which, in
particular, include clean water and sanitation, affordable and clean energy, and life on land
(“Protect, restore and promote sustainable use of terrestrial ecosystems”) [144]. Therefore,
the concepts of Lean Manufacturing, Recycling, Green Mining and Post-Mining should
be considered as the results of the convergence of individual technologies on the Surface
Mining 4.0 platform [145].

Green Surface Mining will take its place in the future human-centric economy (Industry
5.0, expected in the second half of the 21st century), with an emphasis on reducing the
anthropogenic impact on the environment and protecting the health of workers [146]. There
are five components of Green Surface Mining [146]:

- Advancing the introduction of environmentally friendly and resource-saving tech-
nologies in comparison with technologies that increase the productivity of surface
mining enterprises;

- Transition to recycling scarce natural resources (such as fresh water and fertile land)
with surface mining expansion in mineral resource clusters;

- The priority of ESG and green investments in the total amount of investments in quarrying;
- The restoration of surface mining clusters to the level of full economic use (transition

from brownfields and blackfields to greenfields [147]);
- The achievement of a zero level of workers with serious injuries in areas of open

pit mining.

7.1. Restoration of Post-Mining Areas

Post-Mining in a broad sense is the transition from natural ecosystems that have been
disturbed during mining to a new prosperity of resource clusters [148]. The restoration
of terrain from surface mining is influenced by many factors and processes; therefore,



Energies 2023, 16, 3639 23 of 31

the automation of the decision making is desirable, i.e., with a fuzzy decision support
system [149].

The attention of researchers in the restoration of Post-Mining areas has been drawn to
digital 3D modeling of water reservoirs in former quarry fields [150], including using the
“high conductivity cell” method [151].

Along with this, it is argued that the use of artificial intelligence and Big Data analysis
to revitalize the area of surface mining creates investment opportunities that provide a new
impetus to develop old industrial regions [152].

7.2. Green Surface Mining

Green Surface Mining is associated, first of all, with the reduction of greenhouse gas
emissions, in which the use of neural networks can be of great help in designing a complex
of environmental processes in quarries. They include the capture and burning of coal
dust and methane from coal seams for power production, the deep purification of waste
quarry water, and the use of overburdens as a building material [153]. Big Data, neural
networks and the Internet of Things make it possible to receive and analyze real-time
energy consumption in the country and the world, as well as define the demand in raw
materials markets for the flexible management of the processes of extraction and processing
of minerals, i.e., they actually integrate surface mining into a lean production system [154].

A promising aspect of Green Surface Mining is the use of a biochemical method for
extracting raw materials from overburden dumps containing valuable associated compo-
nents in a low concentrated form. An example is pyrite bio-oxidation by chemolithotrophic
acidophile bacteria, whose RNA modification makes it possible to completely extract useful
components from the subsoils [155].

Post-Mining, as a part of Surface Mining 4.0, is replacing traditional reclamation
(technological and biological), wherein the task is to stop dust emission from overburden
dumps and the likely transference of the part of disturbed lands to agricultural ones. Post-
Mining (restoration of economic activity of clusters with a high concentration of surface
mining after the completion of quarrying) requires a deep analysis of the state of damaged
land, as well as the chemical composition of the water and soil. This requires the use
of various Surface Mining 4.0 technologies—which include neural networks and cloud
computing, drones and inspector robots, and smart sensors [156].

7.3. ESG Investment and Risk Management

The use of Surface Mining 4.0 as a tool for achieving sustainable development goals
in mining clusters calls for the ESG optimization of investment and business operations
thattake into account closed water use, improved energy efficiency and labor safety, and
the generation of energy from the waste of coal mining and processing [156]. A number
of projects in the EU countries are dedicated to this, and they have included developing
alternative scenarios for land use planning, as well as the development of agricultural
infrastructure in clusters of intensive open-pit mining (TRIM4Post-Mining as part of the
H2020/RFCS initiative). These scenarios are based on interactive data embedding in the
Transition Information Modeling System based on virtual reality [157].

An important analysis of the risk behavior of industrial systems from the point of view
of cybernetic analysis of the system must first take into consideration its controllability [158].
The human factor as a source of risk for industrial ESG investment is considered critical
for ESG investment [159]. The need for forming an investment risk management system
in surface mining is to encourage the expansion of environment-saving funding. For risk
assessment, the Monte Carlo simulation method has some advantages [160]. The presence
of a sustainable development framework in the surface mining sector should be considered
during risk evaluation for mining projects in order to mitigate risk exposure [161], as well
as for national strategies of mining sector development as a whole [162].
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We expect that the future research of Surface Mining 4.0 will touch upon such an
important aspect as the cybersecurity of digital production systems, especially since there
are currently few research articles in this area, with some exceptions [163–165].

Another perspective area of future research for Surface Mining 4.0 is the rise of digital
maturity of this segment of the mining industry. Presently, the digital maturity of existing
surface mining enterprises is significantly lower than that of other elements of the value
production chain (energy, processing, metallurgical enterprises, etc.), and it corresponds to
the Digital 2.0 level, compared to the target Digital 4.0 level [165,166]. One of promising
ways to improve the digital maturity of mining is using virtual reality and the gamification
of miners’ training [167–169].

8. Conclusions

This review is aimed at drawing the scientific community’s attention to the possibilities
of Surface Mining 4.0 in the adoption of national energy transition strategies, especially in
developing countries where the reduction of conventional fuel power producing can cause
a supply shock in energy markets.

This review covered the results of the research of surface mining technological mod-
ernization in recent years and in the future, thereby giving a better understanding of the
Surface Mining 4.0 technology platform. Along with this, the end-to-end technologies of
Industry 4.0 were discussed, which cause technological shocks in the form of a radical
increase in productivity in industries with high technological saturation. As a result, the
world mineral resource sector in the next decade may experience an investment shock and
a destabilization of the global raw material market. As a long-term countermeasure against
technological shocks in the quarrying segment, the authors see the development of Surface
Mining 4.0 as a platform for the accelerated modernization of the entire sector to the level
of Industry 4.0.

The key domain areas of Surface Mining 4.0 being observed include the following:
the Internet of Things, digital twins, Big Data and cloud computing, smart sensors, 3D
visualization, blockchain, neural networks and artificial intelligence, machine vision and
learning, and unmanned mining equipment and drones.

A review of scientific publications in the field of end-to-end digital technologies
Surface Mining 4.0 made it possible to determine the steady interest of researchers in the
expansion of core domain technologies. It allows us to conclude that physical systems
are gradually being replaced by cyber-physical ones; the prospects reliably predict the
negative impact on the environment and plan measures to prevent it, as well as establish
control over mining equipment operation to achieve an unprecedented level of reliability
and safety.

A review of the Surface Mining 4.0 domain, represented by drones, autonomous
mining machines, and robots inspectors, led to the conclusion that a person will be signifi-
cantly replaced from managing the processes of quarrying in the prospect of moving to
Mining 5.0 by the middle of the 21st century, when unmanned technologies will dominate
in surface mining.

Research in the field of digitalization and the intellectualization of the management
of enterprises engaged in open-pit mining makes it possible to judge the possibility of the
break-even development of deposits, including depleted ones, with significant fluctuations
in demand and prices in the commodity markets due to the deep optimization of decision-
making processes based on neural networks and cloud computing.

The development of Post-Mining and ESG investment as the most important contribu-
tions of Surface Mining 4.0 to the achievement of sustainable development goals also meets
a certain interest of researchers, but to a lesser extent than issues of digital transformation of
quarrying. Therefore, we see the horizons for the further innovative development of open
geotechnology in the convergence of digital, production, and management technologies
in the context of the expected transformation of Mining 4.0 into 5.0 (the platform of the
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upcoming Fifth Technological Revolution), which can bring new shocks to the mineral
resource sector.
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