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Abstract: Previous gas hydrate production tests conducted by the Guangzhou Marine Geological
Survey (GSGM) in 2017 and 2020 indicated the great potential of gas hydrates in the Shenhu Sea
area in the Pearl River Mouth Basin (PRMB), China. In this study, the effects of deposition processes
in submarine canyons and the distribution of gas chimneys on gas hydrate accumulation were
investigated using high-resolution two- dimensional (2D) and three-dimensional (3D) seismic data.
Four intact submarine canyons were identified in the study area. Five deepwater depositional
elements are closely related to submarine canyons: lateral accretion packages (LAPs), basal lags,
slides, mass transport deposits (MTDs), and turbidity lobes. MTDs and lobes with multiple stages
outside the distal canyon mouth reveal that the sedimentary evolution of the canyon was accompanied
by frequent sediment gravity flows. Gas chimneys originating from Eocene strata are generally up to
3 km wide and distributed in a lumpy or banded pattern. The analysis of seismic attributes confirmed
fluid activity in these gas chimneys. Gas hydrates are mainly distributed in ridges among different
canyons. Based on the gas sources of gas hydrates and depositional evolution of submarine canyons,
depositional processes of sediment gravity flows in submarine canyons and the distribution of gas
chimneys significantly affect the accumulation of gas hydrates. Based on these findings, this study
establishes a conceptional model for the accumulation of gas hydrate, which can provide guidance in
the prediction for favorable gas hydrates zones in the area and nearby.

Keywords: submarine canyon; depositional process; gas chimney; accumulation; gas hydrate; South
China Sea

1. Introduction

Gas hydrates, which are ice-like solid compounds formed by water and methane, are
considered important unconventional energy sources [1,2]. They are widely distributed in
marine sediments and permafrost and the estimation of the total resources of gas hydrates
can be up to 3000 × 1012 m3 [3,4]. Because of their great resource potential, they have
received widespread attention from industry and academia [1,5–8]. To determine the
distribution of gas hydrates in marine sediments, a series of exploration projects have
been carried out worldwide, and many gas hydrates discoveries have been made on
continental margins [9–13]. These projects worldwide have helped scientists to find that
the accumulation of gas hydrates is controlled by several factors, such as the origin of
the gas, pathway of gas migration, reservoir characteristic, stability condition, water, and
time [14]. The geological characteristics of the reservoir, such as grain size, hydraulic
conductivity and/or tectonics, have a great influence on hydrate accumulation. Based on
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numerous studies, researchers found that grain size of sediments hosting the gas hydrates
are variable. For instance, in the Mallik of Canada and the Nankai Trough of Japan, the gas
hydrates were found in coarse-grained sediment [15,16], while those found in South China
Sea were recovered from fine sediments with silt content ranging from 70% to 80% [13,17].
Furthermore, on the continental margin, the evolution of sediment gravity flows within
the submarine canyon can also result in the dissolution and subsequent leakage of gas
hydrates [18,19].

Hydrate exploration in the northern South China Sea began at the end of the last
century. In the early stage, scientists studied the characteristics of seismic facies and distri-
bution of gas hydrates by using seismic data and established a preliminary accumulation
model [20–25]. Owing to the tremendous potential of gas hydrates of the South China Sea,
the GSGM has conducted several hydrate drilling voyages (GMGS1-5) since 2007, and gas
hydrates have been found in different basins along the northern margin of the South China
Sea [26–32]. By using a series of well logs, core data, and seismic data, researchers have
studied the lithological characteristics and types of depositional elements of sediments
containing gas hydrate in detail. Significant differences were observed with respect to
the occurrence and gas sources of gas hydrates in different basins, which implied that
there are significant differences in the factors controlling hydrate accumulation in different
areas [20,24,29,30,33–35]. For instance, gas hydrates have been found in different voyages
in the Shenhu sea area in PRMB [28,32,34]. However, the distribution and saturation of gas
hydrates here is heterogeneous, even within two close sites which have a very similar mor-
phological and geological background [32,36,37]. For example, in the GMGS1, there were
8 sites located on the canyon ridges besides both sides of a submarine canyon, but only SH2,
SH3, and SH7 have recovered the gas hydrates on the canyon ridges of western side and
there are no gas hydrates in SH5, SH6 and SH9 on canyon ridge of eastern side [20,38,39].
Therefore, it is critical to find out the factors controlling the distribution of gas hydrates
and clarify their accumulation mechanism, from the origin and migration of gases to the
accumulation processes and conceptional model of accumulation of gas hydrates.

By using high-resolution 2D and 3D seismic data covering the Shenhu Sea area in the
Pearl River Mouth Basin (PRMB), the deepwater depositional system of the hydrate devel-
opment area was investigated in this study. Based on the theory of sequence stratigraphy,
sedimentology and gas hydrate accumulation systems, gas hydrate sources, and migration
pathway, the accumulation processes of gas hydrates were clarified. This paper presents a
conceptual model for gas hydrate accumulation that can help predict the distribution of
gas hydrates in different areas of the SCS, which can be of great importance in guiding the
exploration of gas hydrate in this area.

2. Geological Background

The Shenhu Sea area is located on the slope of the Baiyun Sag in the PRMB, which
is characterized by abundant oil and gas resources in the northern South China Sea
(Figure 1) [40–42]. Since the Eocene, the PRMB has undergone five major tectonic move-
ments, and extremely thick sediments have been deposited. Tectonic activity was intense in
the Eocene. Since the Oligocene, the basin has entered the post-rifting stage and the fault ac-
tivity has decreased. Since the Miocene, only a few faults have remained active [43]. Many
diapirs with heights reaching >8 km developed in the central part of the Baiyun Sag [44].

In the early stage of the basin development during the Eocene, the PRMB was dom-
inated by a lacustrine sedimentary environment. After the Oligocene, the basin was
characterized by a marine sedimentary environment. Three sets of source rocks developed
in the basin during this process, that is, the Wenchang and Enping formations in the Eocene
and the Zhuhai Formation in the Oligocene [45–47]. Paleontological data indicate that a
deepwater environment began to appear and typical progradational continental shelf mar-
gin and deepwater fan systems began to develop in the PRMB during the Oligocene [48,49].
Since then, numerous submarine canyons, which show characteristics of unidirectional
migration under the influence of contour currents, developed at the margin of the northern
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shelf of the South China Sea, especially during the Late Miocene [49–52]. In addition, many
mass transport deposits (MTDs) developed from the shelf margin to the deepwater basin,
which led to the reshaping of the geomorphology of the shelf margins [53–56]. Complex
interaction processes between turbidity currents, contour currents, and MTDs led to large
differences in the sediment properties in different areas [13].
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3. Methodology

High-resolution two-dimensional (2D) and 3D seismic data used in this study were
obtained from the GMGS. The sequence stratigraphy framework covering PRMB was
established by China National Offshore Oil Company (CNOOC), combined with well data
obtained by CNOOC in the PRMB. In this study, the 2D seismic data with a total length of
more than 1350 km cover a wider area and were used to determine the correlation with
seismic data from CNOOC nearby (Figure 2). Nine sequence boundaries were identified in
this study: T80, T70, T60, T50, T40, T32, T30, T20, and T10. The 3D seismic data obtained
in the submarine canyon developed area on the shelf margin cover an area of ~800 km2.
The major frequency and vertical resolution of 3D seismic data can reach 40 Hz and 20 m,
respectively. By using high-resolution 3D seismic data and seismic facies, the distribution
of deepwater depositional elements, gas hydrates, and typical gas chimney structures can
be determined. The results will provide insights into the accumulation of gas hydrates
in this area. In this study, seismic attributes also were extracted based on the 3D seismic
data, including instantaneous frequency and coherence slices. Generally, the instantaneous
frequency can be used to identify the activity of fluid, while the coherence slices are used to
meticulously describe the geological bodies or the structures of different scales in the basin.
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Figure 2. Framework of sequence stratigraphy and typical seismic profile of the Pearl River
Mouth Basin.

4. Results
4.1. Depositional System Related to Submarine Canyons

Based on the bathymetric chart, many submarine canyons are distributed along the
shelf margin of the Baiyun Sag in the PRMB. Beyond the distal mouth of the submarine
canyons, giant mass transport deposits developed, which are known as Baiyun giant
landslides. The Shenhu Sea area is located between the shelf margin and Baiyun giant
landslides; it is characterized by well-developed submarine canyons (Figure 1).

4.1.1. General Features of Submarine Canyons

Based on the morphology of the seabed or the isobathic chart of T20, four relatively
complete submarine canyons are developed in the study area (Figures 1b and 3a). The
canyons are generally ~25 km long and ~2–3 km wide (Figures 1b and 3a,b). The middle of
the canyon, with a depth of around 400 m (from the canyon bottom to the ridge top; with an
average velocity of 1.5 km/s of acoustic waves), has experienced the strongest erosion. The
incision depth gradually decreases from the middle to both ends of the canyon (Figure 3b).
The concave pattern of erosion of T32 in the crossing profile of the canyon shows that
submarine canyons have been initiated since the Late Miocene (Figures 2 and 3b). Along
with the development of the canyons, the thalweg of submarine canyons shows typical
unidirectional migration to the northeast. The horizontal distance of the migration from
the beginning of the canyon formation to the seabed can exceed 3 km (Figure 3b). The
characteristics of these submarine canyons are similar at different stages; however, the
incision depth is relatively small in the early stages of the canyon development.
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4.1.2. Elements and Distribution of Depositional Systems
Lateral Accretion Packages

As mentioned above, the migration of submarine canyons since the Late Miocene can
be clearly observed in the crossing seismic profiles. On the eastern margin of the canyon, an
erosional feature is revealed by the truncation of continuous seismic reflections of canyon
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ridges (Figures 3b and 4a). On the western side of the canyon, a succession of strata inclined
toward the canyon axis developed, which are named lateral accretion packages (LAPs).
Their reflections are characterized by a moderate amplitude and fair continuity. These
LAPs developed from the early stage of the canyon till today (Figure 3b). Considering the
paleoceanography background, researchers believe that the unidirectional migration of
these LAPs is due to bottom-current or contour-current activities in this area [49,50,52].
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developed on the canyon ridges.

Basal Lags

At the bottom of the submarine canyons, relatively short seismic reflections with
high amplitudes were observed near the thalweg. Their assembly presents a lenticular
geometry, which differs from the adjacent reflections infilling the canyon with low to
moderate amplitude and fair continuity (Figures 3b and 4a). However, reflections with
such characteristics have not continuously developed throughout the evolutionary stages
of the canyons but mostly developed at the canyon bottom with distinct erosion (Figure 3b).
Compared with other submarine canyons, these assemblies of reflections are interpreted as
basal lags caused by irregular turbidity currents in canyons.

Slides

Slides are a common depositional element in the study area. Reflections within the
slides show continuous and parallel characteristics, separated by faults between different
blocks in the slides. Slides near the seafloor have a typical ladder shape (Figures 2 and 4b).
Slides are occasionally developed on canyon margins and ridges between the canyons. The
majority of them maintain continuous, parallel features, but a few exhibit more significant
deformation on their edges due to sliding and the rotation of blocks (Figure 4a). In the early
stage of canyon evolution, several slides with large thicknesses developed on the canyon
margin. Faults among these blocks within the slides almost combined with the canyon
bottom, leading to the widening of the canyon (Figure 3b).

MTDs

MTDs are another important depositional element in and around the canyon. In
seismic profiles, MTDs are characterized by chaotic, discontinuous, and low-amplitude
reflections. Within canyons, MTDs generally cover the basal lag at the bottom or deposit
aside of the canyons. Confined by a concave morphology, MTDs in the canyon are gen-
erally thick but have a smaller lateral extension, which results in a lenticular geometry
(Figures 3b and 4a). However, MTDs outside the distal mouth of the canyon are relatively
thin but have a greater horizontal extension (>3 km) because of the absence of a confining
canyon topography. Multiple depositions of MTDs indicate that the canyon has experienced
several MTD events (Figure 5).
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Turbidity Lobe

Several reflections outside the distal canyon mouth are characterized by a continuous,
high amplitude. In contrast to the basal lag, the lateral extension of these reflections is
greater than that of the basal lag deposited within canyons (Figure 5). Based on their
geometry and depositional environment, they represent the turbidity lobes that formed by
turbidity flows from the canyons. Several lobes were identified outside the distal mouth
of the canyon. Lobes that developed in the Pliocene are small and thin in the early stage,
indicated by a short single reflection with high amplitude; however, they become wider in
the lateral extension and thicker with a dome-like shape later on (Figure 5).

The comparison of the characteristics of seismic facies in canyons shows that the
sedimentary characteristics at different stages of the canyon development are similar. LAPs
are mainly developed on the western side of the canyons. Since the initiation of the canyon,
the stacking of LAPs gradually prograded eastward and led to the movement of the thalweg
of canyons in the same direction (Figures 3b and 6). A basal lag always develops at the
bottom near the thalweg of the canyon and shows discontinuous features in the plan view
and a strike similar to that of the canyons. MTDs are well-developed at the edge and
outside of the distal mouth of the canyon, whereas slides are mainly developed on the
ridges among different canyons. The turbidity lobe is another important depositional
element outside the canyons. Lobes from different canyons merge into one greater one in
the area farther away from the canyons at the edge of the study area (Figure 6).

4.2. Distribution of Gas Chimneys

Diapirs are a very important and widely distributed structural type in the study
area. Two types of diapirs can be observed in the study area, that is, gas chimneys and
diapirs associated with volcanic activity, which exhibit different seismic characteristics
(Figures 2 and 7). Generally, fluids in sediment significantly affect the high-frequency seis-
mic energy in seismic data and consequently result in a reduction in the instantaneous
frequency [57]. Gas chimneys are characterized by blank or low-amplitude seismic reflec-
tions. Compared with volcanic diapirs, gas chimneys are small in scale but large in number.
Their widths are generally less than 3 km. The tops of gas chimneys are relatively flat or
slightly convex and the lateral extension is greater than their body, showing a mushroom-
like shape. Their bottom is generally located in Eocene or Oligocene strata (Figure 7).
In instantaneous frequency attribute profiles, the gas chimneys show a noticeable zone
with low frequency. Diapirs associated with volcanoes are large and have a base width
exceeding 20 km. These diapirs originate from the deep earth crest or mantle and intrude
through the basement and thick strata within the basin. Inside, diapirs are characterized
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by chaotic reflections, but high-amplitude reflections with irregular distribution and poor
continuity can be observed locally (Figure 2). At the top of volcanic diapirs, a series of
sharp small bulges can be generally observed, which is caused by the differential intrusion
of volcanic rocks.
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Based on the analysis of the study area, gas chimneys are well developed and volcanic
diapirs are only distributed in the lower left corner of the study area. The results of detailed
studies showed that most of the gas chimneys are located in Pliocene strata (between T20
and T30; Figures 2, 3 and 7). In the plane view, gas chimneys show lumpy or banded
shapes and can be located at canyons or ridges among different canyons, but most of them
are located east of Canyon 1. Furthermore, larger gas chimneys with lengths up to 10 km
developed on two ridges to the east of Canyons 1 and 3 (Figure 8).
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Figure 8. Distribution of gas chimneys. (a) Bathymatry of sea floor; (b) the background is a coherence
slice which has been extracted following the Horizon T20 in the 3D seismic data. In the slice,
eastern margins of the paleo-canyons can be easily identified and the red dashed lines (approximate
parallel to the canyon margin) with arrows pointing toward downstream standing for the thalweg
of paleo-canyons.

4.3. Gas Hydrate Distribution

The occurrence of bottom-simulating reflector (BSR) is often an indication of the
accumulation of free gas beneath the gas hydrate zone [6]. Owing to the lack of well
data, BSRs were used in this study to infer gas hydrates. In profiles perpendicular to the
canyon, BSRs are distributed on the ridge among the canyons with different widths, but
most of them are less than 2 km wide. The characteristics of BSRs on different ridges differ
(Figure 9). The BSR with a flat shape on the ridge between Canyons 1 and 2 is clear and
continuous and significantly differs from the attitude of nearby strata. However, the BSR
on the ridge between Canyons 2 and 3 has a relatively poor continuity, making it difficult
to identify it. The outline of high-amplitude reflections, which coincide with the irregular
topography of the seafloor, can be used to locate the BSR nearby (Figure 9). In the profile
along the strike of the canyons, reflections with high amplitude have a lateral extension
reaching up to 8 km, indicating a wider distribution of BSRs in this direction. Owing to the
irregular topography of the seafloor, the overall continuity of BSRs is bad (Figure 10).
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The distribution characteristics of BSRs were determined based on the interpretation
of BSRs in the study area. Most BSRs are located in Pliocene strata and few were identified
in Quaternary layers (Figures 7, 9 and 10). In the plane view, BSRs represent lumpy and
banded shapes. The lumpy ones are smaller, with lengths ranging from 1 km and diameters
of 4 m, but larger in number than the banded ones. The regulation of the distribution of
BSRs with a lumpy outline is inconspicuous, but banded BSRs that develop on canyon
ridges follow a notable distribution rule. The long axial direction of banded canyons with
lengths up to 15 km coincides with the strike of the canyons (Figure 11).
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5. Discussion
5.1. Origin of Gas in Gas Hydrates

The accumulation of gas hydrates is a complex process that requires not only an
environment with low temperature and high pressure, but also stable gas sources [58–61].
Generally, three gas sources of gas hydrates can be identified: microbiogenic gas, thermo-
genic gas, and a mixture of the two [59,62].

To identify the resource potential of gas hydrates in the Northern South China Sea,
the GMGS has conducted several hydrate drilling voyages in the Shenhu area (GMGS1,
GMGS3, GMGS4, GMGS5) and samples of gas hydrates have been obtained during all
voyages [62–64]. However, there is a difference in understanding the source of gas in the
hydrate in Shenhu sea area. In GMGS1, the methane content of the gas hydrate samples
reaches 99.66%. Based on the molecular compositional ratio of C1/(C2 + C3) and δ13C
values, the methane in the gas hydrates in the Shenhu area is mainly of microbial origin
and mixed with a limited amount of thermogenic gas [22,62,65]. However, the molecular
composition of gases in the hydrate from GMGS3 and GMGS4 shows that the proportion of
C2+ hydrocarbons in the gas can reach ~3%. Paragenetic relationships were also identified
between shallow gas hydrate and deep conventional reservoirs, which are supplied by
the hydrocarbon kitchens in the Baiyun Sag. Combined with isotopic signatures, it has
been considered that thermogenic gas supplies part of the gas for hydrates in the Shenhu
area [28,32,34,64]. Hence, it is reasonable to conclude that the gas sources of the hydrates
are biogenic gas and a mixture of biogenic and thermogenic gases [24,28,33,34,60,64].
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5.2. Gas Hydrate Accumulation

The results of previous studies showed that the Baiyun Sag is a hydrocarbon-rich
sag in the PRMB. Three main sets of source rocks have been identified: lacustrine source
rocks from the Wenchang and Enping formations and marine source rocks from the Zhuhai
Formation [45–47]. The source rocks from the Wenchang and Enping formations are
currently in the over- and high-maturity stages and have generated thermogenic gas since
the Middle Miocene. In contrast, the source rocks from the Zhuhai Formation are still
in a low-maturity stage and cannot generate a large amount of thermogenic gas. As
mentioned above, gas chimneys originate from the Eocene strata, including the Wenchang
and Enping formations. The comparison of the planimetric positions of the gas chimneys
and BSRs shows that their plane distributions strongly correlate (Figure 11). Combined
with the low-frequency zone indicating the activities of fluids or gases in gas chimneys, it
is reasonable to believe that these gas chimneys are important pathways for the migration
of deep thermogenic gas to the shallow region (Figure 7). Hence, the results of this study
show that the components of thermogenic gases of gas hydrates originate from source
rocks of the Wenchang and Enping formations, whereas microbiogenic gases are derived
from source rocks of the Zhuhai Formation.

In addition, note that several gas chimneys are developed in Canyon 4, but no BSRs
exist. There are several reasons for this phenomenon. Many researchers have studied
the evolutionary history of submarine canyons in the northern South China Sea and
concluded that submarine canyons are affected by the interaction of contour and turbidity
currents [49,50,52]. The LAPs that are developed on the western margin of the canyons
also indicate the significant effects of contour currents on the development and evolution
of the canyon (Figures 3b and 9). However, depositional processes within the canyons
seem to be more important for submarine canyons. Generally, the incision of the canyon
is closely related to the activity of turbidity currents, which play a significant role in
deepening the canyon and sustaining its V-shaped incision pattern [50,66–68]. It also
has been demonstrated that MTDs and slides can lead to strong erosion of the canyon
bottom [69,70]. The canyon is completely filled with sediments without this great incision.
In these successive incising processes caused by various sediment gravity flows, a large
amount of sediment at the bottom of the canyons is eroded and transported down the
slope, which can change the pressure condition for gas hydrates beneath the canyon. The
gas hydrate will dissociate, gas leakage will occur, and the gas hydrate beneath the canyon
cannot be preserved.

Based on the depositional processes, distribution characteristics of gas chimneys,
and gas hydrate source, a model of the gas hydrate accumulation in the Shenhu sea area
was established (Figure 12). Since the Late Miocene, the source rocks in the Eocene in
the Baiyun Depression have been in a high- or overmaturity stage. Gas chimneys are
formed by the release of overpressure within Eocene source rocks under the influence of
external factors (e.g., thermal fluid activity, regional tectonic activity), which provides a
fair migration pathway for the vertical migration of thermogenic gas from source rocks
during the Eocene [26,29,44]. Together with shallow microbiogenic gas from shallow source
rock, a mixture of thermogenic and microbiogenic gases migrates from the gas chimneys
to positions above with suitable pressure and temperature to form gas hydrates. Most of
the gas hydrates distributed in the canyon ridges are preserved where less erosion was
caused by different types of gravity flow, whereas gas hydrates beneath the canyon bottom
for which the conditions are changing frequently due to subsequent successive sediment
gravity flows within the canyons have dissociated and could not be preserved.
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6. Conclusions

In this study, the characteristics of depositional processes within canyons and gas
chimneys in the Shenhu Sea area were analyzed using high-resolution 2D and 3D seismic
data. Submarine canyons exhibit the most distinct geomorphological features. Five deposi-
tional elements were identified within and adjacent to submarine canyons: LAPs, basal
lags, slides, MTDs, and turbidity lobes. As an important conduit for sediment transport
from shallow to deep water, the canyons have experienced frequent sediment gravity flows
during their evolutionary history, which is indicated by successive MTDs and turbidity
lobes that are developed outside the distal canyon mouth. Gas chimneys are important
structures in the study area. The seismic profiles show that most of them originated from
Eocene strata and terminated in or nearby Pliocene strata at the top. In the plane view,
gas chimneys exhibit a lumpy and banded shape. Lumpy ones are small and less than
3 km wide, whereas banded ones can be up to 10 km long, indicating that the long axis
coincides with the canyon strike. The distributions of BSRs and gas hydrates in the plane
view are consistent. Based on the depositional processes within canyons, distribution of gas
chimneys and BSRs, and gas sources, an accumulation model of gas hydrate was proposed.
Thermogenic gas from Eocene source rocks migrates vertically through gas chimneys,
mixes with microbiogenic gases from shallow source rocks, and then forms gas hydrates
above the gas chimneys under suitable pressure and temperature conditions. Because of the
strong erosion caused by sediment gravity flows within canyons and subsequent changes
in the conditions, gas hydrates dissociate, followed by gas leakage. Most of the preserved
hydrates can be observed in the ridges of canyons, with very few hydrates beneath the
bottom of canyons. Therefore, it is of great importance to study the depositional processes,
which can not only form the gas hydrate reservoir, but also destroy the preservation of gas
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hydrates. The conceptional model established in this study can give great guidance for the
prediction of gas hydrates in the South China Sea.
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