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Abstract: Partial shading (PS) is a prevalent phenomenon that often affects photovoltaic (PV) in-
stallations, leads to the appearance of numerous peaks in the power-voltage characteristics of PV
cells, caused by the uneven distribution of solar irradiance on the PV module surface, known as
global and local maximum power point (GMPP and LMPP). In this paper, a new technique for
achieving GMPP based on the dandelion optimizer (DO) algorithm is proposed, inspired by the
movement of dandelion seeds in the wind. The proposed technique aimed to enhance the efficiency
of power generation in PV systems, particularly under PS conditions. However, the DO-based MPPT
is compared with other advanced maximum power point tracker (MPPT) algorithms, such as Particle
Swarm Optimization (PSO), Grey Wolf Optimization (GWO), Artificial Bee Colony (ABC), Cuckoo
Search Algorithm (CSA), and Bat Algorithm (BA). Simulation results establish the superiority and
effectiveness of the used MPPT in terms of tracking efficiency, speed, robustness, and simplicity of
implementation. Additionally, these results reveal that the DO algorithm exhibits higher performance,
with a root mean square error (RMSE) of 1.09 watts, a convergence time of 2.3 milliseconds, and mean
absolute error (MAE) of 0.13 watts.

Keywords: maximum power point tracker (MPPT); photovoltaic; partial shading conditions (PSCs);
dandelion optimizer; optimization

1. Introduction

The growing population has led to a higher demand for electricity, as it has become a
crucial aspect of modern life, and a blackout could cause serious disruptions and losses.
With the world’s economy and social life recovering, especially post-pandemic, increasing
electricity generation capacity is imperative to meet these demands. However, traditional
electricity generation methods such as using coal, gas, and fossil fuels have a harmful
effect on the environment. As per the International Energy Agency (IEA), the global power
sector’s CO2 emissions rose to nearly 700 million tons in 2021, surpassing the previous
record by over 14 Gt. The United Nations (UN) views electricity generation as a major
contributor to global climate change, with fossil fuels still accounting for over 80% of global
energy production [1].

The degradation of PV modules can negatively impact MPP tracking, particularly in
regions with low humidity. Over time, the performance parameters of PV modules, such
as efficiency, current, and series resistance, may change due to degradation, which could
necessitate adjustments to MPP tracking algorithms. When a PV module experiences a
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decline in efficiency, the MPP tracking algorithm might need to be modified to optimize
power generation in light of the reduced output power. Similarly, if the series resistance
of the PV module increases as a result of degradation, the MPP tracking algorithm might
need to account for this change in impedance and be adjusted accordingly to ensure
accurate MPP tracking. In general, the degradation of PV modules can affect the precision
and efficacy of MPP tracking algorithms. As such, PV system designers and operators
should keep this in mind when implementing MPP tracking algorithms in regions with
low humidity. Appropriate updates or adjustments may be necessary to ensure optimal
power generation from the PV system [2,3].

Solar power is the most widely popular renewable source because it is clean, accessible,
and freely available. However, solar PV systems have limitations, with their output
dependent on climate conditions and affected by non-linear characteristics of current–
voltage and power–voltage [4]. To overcome these limitations, an effective MPPT is required
to retrieve the utmost power from PV systems and ensure they operate at optimal levels
under different conditions. The MPPT must operate with speed and efficiency to maintain
stability in the PV system, particularly through rapidly changing shading situations. In
order to maintain a steady output voltage for the photovoltaic (PV) system, a DC–DC
converter is necessary to control the maximum power point (MPP) through adjusting its
duty cycle [5]. Figure 1 demonstrates the positioning of a boost converter between the PV
array and the load within the MPPT, and various algorithms can be utilized to adjust its
duty cycle, which form the basis of the MPPT controller and are often implemented using
a microcontroller.
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However, traditional MPPT techniques, such as Perturb and Observe (P&O) and
Incremental Conductance (IC), fail to track the GMPP, as they are unable to distinguish
between the LMPP and GMPP. This can lead to being stuck at one of the LMPPs and
greatly reducing the energy generated by the system. To overcome this problem effectively,
various computational intelligence techniques have been suggested by many authors
to address these limitations and track the MPP regardless of weather conditions. The
optimization algorithms possess several valuable features, including the capability to
efficiently solve non-linear optimization problems with low failure rates, fast convergence
times, and minimal oscillations, covering a broad range of research [6]. These attributes are
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highly desirable for researchers who intend to monitor the GMPP across diverse weather
conditions. The first feature is crucial in avoiding the algorithm becoming fixed at a local
peak, thus minimizing the loss of production power from the PV system. The second
attribute ensures stability in the PV system, particularly during online optimization with
substantial dynamic changes in PSCs. The last feature ensures the attainment of the
GMPP. Metaheuristic techniques constitute a set of algorithms used to address optimization
problems. These algorithms are influenced by natural phenomena such as evolution,
migration, and swarm behavior and are employed when traditional optimization methods
are either infeasible or too slow. With several beneficial characteristics, including the
ability to effectively solve non-linear optimization problems with low failure rates, quick
convergence times, and minimal oscillation, they have gained popularity among researchers
seeking to track the GMPP under any weather conditions. The first advantage of these
techniques prevents the algorithm from becoming stuck at a local peak, thereby avoiding
significant losses in the output power of the PV system. The second characteristic helps
maintain the stability of the PV system during online optimization with changing PSCs.

In the field of MPPT, numerous optimization algorithms have been developed, includ-
ing HOA [1], PSO [7], GWO [8], ABC [9], Cuckoo Search Optimization (CSO) [10], Group
Teaching Optimization (GTO) [11], Harris Hawk Optimization (HHO) [12], Grasshop-
per Optimization (GHO) [13], Bat Algorithm (BA) [14], Improved Team Game Optimiza-
tion (TGO) [10], Ant Colony Optimization (ACO) [11], Modified Butterfly Optimization
(MBO) [15], Henry Gas Solubility Optimization (HGSO) [16], and Pattern Search (PS) [17].
Most of these algorithms are based on updating the position of the agent based on its
location, making them less susceptible to high oscillation and weak convergence [1,18].
However, the main difference between these algorithms lies in the use of various strategies
in the initial and final steps of optimization to enhance exploration and exploitation, respec-
tively [6]. The PSO algorithm is based on the social behavior of bird flocks and fish schools.
It utilizes a group of particles that navigate the search space to find the optimal solution.
Each particle’s movement, consisting of its position and speed, is impacted by its personal
best solution, and the best solution found by the entire swarm [19]. The PSO algorithm tar-
gets the solution space, where each location signifies a particular level of problem-solving
potential [20]. To determine the best solution, it guides particles throughout the solution
space, with each particle relying on its understanding of nearby particles [21]. The particle
position is defined by the duty cycle value of the DC–DC converter, with the generated
power serving as the fitness value evaluation function.

The ABC algorithm is a metaheuristic optimization method inspired by the foraging
behavior of honeybee swarms [22]. This algorithm integrates local search techniques
performed by employed bees with global search techniques carried out by onlookers and
scouts to strike a balance between exploration and exploitation. The GWO algorithm is
based on the hunting behavior of a grey wolf pack. The pack consists of Alpha, Beta, Delta,
and Omega wolves with a strict hierarchical structure. Alpha wolves are the leaders, Beta
wolves provide support, Delta wolves follow instructions, and Omega wolves occupy
the lowest rank and may be used as scapegoats [23]. The MPPT-based GWO approach
optimizes the power output of photovoltaic systems by combining the strengths of the
GWO algorithm and the MPPT technique. MPPT-based PSO is a popular optimization
method in photovoltaic systems. Despite its widespread use, it is not without limitations.
One of its major drawbacks is the slow convergence time, which can occur when particles
move at a low speed, leading to longer optimization times and reduced efficiency of the
system. Another issue is the tendency for the algorithm to diverge when particles move too
quickly, resulting in suboptimal solutions [15]. A significant issue with the ABC algorithm
is its failure to distinguish between uniform and partial shading conditions, as the same
termination criteria are used for both. Consequently, uniform shading conditions may lead
to a slower convergence time, as the controller must undergo repeated iterations to establish
the steady-state duty cycle, just as in complex partial shading conditions [15]. In one
study, a proposed enhanced CS algorithm is recommended as the MPPT approach for PV
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systems under dynamic partial shading. The research found that the improved CS strategy
outperforms other swarm optimization techniques, addressing the problem of local peaks
and improving the performance of the CS algorithm. Otherwise, the paper [10] mentions
that optimization techniques, in general, can suffer from long convergence times. The
authors of [14] propose using bat-based optimization techniques for MPPTs in PV systems
and compare the performance of these techniques, including Bat-P&O, Bat-Beta, and Bat-IC,
to traditional algorithms. The paper also suggests combining bat-based algorithms with
traditional algorithms to reduce power oscillations and improve system performance.

The latter metaheuristic optimization algorithms have been widely used due to their
ability to handle complex and non-linear systems. The dandelion algorithm is an innova-
tive optimization method inspired by the sowing behavior of dandelions. Specifically, it
incorporates self-learning capability and dynamic radius adjustment to efficiently explore
the solution space and optimize extreme learning machines (ELM). Notably, the algorithm
has exhibited superior performance compared to other optimization algorithms in terms
of convergence speed and accuracy [24]. Further, in one study, the DA is applied to opti-
mize extreme learning machines (ELM) for biomedical classification problems, resulting
in significant enhancements in classification accuracy. Moreover, the study delves into
exploring different fusion methods to generate fusion classifiers with superior accuracy
and stability [25]. The authors in [26] postulate using DO to identify the Proton Exchange
Membrane Fuel Cells (PEMFC) model parameters with precision, overcoming the pitfalls
of metaheuristic algorithms. The study appraises the DO approach under steady-state and
dynamic conditions and gauges its efficacy against other techniques, evincing a promising
yield and superior performance. To improve the DO algorithm’s exploration ability and
prevent it from falling into local optima, ref. [27] proposes a novel competition mechanism
that incorporates historical information feedback. The fitness value of each dandelion in
the next generation is compared with the current best dandelion, and the weaker dandelion
is replaced by a new offspring. This approach improves the offspring generation process
by utilizing an estimation-of-distribution algorithm to exploit historical information. Three
historical information models are designed: the best, worst, and hybrid historical informa-
tion feedback models. The authors in [28] have presented a novel approach, the dandelion
code, as an alternative to the widely used Pruumlfer code for finding optimal spanning
trees. While the Pruumlfer code has been criticized for its low locality, the dandelion code
exhibits higher efficiency and greater locality. Although direct encoding and NetKeys
currently outperform the dandelion code in test problems, the proposed method is still a
strong alternative, particularly for larger networks.

Reference [29] introduces a new swarm intelligence bioinspired optimization algorithm
named DO to tackle continuous optimization problems. The DO algorithm is inspired by the
flight patterns of dandelion seeds carried by the wind, which are modeled into three stages:
rising, descending, and landing. The DO algorithm employs Brownian motion and a Levy
random walk to simulate the flying trajectory of a seed during the descending stage and
landing stage. The DO algorithm can be used as an MPPT method in photovoltaic systems.
It is capable of effectively balancing the trade-offs between tracking speed, accuracy, and
convergence. By simulating the process of dandelion seed long-distance flight relying on
wind, the DO algorithm can optimize the efficiency and performance of solar PV systems.
In the rising stage, the seeds rise in a spiral manner due to the eddies from above or drift
locally in communities according to different weather conditions. In the descending stage,
flying seeds steadily descend by constantly adjusting their direction in global space. In the
landing stage, seeds land in randomly selected positions so that they grow. The moving
trajectory of a seed in the descending stage and landing stage is described by Brownian
motion and a Levy random walk.

Although widely used, some optimization algorithms have limitations in tracking
MPP for PV systems, as previously mentioned. DO is a promising solution, inspired
by the dispersal mechanism of dandelion plants. Its unique features make it a strong
candidate for MPPT algorithms in photovoltaic systems. A comprehensive evaluation of
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DO’s performance is provided in Table 1, in comparison to existing optimization algorithms.
This article aims to thoroughly investigate the potential of DO for MPPTs in photovoltaic
systems. This paper focuses on the following key contributions:

• This work introduces a novel optimization algorithm referred to as DO, which is
designed to determine the GMPP of the Algerian PV system. The DO algorithm
employs advanced mathematical techniques to search for and locate the optimal
operating point of the system, thereby ensuring the system operates at its highest
possible efficiency.

• The paper presents a comprehensive comparison between the newly proposed DO op-
timization algorithm and five established benchmark optimization algorithms, namely,
PSO, ABC, GWO, CSA, and BA, utilizing a simulation model for a photovoltaic (PV)
system with maximum power point tracking (MPPT). The comparative analysis evalu-
ates the algorithms’ performance based on various performance metrics, including
convergence speed, accuracy, and robustness. The results of the analysis demon-
strate the superior performance of the DO algorithm over the benchmark algorithms,
indicating its potential for effective optimization of PV systems with MPPT.

• A dataset is utilized consisting of records collected over a two-day period of uniform
irradiance and complex PS. These databases are employed in a co-simulation paradigm,
leveraging MATLAB-PSIM software, to undertake dynamic validation of the proposed
approach. Such an approach enables the investigation of the system’s behavior over
time, considering the impact of changing environmental conditions, and facilitates the
assessment of model robustness and accuracy. By integrating the databases with the
simulation software, the approach provides a comprehensive platform for testing and
validating the proposed methodology, thereby enabling its effective implementation
in real-world applications.

Table 1. Comparison study between metaheuristic algorithms’ MPPT techniques.

Methods Reference Year Convergence
Speed

Tracking
Efficiency

Implementation
Complexity Oscillation

GWO [8] 2016 Low High High Medium
ACO [30] 2017 Medium Medium Medium Low
PSO [7] 2018 High High High Low
BA [31] 2020 Medium High High Medium

GHO [13] 2020 High High High Low
CS [10] 2021 Low Low Medium Low

ABC [9] 2021 High High High Low
DO Proposed Very High Very High Medium Very Low

The structure of the rest of this paper is as follows: The modeling of the photovoltaic
cell is outlined in Section 2. Section 3 delves into the topic of partial shading’s effects and
its characteristics. Section 4 provides a thorough explanation of the novel DO algorithm as
well as the simulation results. The paper concludes in Section 5.

2. PV System Modelling
2.1. Overview of the PV System

This study examines a 9.54 kW PV system placed at the “Centre de Développement des
Energies Renouvelables” (CDER) in Algiers, Algeria. The system comprises 30 photovoltaic
modules (Isofoton 106W) arranged in 2 strings of 15 modules each. Both horizontal and
plane irradiances are measured using a thermoelectric pyranometer, while the temperature
of the PV modules is monitored with a thermocouple (refer to Figure 2). The data acquisition
system is used to measure weather conditions such as solar irradiance and temperature,
as well as electrical parameters such as voltage, current, and power. The main electrical
specifications of the PV modules under Standard Test Conditions (STC) are listed in Table 2.
The weather and MPP current and voltage measurements were taken at 1-min intervals.
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Table 2. Standard Test Conditions “Isofoton 106-12” parameters.

Parameters Isc [A] Impp [A] Voc [V] Vmpp [V] Pmpp [W]
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2.2. The Modeling of the Photovoltaic Cell

The modeling process requires collecting data to experimentally determine the relation-
ships between the inputs and outputs. The data are then used to develop a mathematical
model that describes the cell’s behavior. The model’s accuracy depends heavily on the
quality of the data. Generally, the One-Diode Model (ODM) represents the actual behavior
of a PV module (refer to Figure 3). It is presented in an analytical form that establishes
a relationship between the PV current (IPV) and PV voltage (VPV) through the following
equation [32,33]:

IPV = Iph − I0

Id︷ ︸︸ ︷(
exp
(

q(VPV + Rs IPV)

nkBTp

)
− 1
)
−

Ish︷ ︸︸ ︷
VPV + Rs IPV

Rsh
(1)
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The optimization algorithm is a powerful tool for extracting the parameters of solar
cells. The optimization algorithm works by finding the values of the parameters that
minimize the difference between the modeled and experimental data. This is done by
adjusting the parameters until the model provides the best fit to the data. There are
several optimization algorithms that can be used for parameter extraction in solar cells,
which are presented in [26,27]. In this research, the effective parameters of a PV cell are
considered to be of great importance. To this end, the effective parameters that were
reported in References [25,28] have been selected for use in this study. The reason for
this choice is that these parameters have been experimentally validated and found to be
highly accurate. The effective parameters of a PV cell play a crucial role in determining
its performance, including its power output and conversion efficiency. These parameters
describe the internal characteristics of the cell and the way it behaves under different
operating conditions. By using accurate and experimentally validated effective parameters,
this study aims to ensure that the results obtained are reliable and representative of the
actual behavior of the PV cell. The Coyote Optimization Algorithm (COA) identified the
best selected parameters, including Rsh, Rs, Iph, I0, and n, which are presented in Table 3
in [32].

Table 3. Isofoton 106W-12V PV module extracted parameters.

Parameter Estimated Values

Iph [A] 6.44
I0 [A] 2.5 × 10−5

N 1.63
Rs [Ω] 0.1403
Rsh [Ω] 202.46

RMSE [A] 0.011

3. Partial Shading and Its Effects

The effect of partial shading on the PV module’s power–voltage (P–V) curve can be
significant. The P–V curve is a graphical representation of the relationship between the
module’s output power and voltage at different levels of solar irradiance. When the module
is not shaded, the P–V curve has a characteristic shape with a single maximum power point
(MPP), which represents the optimal operating point of the module.

However, when the module is partially shaded, the P–V curve undergoes changes.
The shading can cause multiple MPPs to occur, which can lead to significant power losses.
The MPP is no longer a single point but rather a range of points, which makes it challenging
to determine the optimal operating point. Additionally, shading can cause some of the
shaded cells to become reverse-biased, leading to their degradation and potential hotspots,
which can cause permanent damage to the module.
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Partial shading in PV systems (see Figure 4) refers to a situation where some portions
of a solar panel are obstructed from receiving direct sunlight. This can be caused by a
variety of factors, including trees, buildings, or other objects that cast a shadow on the
panels. The effects of partial shading can be significant, as it can impact the performance
of an entire PV system. When a portion of a panel is shaded, it can diminish the overall
power output, as well as the performance of the other panels connected to the same string.
The MATLAB-PSIM software was employed in this study to execute multiple shading
scenarios, utilizing a reliable model.
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4. Implementing Dandelion Optimizer Algorithm as MPPT

In 2022, Shijie Zhao introduced a highly effective global optimization algorithm that
leverages the mechanism by which dandelion seeds are dispersed over long distances by
the wind, as shown in Figure 5, to achieve faster convergence rates on globally smooth
problems, surpassing previous methods that only utilized local smoothness of the function.
This algorithm demonstrates exceptional results and has been mathematically proven to
outperform a pure random search algorithm [29].

The optimization process in dandelion optimization is based on how dandelion seeds
spread in the wind, allowing them to colonize new environments and adapt to changing
conditions. Similarly, the DO algorithm generates multiple solutions and explores different
areas of the solution space using randomness and variability to find the best solution [29].
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4.1. Mathematical Model

The DO algorithm repeats the wind and reproduction operators until an ending
criterion is met, such as a desired level of fitness or a maximum number of iterations.
The algorithm selects the top solution found during the optimization process as the final
solution. This subsection specifically discusses the mathematical formulas for DO.

4.1.1. Initialization

Like other nature-inspired metaheuristic algorithms, DO implements population
evolution and iterative optimization based on population initialization, i.e., seed generation.
In the proposed MPPT-based DO, the algorithm generates multiple solutions that are duty
cycles of boost converter (D), which represent potential solutions to our optimization
problem, and the population is represented as

population =


D1
...
...

Dpop

 (2)

where pop represents the population size.
Every potential solution is generated at random between the upper bound (UB) and

lower bound (LB), and the expression of the ith individual Di is

Di = rand× (UB− LB) + L (3)

where rand stands for a random number between 0 and 1, and i is an integer between 1
and pop.

During the initialization stage, DO identifies the participant with the best fitness value
as the initial elite, which is considered the most suitable starting point for the dandelion
seed to grow and flourish. The mathematical expression of the initial elite (Delite) is then
defined as where the function find() refers to two equal-valued indexes.

fbest = min(fDi)
Delite = D(find(fbest = f(Di)))

(4)
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4.1.2. Rising Stage

Dandelion seeds must reach a certain height during the rising stage before they can float
away from their parent. Dandelion seeds rise to different heights depending on wind speed,
air humidity, and other factors. The weather is divided into two categories in this case.

Case 1: On a clear day, wind speeds can be assumed to have a lognormal distribution.
The Y-axis is where random numbers are more distributed in this distribution, increasing
the likelihood that dandelion seeds will travel to distant regions, with the goal of exploring
new regions of the search space and discovering new potential solutions that are better
than the current best solution. The higher the wind, the higher the dandelion flies and the
farther the seeds spread. The vortexes above the dandelion seeds are constantly adjusted
by the wind speed to cause them to rise in a spiral form. In this case, the corresponding
mathematical expression is

Dt+1 = Dt + α× υx × υy × lnY× (Ds −Dt) (5)

where
υx = r× cos θ
υy = r× sin θ

(6)

θ is a random number between [−π, π] and r = 1
eθ .

The position of the dandelion seed during iteration t is represented by Dt; however,
Ds is the randomly chosen position in the search space during iteration t. The expression
for the randomly generated position is given by Equation (7).

Ds = rand(1, 1)× (UB− LB) + LB (7)

ln Y signifies a lognormal distribution subject to µ = 0 and δ2 = 1, and its mathemati-
cal formula is

ln Y =

 1
y
√

2π
exp

[
− 1

2δ2 (ln y)2
]

y ≥ 0

0 y < 0
(8)

y symbolizes the standard normal distribution N(0, 1) in Equation (8). α is an adaptive
parameter used to adjust the search step length, and the mathematical expression is

α = rand()× (
1

T2 t2 − 2
T

t + 1) (9)

Case 2: When it is raining, dandelion seeds are unable to be carried away by the wind
due to factors such as air resistance and humidity. This leads to the seeds staying in their
local area, which can be represented mathematically by the equation

Dt+1 = Dt × k (10)

where k is used to organize a dandelion’s local search domain, which is determined using
Equation (11).

qd =
1

T2 − 2T + 1
t2 − 2

T2 − 2T + 1
t + 1 +

1
T2 − 2T + 1

(11)

k = 1− rand()× qd

At the conclusion of each iteration, the value of the parameter k gradually moves
closer to 1, ensuring that the population ultimately reaches the optimal search agent. To
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sum up, the mathematical representation of dandelion seeds in the rising stage is given by
the expression

Dt+1 =

{
Dt + α× υx × υy × lnY× (Ds −Dt) randn < 1.5

Dt × k else
(12)

where the random number generated by the function randn() follows the normal distribution.

4.1.3. Descending Stage

During this phase, the DO algorithm places a strong emphasis on exploration. The
motion of dandelion seeds is modeled in DO using Brownian motion, which simulates their
descent after rising to a certain height. This motion allows individuals to easily explore
a wider range of search communities during the iteration process, as Brownian motion
follows a normal distribution at each step. To reflect the stability of dandelion descent, the
DO algorithm utilizes the average position information after the rising stage, which helps
guide the overall population towards more promising communities. The mathematical
representation for this process is

Dt+1 = Dt − α× βt × (Dmean_t − α× βt ×Dt) (13)

where βt is a random number drawn from the normal distribution and denotes Brown-
ian motion.

The mathematical expression of Dmean_t, which stands for the population’s average
position in the ith iteration, is

Dmean_t =
1

pop ∑pop
i=1 Di (14)

4.1.4. Landing Stage

During the exploitation phase of the DO algorithm, the dandelion seed selects its
landing spot based on the results of the first two stages. As the iteration process continues,
the algorithm aims to reach the global optimal solution. This process is represented by
Equation (12).

Dt+1 = Delite + levy(λ)× α× (Delite −Dt × δ) (15)

where Delite denotes the dandelion seed’s optimal position in the ith iteration. levy(λ)
denotes the Levy flight function and is calculated using Equation (16), and σ is a linear
increasing function between [0, 2] and is calculated by Equation (17).

levy(λ) = s× ω× σ

|t|
1
β

(16)

δ =
2t
T

(17)

A random number between [0, 2] called β is used in Equation (16). In this study,
β = 1.5,ω, and t are random numbers between [0, 1], while s is a fixed constant of 0.01. The
mathematical expression of σ is

σ =

(
Γ(1 + β)× sin (πβ2 )

Γ( 1+β)
2 × β× 2(

β−1
2 )

)
(18)

A detailed description of the MPPT-based DO is shown in the flowchart Figure 6.
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4.2. Simulation Results
4.2.1. Ability to Track GMPP

Extensive simulation studies have been conducted to evaluate the performance of the
proposed MPPT algorithm. The PV system in Figure 4 has been specifically designed for
this purpose, consisting of two series-connected PV modules, a DC–DC boost converter,
a DC load, and an MPPT controller. The evaluation has been performed using a co-
simulation methodology that combines the Matlab/Simulink and PSIM platforms. The co-
simulation enables the assessment of the proposed DO-based MPPT algorithm’s feasibility
and effectiveness, as well as the comparison of its performance against the PSO, GWO, ABC,
BA, and CS algorithms, under stable and dynamic climatic conditions. Table 4 presents the
parameters for the optimization algorithms utilized in this study.

The MPPT algorithms have been implemented in a Matlab/Simulink environment, as
shown in Figure 7, while the PSIM platform has been utilized to implement the DC–DC
boost converter and the PV array as illustrated in Figure 8.
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Assessing all non-uniform climatic conditions can be challenging, which is why three
preselected shading patterns (SPs) have been used to evaluate the performance of the
proposed DO-based MPPT algorithm. These shading patterns, designated as SP1, SP2,



Energies 2023, 16, 3617 14 of 23

and SP3 and shown in Figure 9, are used to evaluate the algorithm’s ability to track the
variant GMPP under static solar insolation. By using these preselected shading patterns,
it is possible to evaluate the performance of the algorithm under a range of different
conditions, without the need to assess all possible non-uniform climatic conditions, which
can be time-consuming and resource-intensive. The following are the three different shade
patterns with different irradiance levels, as shown in Figure 9: SP1 involves no shading;
SP2 includes partial shading; and SP3 introduces partial shading.

Table 4. Optimization techniques and their control parameters investigated in the study.

Technique Parameters Number of the
Population

Maximum Number of
Iterations

PSO W = 0.4, c1 = 1.2, c2 = 1.6 and r1, r2 = random [0, 1] 10 17
GWO r1, r2 = random [0, 1], A = 2 × 0.1 × r1 − 0.1 and C = 2 × r2 6 10
ABC 50% employed bees and 50% onlooker bees 6 10
BA Fmin = 0, Fmax = 2, A = 0.5, r = 0.5, alpha = 0.9, gamma = 0.9 7 10
CS k = 0.8 Beta = 1.5 4 10

DO

α and βt are random numbers

a =
−1

Max iteration2 − 2×Max iteration + 1
b = −2 × a

c = 1 − a − b

4 7
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The simulation results present in Figure 10 show that the proposed MPPT algorithm
is capable of accurately tracking the GMPP of the PV array under various environmental
conditions, and it achieves a fast convergence to the GMPP.
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4.2.2. Tracking and Comparing Performance

To demonstrate the tracking capability of the proposed DO-based MPPT algorithm
under dynamic solar insolation conditions, a transient shading pattern (SP1 to SP3) is
generated at t = 0.02 s, where the total simulation time is 0.4 s. The tracking curves obtained
by the algorithm are shown in Figure 11. The DO-based MPPT algorithm is able to catch the
GMPP of pattern SP1 in less than a 0.005 s, demonstrating its quick response time. When
the solar insolation changes to SP3 at 0.02 s, the algorithm restarts the search process based
on Equation (12) and is able to successfully track the new GMPP of SP3 in 0.024 s, clearly
proving the robustness of the proposed algorithm in handling dynamic partial shading.
These results demonstrate the effectiveness of the DO-based MPPT algorithm in tracking
the maximum power point under changing solar insolation conditions, which is a critical
requirement for achieving high efficiency and performance in PV systems.
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4.2.3. Statistical Analysis

The MPPT techniques presented in Figure 12 were analyzed using three metrics:
convergence time, the mean absolute error (MAE) calculated using Equation (19), and the
root mean square error (RMSE) calculated using Equation (20).

ErrorMAE =
∑n

i=1
(
Ppve − Ppv

)
n

(19)

ErrorRMSE =

√
∑n

i=1
(
Ppve − Ppv

)2

n

Energies 2023, 16, 3617 19 of 23 
 

 

 

(f) 

Figure 11. Tracking curves under shading pattern variation from SP1 to SP3 ((a) and (b)), SP1 to SP2 
((c) and (d)), and SP2 to SP3 ((e) and (f)). 

4.2.3. Statistical Analysis 
The MPPT techniques presented in Figure 12 were analyzed using three metrics: con-

vergence time, the mean absolute error (MAE) calculated using Equation (19), and the root 
mean square error (RMSE) calculated using Equation (20). Error = ∑ (P − P )n  (19)

Error = ∑ (P − P )n  (20

 
Figure 12. Comparison of RMSE and MAE. 

In these equations, Ppve represents the expected power, Ppv is the power tracked, and 
n is the number of samples. The study found that MPPTs based on DO have the lowest 

0

2

4

6

8

10

12

14

16

18

PSO GWO ABC BA CS DO

Convergence time (ms) RMSE MAE

Figure 12. Comparison of RMSE and MAE.

In these equations, Ppve represents the expected power, Ppv is the power tracked, and
n is the number of samples. The study found that MPPTs based on DO have the lowest
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convergence time compared to the other techniques (the convergence time of shading
pattern 3 was used as a reference or sample). On the other hand, the results also show that
the DO technique had the lowest RMSE among all the compared techniques, indicating
that it tracks the GMPP with higher efficiency and generates negligible oscillations. Addi-
tionally, the MAE had a lower magnitude, demonstrating effective GM detection under all
operating conditions.

4.2.4. Dynamic Validation

This subsection aims to validate a proposed DO-based MPPT technique using real-
world data under varying environmental conditions. To validate its effectiveness, the
algorithm was tested on multiple samples during full-day intervals using experimen-
tal measurements. In addition, to assess the MPPT algorithm’s capability to track the
GMPP, actual daily solar irradiation profiles and their corresponding temperatures were
utilized to evaluate the algorithm’s performance on clear and cloudy days, as presented in
Figures 13 and 14.
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The obtained results show that the DO-based MPPT outperformed the other algorithms
in terms of convergence speed and achieving maximum power point under varying solar
irradiance and temperature conditions. Figures 15 and 16, presenting the results for powers,
are provided to support these findings.

According to the findings, among the tested methods, the DO-based MPPT algorithm
has demonstrated the most favorable performance with the lowest RMSE and MAE values.
This suggests that the DO-based algorithm is capable of achieving more precise and accurate
MPP tracking compared to the other methods assessed. Although the other methods
performed reasonably well, the results imply that they may not attain the same level of
precision as the DO-based algorithm. Consequently, the results indicate that the DO-based
MPPT algorithm is the most promising option for accurate MPP tracking in PV.
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5. Conclusions

The utilization of the DO algorithm in MPPT controllers presents a promising ap-
proach towards improving the efficiency and performance of solar PV systems. The DO
algorithm offers an effective means of balancing the trade-offs between tracking speed,
accuracy, and convergence. Through the experiments detailed in this scientific paper, it has
been demonstrated that the MPPT-based DO algorithm outperforms other widely used
MPPT-based metaheuristic algorithms, including PSO, GWO, ABC, CS, and BA, thereby
establishing its superiority. The results show that the proposed MPPT was able to achieve
faster tracking speed, higher tracking accuracy, and better stability under changing weather
conditions. One of the key advantages of the dandelion optimizer algorithm is its ability to
dynamically adjust the search space based on the current operating conditions, which can
result in significant improvements in the overall performance of the system. Moreover, the
DO algorithm is relatively easy to implement and does not require complex mathematical
models or extensive training datasets. Furthermore, the proposed MPPT can provide a cost-
effective solution for renewable energy production, which can lead to increased adoption of
solar energy systems in both developed and developing countries. The performance of the
DO algorithm is sensitive to the initial parameter settings, and different initial parameter
values could lead to different results. Careful parameter tuning and optimization would
be required to achieve optimal performance. While the DO algorithm is relatively simple
compared to other optimization algorithms, it still requires significant computational re-
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sources, especially for larger-scale systems. This could limit the practical application of
the algorithm in real-world PV systems. Further research and development are needed
to optimize the algorithm’s performance and address these limitations. This article has
presented a newly proposed MPPT algorithm based on DO. Through simulation and ex-
perimentation, it has been shown that the DO-based MPPT algorithm outperforms other
commonly used MPPT algorithms such as PSO, GWO, ABC, BA, and CS. Additionally,
a real-world validation has been conducted to demonstrate the practical applications of
the proposed algorithm. In future work, a comparison of the computational complexity
and required computational power of the hardware of various MPPT algorithms could be
conducted. Overall, the DO-based MPPT algorithm has demonstrated promising results
and has the potential to be applied in PVs.
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