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Abstract: In this work, a novel workflow has been proposed, validated and applied to interpret the
early time transient pressure data in tight oil reservoirs with physical constraints. More specifically,
the theoretical model was developed to obtain the transient pressure response for a vertical well in
tight oil reservoirs with consideration of pseudo threshold pressure gradient (TPG). Then, a physical
constraint between the skin factor and formation permeability has been proposed based on the
physical meaning of percolation theory. This physical constraint can be applied to determine the
lower limit of the skin factor which can reduce the uncertainty during the interpretation process. It
is found that the influence range of the skin factor and permeability may partially overlap during
the interpretation process without consideration of physical constraints. Additionally, it is found
that the equivalent wellbore radius is more reasonable by considering the skin factor constraints.
Furthermore, the short-time asymptotic method was applied to separate the small pressure signal at
the early time period and a novel type curve was proposed to better analyze the early time pressure
response. Subsequently, sensitivity analyses were conducted to investigate the influence of different
parameters on the new type curves. It is found that the new type curves are more dispersed and
sensitive to the parameters at the early time period which can be beneficial for the early time transient
pressure analysis in a tight formation. The proposed method has been validated and then extended
to a field application, demonstrating that the transient pressure for a vertical well in a tight formation
can be analyzed in a reasonable and accurate manner with only early time transient pressure data.

Keywords: tight oil reservoirs; pseudo threshold pressure gradient (TPG); early time transient data;
skin factor; physical constraints; new type curves

1. Introduction

Due to the declining reserves of conventional reservoirs and the growing global energy
consumption, unconventional resources have received increasing reliance [1]. As tight oil
reservoirs account for a significant portion of unconventional hydrocarbon resources, the
efficient development of tight oil reservoirs has become a primary focus [2,3]. Pressure
transient analysis is considered to be a valuable method to provide information about
reservoirs by interpreting the pressure data [4–6]. For pressure transient analysis, the
reservoir properties can be estimated or determined by identifying different flow regimes
on the pressure derivative curve [7–10]. Since the permeability of a tight oil reservoir
is extremely low, it usually takes quite a long time to achieve the infinite acting radial
flow (IARF) regime and the early time transient pressure data can be difficult to interpret
which makes the well testing method less attractive [11]. Therefore, the traditional pressure
transient analysis method is not applicable to tight oil reservoirs and it is of fundamental
and practical importance to find an appropriate method to analyze the early time transient
pressure data in the tight formation in a consistent and accurate manner.

The low-velocity non-Darcy flow phenomenon can be described by the curves shown
in Figure 1 where the red curve represents the traditional Darcy flow. However, at the
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lower pressure gradient region, fluid cannot flow through the porous media unless the
pressure gradient exceeds the threshold pressure gradient (TPG). At the region where the
pressure gradient larger than TPG, a linear relationship between the flow velocity and
pressure gradient can be found. The existence of TPG has been observed from laboratory
works [12,13] which can be explained by the effect of tight pore structures, non-Newtonian
fluid, and boundary layer [14,15]. Many factors, including pore-throat size, capillary
pressure, fluid saturation, and permeability can affect the value of threshold pressure
gradient in a tight formation, and the reasonable range of threshold pressure gradient in a
tight formation has been reported to be 0.006–0.04 MPa/m [16–18]. The TPG can not only
result in nonlinear and nonhomogeneous diffusivity equations which are difficult to solve
but also can affect the production performance of the tight formations [19]. Numerous
attempts have been made to investigate the transient pressure behavior by considering the
TPG through both numerical and analytical methods [7,20,21]. However, it is found that
the TPG mainly affects the flow regime at late time periods where little information about
the TPG can be found from analyzing the early time transient pressure data [7,21]. In order
to better understand the reservoir properties with consideration of TPG from the transient
pressure analysis method, it is urgent to seek a trustworthy method for such a purpose.
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Figure 1. Schematic diagram of low velocity non-Darcy flow model.

As the lower permeability and poor flow capacity in a tight formation, it is difficult
to reach the IARF regime for the well testing method where long time pressure testing
operation will seriously affect the well production [11]. As such, the early time transient
pressure data without enough information about the IARF regime are usually obtained
during the well testing method for a tight formation [7]. For the early time transient pressure
response, usually three parameters dominate the early time pressure response including
the wellbore storage coefficient, skin factor, and reservoir permeability. For the latter two
parameters, it is usually hard to separate their respective influence on the transient pressure
curves, and there is no physical constraint for the lower limit of skin factor (usually between
−6–100) [22] which can bring high ambiguity for the well testing interpretation results.
Efforts have been made to analyze the early time trainset rate/pressure data by using
various new type curves under various conditions for various reservoirs [23–25]. However,
the TPG is usually neglected for such reservoirs which may greatly affect the transient
pressure behavior for a tight formation.

In this work, a numerical model has been proposed and validated to investigate the
effect of TPG, wellbore storage, and skin factor on the early time transient pressure response
for a tight formation. The physical constraint for the skin factor has been proposed which
can reduce the uncertainty of the interpretation results. Furthermore, a novel type curve
has been developed which is capable to extract the small pressure signal at the early time
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period. Based on the new type curves, sensitivity analyses have been done to examine the
effect of TPG, wellbore storage, and skin factor for both Darcy flow model and low-velocity
non-Darcy flow model.

2. Methodology

In this work, a vertical well is located in a cylindrical tight oil reservoir with infinite
boundary (see Figure 2), and the main assumptions are listed as follows,
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Figure 2. Schematic diagram of the reservoir and well model used in this work.

(1) The infinite reservoir is homogeneous with constant thickness;
(2) Slightly compressible single phase fluid is assumed in the formation;
(3) Fluid flow in the formation obeys the low-velocity non-Darcy flow characterized

by TPG;
(4) The well production rate is constant during the production periods; and
(5) Wellbore storage and skin factor are considered, and gravity effect is ignored in

this work.

2.1. Analytical Solution

The vertical well fully penetrates the formation, and the gravity effect is ignored in
this work. Thus, only the radial flow towards the vertical wellbore is considered which
can accurately describe the fluid flow behavior in such a reservoir, while the vertical flow
can be neglected in this work. The governing equation for the isotropic reservoir with
consideration of pseudo TPG can be written as follows, and the detailed derivation can be
found in Appendix A, 

∂2 p
∂r2 + 1

r
∂p
∂r −

1
r λ = φµCt

k
∂p
∂t

p(r, t)|t=0 = pi
lim
r→∞

p(r, t) = pi

qB =
[

2πrhk
µ ( ∂p

∂r − λ)
]

r=rwe
− C dpw

dt

pw = p(rwe, t)

(1)

where p is formation pressure, r is the distance away from the wellbore, φ is formation
porosity, µ is fluid viscosity, Ct is total formation compressibility, k is the formation per-
meability, t is real time, λ is the pseudo TGP, B is the oil formation volume factor, pi is
the initial formation pressure, pw is the well bottom-hole pressure (BHP), C is the well-
bore storage coefficient, S is the sin factor, and rwe is the equivalent wellbore radius (i.e.,
rwe = rwe−S).

The following dimensionless variables are defined for further analysis,

pD =
2πkh(pi − p)

qBµ
, tD =

kt
φµCtr2

w
, rD =

r
rwe−S , CD =

C
2πhφCtr2

w
, λD =

2πkhrwλ

qBµ
(2)
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Then, the dimensionless governing equations together with the boundary and initial
conditions can be obtained as follows,

∂2 pD
∂r2

D
+ 1

rD

∂pD
∂rD

+ λDe−S

rD
= 1

CDe2S
∂pD

∂(tD/CD)

pD(rD, tD/CD)
∣∣tD/CD=0 = 0

lim
rD→∞

pD(rD, tD/CD) = 0
∂pwD

∂(tD/CD)
− ∂pD

∂rD

∣∣∣
rD=1

= 1 + λDe−S

pwD = pD(1, tD/CD)

(3)

The Laplace transform is applied with respect to tD/CD, which is

pD =
∫ ∞

0
pDe−utD/CD d(tD/CD) (4)

Therefore, the corresponding Laplace transform of the aforementioned governing
equations can be further acquired,

∂2 pD
∂r2

D
+ 1

rD

∂pD
∂rD

+ λDe−s

urD
= u

CDe2S pD

pD(rD, u)|rD→∞ = 0

upwD −
∂pD
∂rD

∣∣∣
rD=1

= 1+λDe−S

u

pwD = pD(1, u)

(5)

As the governing equations are nonhomogeneous due to the existence of TPG, and
the general form of the solution for the governing equations can be written in the following
form on the basis of the Bessel functions,

pD(rD) = A · I0(βrD) + BK0(βrD) +
M
β

K0(βrD)
∫ βrD

β
I0(ξ)dξ +

M
β

I0(βrD)
∫ ∞

βrD

K0(ξ)dξ (6)

where M = λDe−S, β = (u/CDe2S)0.5, I0(x), and K0(x) are the zero-order modified Bessel
function of the first and second kind, respectively.

By applying the boundary conditions, the constant A and B can be inversely obtained.
Then, the analytical pressure solution in the Laplace domain can be written as follows,

pwD = K0(β)
uK0(β)+βK1(β)

[
1+λDe−S

u − u M
β I0(β)

∫ ∞
β K0(ξ)dξ + MI1(β)

∫ ∞
β K0(ξ)dξ

]
+M

β I0(β)
∫ ∞

β K0(ξ)dξ

(7)

where I1(x), and K1(x) are the first-order modified Bessel function of the first and second
kind, respectively. After obtaining the pressure solution in the Laplace domain, the well
bottom hole pressure solution in the real-time domain pwD can be inversely calculated by
the Stehfest inverse algorithm [26]. In this work, to obtain more precise pressure solutions
for the early time periods, the Stehfest number is chosen to be 12.

2.2. Skin Factor Constraint

Skin factor is used to characterize the near wellbore conditions and the connectivity
between the well and the formation. The positive and negative skin factors represent the
damaged and stimulated near wellbore conditions. Usually, the range of skin factor can be
treated in the range of−6~+100 in the practical case [17]. However, no theoretical proof has
been made to define the lower limit of this factor, and the very low skin factor can produce
unrealistic or unphysical phenomenon even though the transient pressure data has been
well matched. In this work, the lower limit of the skin factor can be theoretically obtained
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which can apparently reduce the ambiguity during the pressure data matching process,
especially with a relatively short testing duration.

The definition of the skin factor is [22],

∆pskin = [p(rw, t)ideal − p(rw, t)actual ] = S
qµ

2πkh
(8)

where p(rw,t)ideal is the BHP for the ideal case, and p(rw,t)actual is the BHP for the actual case.
For the ideal case without skin factor, the analytical solution can be written as follows,

p(rw, t)ideal = pi −
qµ

4πkh

[
−Ei

(
− r2

w
4ηt

)]
(9)

where η is the pressure diffusivity coefficient (i.e., η = k/(φµCt)). Substitute Equation (9)
into Equation (8), we can obtain,

pi − p(rw, t)actual =
qµ

4πkh

[
−Ei

(
− r2

w
4ηt

)]
+ S

qµ

2πkh
(10)

For the practical case, the BHP cannot be higher than the initial pressure after produc-
tion, and the following physical constraint can be obtained,

S >
1
2

Ei
(
− r2

w
4ηt

)
(11)

The exponential integral function Ei(−x) is inconvenient for practical use, when
0 < x ≤ 0.01, Ei(−x) can be approximated as the following form with high accuracy (see
Figure 3).

Ei(−x) ≈ − ln e−0.5772

x , 0 < x ≤ 0.01 (12)
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Additionally, as the function Ei(−x) is negative, and the larger the absolute value
of x the smaller the value of Ei(−x). Thus, the following constraint of skin factor can
be obtained,

S

 > 1
2 Ei(−0.01) r2

w
4ηt ≥ 0.01

> − 1
2 ln
(

2.25ηt
r2

w

)
r2

w
4ηt < 0.01

(13)



Energies 2023, 16, 245 6 of 15

In the field well-testing application, the minimum test time is chosen to be 10 s which
is smaller enough for the transient pressure test data obtained. As the time becomes larger,
the smaller value of r2

w/(4ηt) can result in a smaller value of the lower limit of skin factor.
To maintain the physical constraint for the whole testing period, the lower limit for the skin
factor can be further obtained as follows,

S

 > −2 r2
w

4η ≥ 0.1

> − 1
2 ln
(

22.5η

r2
w

)
r2

w
4η < 0.1

(14)

Now, the constraints for the skin factor have been theoretically obtained which can be
convenient for the practical application during the well-testing interpretation process.

2.3. Applicability Analysis of G-B Type Curves

Gringarten et al. [27] improved the Agarwal-Ramey type curves [28] and obtained
the Gringarten type curves. Then, Bourdet et al. [29] creatively proposed the Bourdet
pressure derivative (i.e., p’wD = dpwD/dln(tD/CD)) curves, and later the two type curves
were combined into Gringarten-Bourdet type curves. The G-B type curves can describe the
transient pressure behavior for a vertical well with a constant wellbore storage coefficient
and skin factor in a reservoir with an infinite outer boundary. The dimensionless pressure
and the pressure derivative functions are both plotted as a function of dimensionless time
tD/CD in a single chart (see Figure 4). This chart is easy to distinguish reservoir types and
flow stages, making it easier to obtain a unique fitting curve.
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For the transient pressure analysis, the main flow regime of interest is the infinite
acting radial flow (IARF) which can be easily identified from the log-log plot (i.e., horizontal
line with Bourdet derivative equals 0.5). Additionally, combined the early time wellbore
storage regime (i.e., unit slope line) with the IARF regime, the fitting or match of the
pressure response would be more immediate and unique. However, there are several
limitations during the well test interpretation process for tight formations. For example, in
a tight formation with permeability equals 0.5 mD, reservoir thickness of 10 m, viscosity
of 0.5 mPa·s, and wellbore storage coefficient of 0.5 m3/MPa, the dimension time tD/CD
equals 160 when the testing time equals 15 days. As shown in the following G-B type
curves, the IARF regime cannot be reached even though the testing time has lasted for
15 days. If the IARF regime shall be shown on the log-log plot, the test time would be up to
100 days, which would obviously and seriously impact the well production and make the
well testing method unattractive for the tight formations. Therefore, it is of fundamental
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and practical significance to find a method to interpret the early time transient pressure
response without a possible IARF regime.

2.4. Short-Time Asymptotic Solution

For the early time transient pressure data, it is very difficult for us to identify the
wellbore storage and skin factor as the pressure and its derivative curves usually overlap
in a unit-slope line for the traditional G-B type curves. Recall that the pressure deriva-
tive proposed by Bourdet et al. [29] the essence of this term is actually a mathematical
transformation that can separate the small pressure variance and then amplify this small
signal through the product of time. The larger the time, the greater the amplification factor
becomes. However, this transformation is not valid for the early time period as the pressure
derivative approximately equals tD/CD resulting in a unit-slope line. Therefore, for the
pressure response data without radial flow regimes, strong no-uniqueness can be found
during the transient pressure interpretation process.

Based on the idea of Bourdet’s pressure derivative, we want to extract the influence
factor at the early times which is more sensitive on the CD, S, and λD by mathematic
transformation. The short-time asymptotic method can be applied to obtain this objective.
The early time pressure solution is expanded and only the high-order series of the solution
is separated which represents the small signal during the early time. In this way, more
accurate type curves can be obtained which may be more sensitive on CD, S, and λD during
the early times and can obviously reduce the non-uniqueness of the interpretation results.

When the time is relatively smaller in the real-time domain, the Laplace variable u and
β can be very large in the Laplace domain. Thus, the K0(x) and K1(x) can be asymptotically
expanded as follows when β→ 0 [30],

K0(β) =
√

π
2β e−β

[
1− 1

8β + O
(

β−1)], K1(β) =
√

π
2β e−β

[
1 + 3

8β + O
(

β−1)] (15)

Substitute Equation (14) into the solution in Equation (7), we have,

pwD =
(

1 + λDe−S
)[

u−2 − 1√
CDe2S

u−5/2 + O
(

u−5/2
)]

(16)

Neglecting the high-order term with small value, then transforming the solution to
the real-time domain with respect to tD/CD yields,

pwD =
(

1 + λDe−S
)[ tD

CD
− 4

3
√

πCDe2S

(
tD
CD

)3/2
]

(17)

Based on the idea of parameters proposed in the literature [30], a novel parameter
was defined to amplify the small variable for the early time solution in Equation (17) in
this work,

ω =

∣∣∣∣32 pwD
tD/CD

− 1
2

dpwD
d(tD/CD)

− 1
∣∣∣∣ =

∣∣∣∣∣λDe−S −
(
1 + λDe−S)√

πCDe2S

(
tD
CD

)1/2
∣∣∣∣∣ (18)

It can be found from the above equation that only the contribution of CD, S, and λD are
considered, and these constructed curves are more sensitive to CD, S, and λD other than a
unit slope line with little information in the G-B type curves for the early times. Additionally,
this curve has a horizontal asymptote (i.e., λDe−S) as the time tD/CD approaches zero
when the TPG is considered. If TPG is not considered, this curve approaches the line
(tD/CD)0.5/(πCDe2S)0.5 when the time is small.



Energies 2023, 16, 245 8 of 15

3. Model Validation

To verify the solutions obtained in this work, the transient pressure behavior was
compared with those from previous work [31]. The low-velocity non-Darcy flow model
was considered for the tight formation with the following main parameter, CDe2S = 1,
λDe-S = 0.0001, 0.01. As shown in Figure 3, there exists a good agreement between the results
from this work and those from the literature confirming the accuracy of the solutions in this
work to model the transient pressure behavior in a tight formation with consideration of
the pseudo TPG. Additionally, it can be found from Figure 5, the existence of TPG can result
in an increase of pressure and its derivative curves at the late time period. Additionally, the
traditional IARF regime with a horizontal line at late times cannot be observed which can
cause more uncertainty during the well-testing interpretation process as the most important
flow regime characteristic (i.e., horizontal line with Bourdet derivative equals 0.5) has been
changed due to the existence of TPG.
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4. Results and Discussion

In this section, the rationality of the skin factor constraints has been clarified, and
the novel type curves suitable for the early time transient pressure analysis have been
generated. The sensitivity analysis has been conducted to investigate the effects of some
main parameters on the new type curves.

4.1. Reasonability Analysis for the Physical Constraint of Skin Factor

During the well testing interpretation for the tight oil reservoirs, the constraint con-
ditions of skin factor are usually not considered, which would lead to doubts about the
interpretation results. Specifically, the skin factor reflects the pollution or improvement in
the vicinity of the wellbore, and the permeability near the wellbore region represents the
seepage capacity of the formation. The conceptual scope of these two should be different.

Table 1 shows the interpretation results of a typical tight oil reservoir in the eastern
part of China (the case where the skin factor is obviously abnormal and less than −5
has been removed). The current interpretation results have proved that the (inner zone)
permeability can be greatly affected by the value of the skin factor. It can be found from
the following table that the skin factor is between −4.89 and −2.60 when the skin factor
constraint conditions are not considered, resulting in the corresponding equivalent well
diameter between 0.8~8.0 m, and the average permeability is 3.92 mD. When considering
the skin factor constraints, the skin factor is between −0.75~0.28, and the corresponding
equivalent well diameter is between 0.05~0.13 m, and the average permeability is 16.45 mD.
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Table 1. Interpretation results for the transient pressure with and without skin factor constraints.

Well Name
Without Constraints With Constraints

Skin Factor Permeability/mD Skin Factor Permeability/mD

Well1 −2.88 4.22 −0.45 10.67
Well2 −3.79 5.23 −0.50 25.06
Well3 −3.82 1.20 −0.11 8.59
Well4 −4.89 1.90 −0.50 35.60
Well5 −3.74 1.78 −0.60 7.08
Well6 −3.12 6.93 −0.50 20.00
Well7 −3.02 4.48 −0.50 29.40
Well8 −2.82 6.45 −0.50 23.10
Well9 −3.64 3.59 −0.50 10.28

Well10 −3.22 3.06 −0.01 8.16
Well11 −3.32 15.73 −0.75 62.75
Well12 −3.65 10.11 −0.25 72.00
Well13 −3.60 8.99 −0.75 24.75
Well14 −3.00 1.21 −0.36 5.62
Well15 −4.50 0.95 −0.50 2.57
Well16 −4.66 1.05 −0.50 6.93
Well17 −3.75 8.51 −0.50 9.95
Well18 −2.60 0.40 −0.50 0.37
Well19 −3.61 0.26 0.28 0.84
Well20 −2.71 1.55 0.12 1.67
Well21 −4.18 2.35 −0.40 11.70
Well22 −2.75 0.22 −0.50 0.63
Well23 −3.68 0.08 −0.50 0.65

From a numerical point of view, the equivalent well diameter is more reasonable
after considering the constraint conditions of the skin factor. Moreover, as the value of
the skin factor has been confined to guarantee the correctness of the pressure solution, the
influence of the skin factor can be greatly excluded for the early time transient pressure
response which brings little interference to the interpretation of the permeability for the
near wellbore region. As shown in Figure 6, the permeability obtained after considering the
constraints of the skin factor is about 4 times that of the original result without constraints,
which can reflect a more realistic seepage capacity of the formation near the wellbore which
may be artificially fractured.
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4.2. Sensitivity Analysis Based on New Type Curves
4.2.1. New Type Curves for Darcy Flow Model

The low-velocity non-Darcy flow is not considered and the new type curves for the
Darcy flow model are generated (i.e., λD = 0). The main parameters affecting the type curves
are the combination of CD and S which are the same as the G-B type curves. However,
a new curve reflecting the relationship between the newly defined parameter ω and the
dimensionless time tD/CD is added to the traditional G-B type curves. Figure 7 shows the
influence of parameter CDe2S on the new type curves. It can be found at the early time
wellbore storage (WBS) regime, all the pressure and its derivative curves are coinciding
lines with unit-slope, little information can be obtained from the transient pressure response
during this period only by analyzing the pressure and pressure derivative curves. The
following flow regime is the transient flow regime which can be affected by the skin factor
and the permeability. The larger the value of CDe2S, the higher the position of the pressure
and its derivative curves. However, the differences in the pressure and its derivative curves
during the transition flow regime between different cases are not large enough which can
bring high uncertainty for the well testing analysis and interpretation. The last flow regime
is the IARF regime, all the pressure derivative curves overlap with a horizontal line for
different cases. However, such flow regime is difficult to appear for the well testing in a
tight formation where the low permeability can greatly delay its arrival.
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The green lines in Figure 7 represent the relationship between the newly defined
parameter ω and the dimensionless time tD/CD. It can be found that these ω curves
can be highly dispersed at the early time period which can be beneficial to the analysis
and interpretation of the early time pressure response. The ω curves are sensitive for
the parameter CDe2S at the early time period, and such new curves can be used for the
early time transient pressure analysis. Additionally, it can be found that all theω curves
coincide into a horizontal line with its value equals unity. Even though it can be treated
as a characteristic line similar to the horizontal derivative line in IARF regime, it is not
very useful for the analysis of the early time pressure response where such a horizontal
line may be not present within a limited testing time. Moreover, it can be found that the ω
curve shows a straight line and its slope is affected by the value of CDe2S which has been
discussed early after the definition of this parameter.

4.2.2. Effect of CDe2S on New Type Curves for Non-Darcy Flow Model

For the low-velocity non-Darcy flow model, the TPG is considered (i.e., λD 6= 0). The
main influencing factors on the type curves include the following combinations: CDe2S and
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λDe−S. Firstly, new type curves are generated with different values of CDe2S while keeping
λDe−S constant. Figure 8 displays the new type curves with various values of CDe2S. It can
be found that the pressure and its derivative curves are more dispersed at the transient flow
regime and IARF regime due to the existence of TPG. Additionally, the larger the value
of CDe2S, the higher the value of pressure and its derivative. As for the ω curves shown
in this figure, it is more complicated than those for the Darcy flow model in Figure 7. At
the starting time, as the time approaches zero, the ω curves stabilized near a horizontal
line whose value equals λDe−S. As explained early, as time becomes smaller enough, the
newω curves have a horizontal asymptote (i.e., λDe−S). As time goes on, the value of the
second term in Equation (18) becomes larger which can be in the same order of magnitude
as the first term λDe−S. Thus, a singularity point occurs at this curve where the value of the
first term equals the second term. After that, the influence of the first term in Equation (18)
can get weaker and weaker, and the ω curves gradually approach a straight line. At the
late IARF regime, all the ω curves coincide with each other. Moreover, it can be found from
Figure 8, the larger the value of CDe2S, the later the appearance of the singularity point
of the ω curves, and the smaller the value of the ω function after the singularity point.
These specific features can be easily explained by the definition of the ω function where the
parameter CDe2S is in the denominator position of the second term of Equation (18).
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4.2.3. Effect of λDe−S on New Type Curves for Non-Darcy Flow Model

Another important combination parameter affecting the transient pressure type curves
for the non-Darcy flow model is λDe−S where λD is the dimensionless TPG. Parameter
CDe2S has been assumed as constant (i.e., CDe2S = 100) during the generation of the following
type curves. Figure 9 presents the influence of λDe−S on the new type curves. As reported
in previous work [7], the existence of λD brings extra resistance to the fluid flow in the
tight formation and results in a higher value of pressure and pressure derivative curves.
The larger the value of λDe−S, the higher the position of the pressure and its derivative
curves in the type curves. For the newly defined ω curves shown in Figure 9, the changing
trend of such curves is similar to that discussed previously. There is a horizontal line at
the beginning, then a concave shape with a singular point, followed by an approximately
straight line, and finally a horizontal line with a value of 1. It can be found from the figure
that, the larger the value of λDe−S, the higher the position of the horizontal line at the
beginning and the later appearance of the singularity point. These features can also be
readily explained by the definition of parameter ω. At the beginning, the time approaches
zero and the ω function has a horizontal asymptote with a value of λDe−S. Additionally,
it will take a larger time to make the value of the second term in Equation (18) almost
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equal to the value of the first term in the same equation. Moreover, the newly developed
type curves are more dispersive and more sensitive to parameters at the early time period,
which is very useful for us to analyze the early time pressure data with limited testing time.
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4.3. Discussion

Therefore, the novel workflow for the early time transient pressure analysis can
be summarized as follows: firstly generate the physical constraint for the skin factor
which can greatly reduce the uncertainty for the following analysis; secondly generate
the new type curves including the pressure curves, derivative curves and ω curves on
a log-log plot; then generating the curves using the field well-testing data and compare
with the newly generated type curves; finally the wellbore storage coefficient, skin factor,
formation permeability, and threshold pressure gradient can be accurately obtained with
low ambiguity.

The advantage of this work can be summarized as follows, through such workflow
mentioned above, the ambiguity during the interpretation of the early time transient
pressure data can be greatly reduced, and the final interpretation results can be more reliable
and accurate which can reflect the realistic underground wellbore and reservoir properties.
However, as the high-order term of the pressure solution shall be used to generate the
new type curves which need very precise pressure data at the early times. Thus, the
requirements for our well testing process and device will be more rigorous, but this is not a
big challenge for the pressure gauge with high accuracy and resolution nowadays.

5. Conclusions

(1) The physical constraint of skin factor has been analyzed and the lower limit of skin
factor has been obtained for practical use. The influence range of the skin factor and
permeability may partially overlap during early time period without consideration of
physical constraints. By considering the skin factor constraints, the interpretation pa-
rameters including the equivalent wellbore radius, and permeability near the wellbore
region are more accurate and reliable.

(2) The traditional G-B type curves fail to analyze the early time transient pressure data
without enough information about the IARF regime, and a novel type curve for
analyzing the early time transient pressure test in a tight formation has been proposed.
The novel proposed type curves can extract the small pressure signal during the early
time period which are more dispersed and more sensitive for the parameters including
λD, CD, and S.
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(3) The new ω curves show a horizontal asymptote with a value of λDe−S, then a concave
shape with a singular point, followed by an approximately straight line, and finally a
horizontal line with value of 1.

(4) The larger the value of CDe2S and λDe−S, the later appearance of the singularity point
for the ω curves; and the larger the value of λDe−S, the higher the position of the
horizontal asymptote at the beginning.

(5) A novel workflow has been proposed with the following features, the skin factor
constraint can reduce the ambiguity and increase the rationality of interpretation
results. The novel type curves are more beneficial to the analysis of the early time well
testing data which are more suitable for the early time transient pressure interpretation
in a tight formation.
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Appendix A

According to the assumptions made in Section 2, the fluid flow equation considering
the TPG λ can be described as follows.

v =

{
− k

µ (∇p− λ)|∇p| ≥ λ

0|∇p| < λ
(A1)

Additionally, the fluid is slightly compressible, based on the definition of fluid com-
pressibility and rock compressibility, the following equations can be obtained to describe
the fluid density/porosity change with respect to pressure change,

ρ = ρo[1 + Cl(p− po)] (A2)

φ = φo[1 + Cr(p− po)] (A3)

where Cl and Cr are the fluid and rock compressibility, respectively.
For the radial geometry reservoir, the following material balance equation can be

obtained for a thin ring from r to r + ∆r,

−∆t2π(r + ∆r)hvρ|r+∆r + ∆t2πrhvρ|r = [π(r + ∆r)2 − πr2]
[

hφρ|t+∆t − hφρ|t
]

(A4)

Dividing by the term ∆r·∆t, and let ∆r → 0, and ∆t → 0, the following diffusivity
equation can be obtained,

1
r
· ∂(rρv)

∂r
= −∂(ρφ)

∂t
(A5)

Substitute Equation (A1) into Equation (A5) and neglect the first derivative squared
term, the governing equation for the fluid flow in the tight formation considering TPG can
be written as follows,

∂2 p
∂r2 +

1
r

∂p
∂r
− 1

r
λ =

φµCt

k
∂p
∂t

(A6)
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where the total compressibility Ct = Cl + Cr.
When the skin factor is considered, the inner boundary condition at the equivalent

wellbore radius (i.e., rwe = rwe−S) can be written as,

pw = p(rwe, t) (A7)

Additionally, when the wellbore storage effect is considered, the well production
consists of two parts, including the fluid provided by the wellbore storage effect and the
fluid flow from the reservoir to the wellbore,

qB =

[
2πrhk

µ
(

∂p
∂r
− λ)

]
r=rwe

− C
dpw

dt
(A8)

The initial condition and outer boundary condition can be easily described as follows,

p(r, t)|t=0 = pi (A9)

lim
r→∞

p(r, t) = pi (A10)
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