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Abstract: The origin of deep-water mounds has been a topic of debate in recent years. In this
study, newly collected seismic data were employed to characterize the mounds within the Meishan
Formation in the Qiongdongnan Basin and a novel model was proposed. The result showed that
pervasive mounds and ‘V’-shaped troughs were alternately distributed at the top of the Meishan
Formation. They appeared as elongated ridges flanked by similarly elongated gullies, with the
trending parallel with the strike of the basinward slope. The mounded features were considered to
be formed in response to the tectonically induced seabed deformation. The differential subsidence
steepened the slope that was equivalent to the top of the Meishan Formation (ca. 10.5 Ma), which
offered sufficient driving forces triggering the slope’s instability. Correspondingly, the uppermost
deposits glided along a bedding-parallel detachment surface, creating a number of listric detachment
faults that ceased downward to this surface. The uppermost layer was cut into a range of tilted fault
blocks with tops constituting a seemingly mounded topography. Some of the downfaulted troughs
between mounds steered the gravity flows and were filled by sand-rich lithologies. The differential
subsidence played a decisive role in the formation of a mounded stratigraphy, which in turn acted as
clues to the important tectonic phase since the late Miocene.

Keywords: mounded stratigraphy; genetic mechanism; slope instability; gravity gliding; detachment
faults; Qiongdongnan Basin

1. Introduction

Extensive attention has been paid to the formation of deep-water mounds in recent
decades [1,2]. The presence of mounds within the strata can cause dome-like bedforms with
mounded seismic reflections [3,4]. Various origins of deep-water mounds in debates mainly
involved the carbonate reefs [5,6], mud diapirs or mud volcanoes [4,7], deep-water wave
sediments [8], sand bars related to differential compaction [9–11], and remnant mounds
originated from channel incision [12–15].

In recent years, pervasive mounded seismic reflections were detected in the Miocene
Meishan Formation (Fm.) in the Qiongdongnan Basin (QDNB) [13,16]. Numerous models
were proposed over the years to interpret their origins but there is no unified conclu-
sion [4,5,14–18]. A widely accepted view in prior studies was that the middle Miocene
was the dominant reef-building period in the northern South China Sea, and the mounded
reflections were then thought to be the carbonate reefs [5,16,19]. Nevertheless, recent
drilling revealed that some mounds were mainly composed of mud-rich lithology rather
than reefs [18,20]. Channel incision has also been considered the possible controlling factor
in the formation of the Miocene mounds in the study area [4,15]. However, most of the
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mounds trend roughly parallel with the inferred strike of the slope, which contradicts
the principle that remnant mounds generated by the incision have their axes pointing
downslope in most situations [14,16,21]. Additionally, these mounds were interpreted
as sediment waves generated by bottom currents, but lacked the overwhelming proof
supporting the existence of the bottom currents at that time [13]. Therefore, the models
developed previously might not be readily applicable to the study area, and other mecha-
nisms are required to explain the formation of mounds. It is worth noting that much of
the topographic relief can appear in the structurally disturbed strata [3,22]. For the QDNB,
an important tectonic transformation occurred at the turn of the middle and late Miocene,
accompanied by intense tectonic activation corresponding to the time equal to the top of the
Meishan Fm. [23–25]. Whether the formation of the mounds within the uppermost layer of
the middle Miocene is related to such tectonic change has not been noticed previously.

In this study, we applied 2D and 3D seismic data to describe the characteristics of
the mounds within the uppermost layer of the Miocene Meishan Fm. Combined with
the tectonic settings, a novel model was developed to explain the formation process of
the mounds. This model accentuates the decisive role played by tectonic activities in the
creation of the mounds. The research results may offer a new idea in the interpretation of
similar geological phenomena in other areas around the world.

2. Geological Setting

The QDNB is located at the west of the NE-trending extensional system in the northern
South China Sea [26–29] and comprises the Northern Depression, Northern Uplift, Central
Depression, and Southern Uplift from the north to south [30–32] (Figure 1). The Central
Depression is located in the deep-water area, including the Ledong, Lingshui, Songnan,
Ganquan, Beijiao, Baodao, and Changchang Sags, as well as the Lingnan and Songnan
highs [33,34]. The water depths vary from 500 to 1500 m, with the maximum depth reaching
2500 m [35]. The tectonic evolution of the basin is consistent with a typical passive margin
containing rifting and thermal subsidence. The unconformity of T6 that formed at ~21 Ma
divided the Cenozoic strata of the basin into the syn-rift and post-rift layers. Faults were
extremely developed in the syn-rift stage while seldom active in the post-rift stage [13,27].
Since the late Miocene, tectonic subsidence accelerated, accompanied by intense reactivation
of faults in the eastern basin [23,24,36]. Correspondingly, the water depth of the basin
increased [16,37]. In addition, since the cessation of submarine expansion (~16 Ma), magma
has been widely active in the South China Sea and its adjacent areas [25,38]. There is a
high heat flow zone in the Baodao to Changchang Sags, which was closely related to the
thermal events involving massive magmatic intrusions and eruptions from the Miocene
to Pliocene [37].

The main sequence boundaries of the basin including Tg, T8, T7, T6, T5, T4, T3, and T2
divided the Cenozoic strata into Lingtou (E2l), Yacheng (E3y), Lingshui (E3l), Sanya (N1s),
Meishan (N1m), Huangliu (N1h), Yinggehai (N2y) and Ledong (Ql) Fms. (Figure 2). The
depositional environment transformed from a coast and shallow sea to a semi-deep and
deep sea from the middle to late Miocene [4,18]. The lower member of the Meishan Fm. is
composed of mudstones, sandstones, and calcareous sandstones; its upper member mainly
consists of mudstones mixed with thin argillaceous siltstones [15,20,39]. The lower member
of the Huangliu Fm. is dominantly fine sandstones interbedded with thin mudstones
and its upper member primarily comprised sandy limestones and fine sandstones [15]. A
large submarine canyon (i.e., Central Canyon) was developed in the late Miocene, with
an ‘S’-shaped axis parallel to the shelf break of the basin [18]. The mounded stratigraphy
within the Miocene Meishan Fm. is restricted to the Southern Slope (between the Central
Depression and Southern Uplift) which has the topography dipping from SE to NW, and is
bounded by the Central Canyon to the north and the Xisha Islands to the south [5,18].
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Figure 1. Tectonic units of the Qiongdongnan Basin (modified from [30,31]). The Qiongdongnan
basin is divided into the eastern and western basin according to the direction change of the basin axis.
Seamounts composed of basaltic volcanic rocks developed in the south eastern uplifts and eastern
sags. NDB = Northern Depression Belt. NUB = Northern Uplift Belt. CDB = Central Depression
Belt. SUB = Southern Uplift Belt. YCU = Yacheng Uplift. STU = Songtao Uplift. BJU = Beijiao
Uplift. YNH = Yanan High. LSH = Lingshui High. LNH = Lingnan High. SNH = Songnan High.
YNS = Yanan Sag. YBS = Yabei Sag. SXS = Songxi Sag. SDS = Songdong Sag. LDS = Ledong Sag.
LSS = Lingshui Sag. BJS = Beijiao Sag. SNS = Songnan Sag. BDS = Baodao Sag. CCS = Changchang
Sag. GQS = Ganquan Sag. HGS = Huangguang Sag.
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3. Data and Methods

The 2D and 3D seismic data used in this study were acquired over the past sev-
eral years by Guangzhou Marine Geological Survey (GMGS). The G Gun II type air-gun
sources were employed to acquire the seismic lines [40]. The seismic streamer used the Seal
24-digit cable, with a submerged depth of 8 m, and the receiver streamer had 240 traces and
60-fold coverage [41]. The 5700 km of 2D seismic lines covering the QDNB have a dominant
frequency of 30 HZ on average, with a vertical resolution of 20 m and a trace interval
of 6.25 m. In particular, new multi-channel 3D seismic volumes acquired in 2018 cover
an area of ~800 km2 located in the Lingnan High, with the dominant frequency ranging
from 30 to 70 Hz. The sampling interval for the 3D seismic data is 1 ms, with a bin size
of 3.125 m × 18.75 m. The seismic data were processed by the Institute of Processing in
the GMGS using the GeoCluster (a product of CGG®) processing system. The processing
procedures including data input, trace editing, static correction, prestack noise attenuation,
amplitude compensation, prestack deconvolution, CMP sorting, velocity analysis, dynamic
correction, residual static correction, dip moveout (DMO) correction, prestack time migra-
tion, quality control in processing, poststack noise attenuation, and poststack time migration
have been described by Wang et al. (2010) and Zhang (2020) [41,42].

The interpretation of seismic data was carried out by the Geoframe® software (a
product of Schlumberger®) to construct the seismic stratigraphic framework. The seismic
data were zero-phased and displayed normal polarity, indicating a positive event on the
seismic profiles which is shown as a red reflection [25]. The identification of seismic facies
differences and contact relationships between strata supported the tracking of sequence
boundaries [43]. Eight main seismic sequence boundaries including Tg, T8, T7, T6, T5,
T4, T3, and T2 were identified (Figures 3–5). Faults can be identified in seismic profiles
in the form of the offset of seismic events or zones of poor seismic signal across which
reflectors are offset [3,44]. Fault interpretation was conducted by adopting appropriate
geometric and kinematic models, e.g., the listric normal fault, domino-type fault, and
flower structure [45]. Based on this, the seismic interpretation emphasized describing the
geometric characteristics of the mounds within the uppermost layer of the Meishan Fm. The
width and height of the mounds and their distribution range were determined based on the
2D seismic profiles. In addition, the isopach map of the Huangliu Fm., prepared based on
seismic surfaces T3 and T4, was used to recover the paleogeomorphology corresponding to
the end of the Meishan deposition. Moreover, the seismic attribute map of the curvature was
extracted by the Geoframe® to reveal the plan-view characters of the mounded topography.
Curvature calculates the bending degree of the stratum, which can effectively reflect
geomorphic features such as valleys, ridges, and domes [46,47].

To determine the tectonic histories, backstripping was employed to reconstruct the
amount and rate of tectonic subsidence in different stages [48,49]. Back-stripping employs
the tectonic subsidence equation presented by Steckler and Watts (1978) [50]. The method
is based on the crustal isostatic principle to backstrip the present stratigraphy layer by
layer and to obtain the true basement subsidence caused by the tectonic driving forces [48].
Tectonic subsidence reconstruction was performed by dividing and dating the sequence
boundary of the seismic profiles. The ages of the sequence boundary are shown in Figure 2.
In the process, the seismic sequence boundaries were time-depth conversed by using the
formula provided by the GMGS. There is a decrease in the porosity of sediment with an
increase in overlying strata thickness during the compaction process [49]. To remove the
effect of compaction, the original amount of subsidence in each stratum can be recovered by
the relationship between porosity and depth that fits an exponential function to recover the
original thicknesses of strata [51]. Additionally, considering that the depositional thickness
is not equivalent to the subsidence when the sedimentary interface remains below the
water surface, the accurate paleo-water depths and eustatic variations were taken into
consideration [48,52]. The paleowater depth data were collected from the previous research
results of Zhai et al. (2013) and Zuo et al. (2022) (Table 1) [32,53]. The eustatic variations
are shown in Figure 2.
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Table 1. Reference value of paleo heat flow and water depth during different periods (referenced
from [32,53]). HF = Heat flow; PWD = Paleowater depth. HF1, HF2, and PWD1 apply to the northern
slope; HF3, HF4, and PWD2 apply to the central depression; HF5, HF6, and PWD3 apply to the
southern uplift.

Age
(Ma)

HF1
(mW/m2)

HF2
(mW/m2)

HF3
(mW/m2)

HF4
(mW/m2)

HF5
(mW/m2)

HF6
(mW/m2)

Age
(Ma)

PWD1
(m)

PWD2
(m)

PWD3
(m)

0 58 65 72 77 84 92 1.9 120 1600 700
2 61 68 76 80 88 96 5.5 90 1100 500

5.5 54 58 64 69 75 80 10.5 50 700 300
10.5 55 59 66 71 76 81 15.5 60 500 150
17.5 57 61 70 75 79 82 17.5 40 400 120
23 58 62 70 74 78 81 21 20 200 30
30 50 53 58 63 66 69 22 15 100 20
36 44 47 52 57 60 62 23 40 100 50
38 45 48 53 57 60 62 25.5 20 80 30
50 42 44 46 48 50 52 33 10 50 20

50 20 20 25

4. Results
4.1. Seismic Stratigraphy

The seismic reflector T4 corresponds to the regional unconformity which represented
the Dongsha movement in the South China Sea [16]. In the Southern Slope, the reflector
T4 truncated the underlying strata and was onlapped by overlying sediments [4,15], as
shown in Figures 3–5. The underlying Meishan Fm. can be divided into upper and lower
members by an obvious interface. The upper member is characterized by strong-moderate
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amplitudes, moderate frequency, and mounded reflections, and the lower member shows
subparallel sheet-shaped reflections with moderate-strong amplitudes and moderate fre-
quency (Figures 3–5). The overlying Huangliu Fm. is dominated by moderate amplitude,
moderate-weak frequency, and parallel-subparallel reflections (Figures 3–5). The Huangliu
Fm. gradually thins onto the southern margin of the basin. A large submarine canyon (Cen-
tral Canyon) was developed in the post-rift sequence of the QDNB, which is distributed in
the Central Depression from west to east (Figures 3–6). The large magmatic body between
Songnan and Baodao Sags divides the canyon into two sections, the west section trending
NE and the east section trending nearly EW (Figure 6).
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Figure 6. Paleogeomorphology at the beginning of the deposition of the Huangliu Fm., showing
the directions of the greatest slope in the southern area. The red dashed line indicates the range
of the mounds. LSS = Lingshui Sag. BJS = Beijiao Sag. SNS = Songnan Sag. BDS = Baodao Sag.
CCS = Changchang Sag. LNH = Lingnan High. SNH = Songnan High. BJU = Beijiao Uplift.

4.2. Characteristics of Mounded Stratigraphy

The NW–SE oriented seismic profiles show that the top of the Meishan Fm. is char-
acterized by the elevations alternating with ‘V’-shaped troughs, displaying undulated
morphologies (Figures 3–5). The elevations tend to be present as lenticular seismic reflec-
tors that are thickest in the middle part and thin toward both wings, showing dome-like
bedforms, which are common not only in the QDNB but also in the Pearl River Basin in
the northern South China Sea [5,16,18]. Similar elevations were described as ‘mounds’
previously, and strata characterized by the presence of mounds are commonly said to
have ‘mounded topography’ [3,18]. The mounded stratigraphy was constrained between
the T4 and the boundary of the upper and lower member of the Meishan Fm. (i.e., T5)
(Figures 3–5). The mounds distributed in the Lingnan High have heights varying from
70 to 90 m, with the widths ranging from 0.9 to 1.7 km (Figure 3C–E). The heights of a
single mound in the Beijiao area vary from 90 to 125 m, and their average width is greater
than 1.5 km (Figure 4C–E). The mounds in the south of the Baodao Sag have heights of
about 110~210 m, with widths ranging from 1.0 to 2.4 km (Figure 5C–E). On the whole, the
scale of the single mound in the eastern area seems larger. The internal reflectors of the
mounds show strong-moderate amplitudes and moderate frequency, which are character-
ized by obvious fold structures and disturbed bedding (Figures 3–5). The seismic reflections
within the troughs vary greatly in different areas, displaying strong-moderate amplitudes
and moderate frequency in the Lingnan High (Figures 3C–E and 7B,C), and moderate-
weak amplitudes and low frequency in the Beijiao area and the south of the Baodao Sag
(Figures 4 and 5). The reflector T4 commonly truncated the flanks of the mounds and was
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onlapped, filled, and leveled by subsequent seismic strata corresponding to the Huangliu
Fm. (Figures 3–5). Spatially, the mounds were most developed in the middle of the South-
ern Slope and disappeared in the Central Depression and South Uplift (Figures 3–6). The
mounded stratigraphy covers an area restricted to the east of the Huaguang Sag, west of
the Changchang Sag, north of the Beijiao Uplift, and south of the Central Canyon (Figure 6).
Additionally, the curvature attribute map calculated for the top of the Meishan Fm. shows
that the mounded topography is characterized by coupled elongated ridges and gullies,
with most of their axes predominantly oriented SWW–NEE and SW-NE (Figure 7A). These
elongated ridges and gullies show a subparallel configuration with a few intersections.
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4.3. Tectonic Subsidence

The balanced cross-sections were created by using the backstripping technique to
determine the tectonic subsidence in different stages [48,49]. The result shows that the sedi-
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mentary centers were controlled by the boundary faults in the Paleogene, during which the
sedimentary thickness and subsidence rate in the depression centers are larger than those
in the uplift belts (Figures 8 and 9). The Eocene is relatively thin and the subsidence rate is
low. The sedimentary thickness and subsidence rate in the early Oligocene significantly
increased. The sedimentary thickness in the late Oligocene is relatively thick while the
subsidence rate decreased. The faults were almost inactive when the basin entered the
post-rift stage and its evolution was mainly controlled by thermal subsidence (Figure 8).
During the depositional period of Sanya and Meishan Fms., the sedimentary thickness is
relatively thin and the subsidence rate was extremely low, with an average value of less
than 150 m/myr (Figure 9). In addition, there was little difference in tectonic subsidence
between the Central Depression and the Southern Slope. During the deposition of the
Huangliu Fm., the sedimentary thickness increased slightly and the subsidence rate in
the Central Depression was ~200 m/myr and gradually decreased southward (Figure 9).
During the depositional period of the Yinggehai Fm., sedimentary thickness and subsidence
increased sharply, with a maximum cumulative rate approaching ~1100 m/myr in the
Lingshui Sag and ~1600 m/myr in the Baodao Sag (Figures 8 and 9). The difference in
subsidence between the Central Depression and the Southern Slope and Southern Uplift
became more obvious. During the deposition of the Ledong Fm., the deposition thickness
was still large, and the Baodao and Lingshui Sags had a subsidence rate of ~800 m/myr
and ~950 m/myr, respectively (Figure 9). At the same time, the subsidence of the Southern
Uplift was much less than that of the Central Depression. Overall, the most obvious feature
of the basin is that since 10.5 Ma, the subsidence began to accelerate, showing higher
subsidence in the depressions and lower subsidence in the Southern Uplift.
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Figure 9. (A,B) Subsidence curves created based on the two sections traversing the Lingshui and
the Baodao Sags, respectively (for location, see Figure 1). The subsidence rate was low in the period
of the Sanya and Meishan deposition, then increased slightly during the period of the Huangliu
Deposition, and increased sharply from the period of the Yinggehai Deposition. Moreover, the
subsidence rate of the depressions is higher than that of the Southern Uplift after the period of the
Huangliu Deposition. N1s = Sanya Fm., N1m = Meishan Fm.; N1h = Huangliu Fm.; N2y1 = Lower
Yinggehai Fm.; N2y2 = Upper Yinggehai Fm.; Ql = Ledong Fm. Ma = Megaannus.

5. Discussion

The mounded topography in the study area was previously supposed to be the result
of the incision of bottom currents or channels [14,15]. The main evidence supporting
this view is that some troughs between the mounds are characterized by high amplitude
reflections marking the sand-prone lithologies which may be a clue to the incision [4,14,15],
as shown in Figures 3C–E and 7B,C. However, quite a few troughs distributed over a
wider area are characterized by weak amplitudes, probably marking the bathyal–abyssal
deposits [5,18] (Figures 4C and 5C). Additionally, the internal reflectors within most of
the mounds have folded seismic patterns, which might be related to other forces rather
than the incision (Figures 3–5). Moreover, paleogeomorphology indicated that the seabed
over the Southern Slope roughly inclined toward NNW after the deposition of the Meishan
Fm (Figure 6). If the troughs were indeed derived from the incision, their axes should
have tended to the downdip of slope (NNW) in most situations [21]. However, it is not
consistent with the result shown in Figure 7, with most of the troughs tending to be parallel
to the strike of the slope (SWW–NEE and SW-NE). These doubts implied that the origin of
the mounded topography cannot be simply explained solely by incision. In the examples
from the Gulf of Mexico, the Brazilian margin, and the Central North Sea, the undulated
morphologies can appear over tectonically active slopes [3,21,22,54–57]. Similar geological
phenomena were observed at the seabed of the Shenhu Sea (Figure 10A) [40] and the south
of the QDNB (Figure 10B), featured by seemingly mounded topography related to the
disturbance of strata by detachment faults. These phenomena are commonly explained
by the gravity gliding of sediments down a slope, which can generate a type of listric
detachment fault (flattening downward) with associated rotated blocks to cause seabed
relief [21,56–59]. Such a process can be triggered by rapid deposition, earthquakes, seafloor
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steepening, and excess pore pressure [58,60]. These studies provided an important insight
into discovering the origin of a mounded topography in the study area.
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Figure 10. (A,B) Seismic profile and its geological interpretation showing the seemingly mounded
topography on the seabed caused by submarine landslides in the Shenhu Sea in the northern
South China Sea (profile quoted from [40]). (C,D) Seismic profile and its interpretation showing
the seemingly mounded topography on the seabed in the Southern Slope (for location, see Figure 1).
DS = detachment surface; DF = detachment fault; DFT = downfaulted trough; TWT = two-way traveltime.

In this study, the mounded features were interpreted to result from the gravity gliding
that was induced by tectonic activities. Firstly, detailed examinations of seismic data
revealed that the uppermost layer of the Meishan Fm. was dismembered into a series of
moderately deformed blocks by a number of faults with listric geometries which ceased
downward to a unified surface (Figure 11A–C). The blocks resting upon the fault planes
have shown clockwise rotation, with their internal beds perpendicular to the concave
upward fault planes (Figure 11A–C). Secondly, soft-sediment deformation associated with
gravity gliding might have occurred in the mounds (blocks) with their internal reflections
showing convex-up fold structures and disturbed bedding (Figures 3–5 and 11A–C) [61].
Such phenomenon can be related to the rollover anticlines unique to the listric growth
faults or associated with the local compressive stresses pervasive in slide blocks which
cause internal beds to buckle [22,62,63]. These features are consistent with the gravity slide
tectonics shown in some important examples documented previously [3,21,22,54–57]. It
can be inferred that, after the end of Meishan deposition, the uppermost unconsolidated
deposits composed of mudstones mixed with thin argillaceous siltstones glided along an
underlying shear plane which is probably the top of deep lithified strata [3,15,20,21,39].
Finally, the unbalanced subsidence corresponding to the time equal to the top of the
Meishan Fm. was likely to trigger the gravity gliding of sediments which created the
mounds. Specifically, the subsidence of the basin shows a decreasing trend from the
Central Depression to the southern margin since 10.5 Ma, which immediately steepened
the Southern Slope with an NNW inclination (Figures 6 and 9). Studies indicated that the
occurrence of a steepening slope induced by the basement-driven differential subsidence
was an important aspect of creating sufficient driving forces to drive the gravity gliding [3].
Some scholars suggested that the differential subsidence triggered an intense erosion
of the turbidity currents, which created the embryo of the Central Canyon in the late
Miocene [64–68]. Therefore, it can be inferred that the differential subsidence across the
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Southern Slope since 10.5 Ma might have generated sufficient forces to drive the gravity
gliding that created the mounds.
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Further analysis indicated a time–space coupling relationship between the forma-
tion of mounds and the tectonic events including accelerated subsidence, magmatic ac-
tivity, and fault reactivation. The accelerated subsidence in the post-rift stage has been
observed in many rifted basins, which was considered to be related to the deep thermal
anomaly [23,69–71]. Detailed examination of seismic data revealed a large number of mag-
matic intrusions distributed near the deeply rooted faults (Figure 12B). These faults likely
extend deeply into magma chambers beneath the Central Depression to provide primary
pathways for magma migration [25]. Studies indicated that massive magmas invading up
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to the cold upper crust through the faults might contribute to the decay of a deep thermal
source and the cooling of the asthenosphere, which would cause rapid subsidence [72–74].
The samples from adjacent areas indicated that the magmatism typically occurred in the
Miocene and more recently [25,37]. Therefore, the accelerated subsidence since 10.5 Ma
was likely related to the magmatic activities. In addition, such subsidence showed a higher
rate at the crustal thinning zone beneath the Central Depression and decreased to the
north and south of the basin (Figure 9). Under the influence of differential subsidence,
the stratum of the basin was folded into a syncline, which induced extensional strain at
the flanks of the syncline [74] (Figure 13A). Many Neogene faults extended upward to the
interface T4 (Figure 12C,D), indicating that their formation age dated 10.5 Ma. It can be
inferred the extensional strain induced by differential subsidence was accommodated by
the generation of faults in the deep rigid layers, as well as the gravity slide tectonics in the
shallow soft layers (Figures 12D and 13A) [75]. Although it is a speculation, local seismic
disturbance caused by magmatic activity and fault reactivation might also have triggered
slope instability and gravitational sliding [57,60,76–79].Energies 2022, 15, x FOR PEER REVIEW 17 of 23 
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Figure 12. (A) Seismic profile and (B) its interpretation showing the magmatic intrusions associated
with the deeply rooted faults (for location, see Figure 1). (C,D) Seismic profile and its interpretation
show the dense post-rift faults developed in the eastern depression (for location, see Figure 12A).
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Figure 13. (A) Model to explain the formation of mounded morphologies in the study area of the
Qiongdongnan Basin. Escape of massive magmas through the faults contributed to the cooling of
the hot mantle material beneath the crustal thinning zone, resulting in quicker subsidence in the
overlying Central Depression. The differential subsidence caused the gravitational gliding of the
uppermost layers and the generation of faults in the deep rigid layers. The downfaulted troughs
steered the gravity flows along their axes. (B–E) Diagrams illustrating the geological processes
responsible for the creation of mounded stratigraphy.

Here, the processes responsible for the formation of mounded stratigraphy are sum-
marized. Firstly, differential subsidence associated with magmatic activities steepened the
slope at the end of the Meishan deposition, leading to the gravity gliding of the uppermost
unconsolidated layer along a detachment surface (Figure 13B,C). Such a process generated
a series of listric detachment faults with numerous tilted fault blocks resting on their fault
planes (Figure 13C). The arcuate fault planes and the flanks of blocks together formed the
undulated topography. Studies indicated that the denudation of some structural highs
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in the southern margin at the turn of the middle and late Miocene generated sedimen-
tary sources, which were transported farther into the basin by gravity flows [15]. Then,
there might have been some downfaulted troughs steering the gravity flows along their
axes, with the unloading of sand-rich deposits at the bottom (Figure 13D). Deposition of
other troughs without passing of gravity flows was predominantly from the succeeding
bathyal–abyssal muds (Figure 13D). Finally, the Huangliu Fm. onlapped onto and leveled
the mounded topography with its final shape adjusted by compaction (Figure 13E). The
results of this study do not deny the existence of the erosion of gravity flows, which is also
one of the processes that enhanced the relief amplitude of the mounded geometries. It is
worthwhile to mention that gravity gliding derived from differential subsidence is decisive
for the creation of mounded topography, while erosion and other processes are considered
to be of secondary importance and will embellish such topography rather than create it.
The differential subsidence associated with magmatic activities led to the development of
mounds, which in turn became important clues implying revolutionary changes in tectonic
movement that took place at the time equivalent to T4.

6. Conclusions

Detailed examination of seismic data revealed a unique mounded topography cor-
responding to the top of the Meishan Fm. in the Southern Slope of the QDNB. Such
topography is characterized by the mounds alternating with ‘V’-shaped troughs, which dis-
play elongated ridges flanked by similar gullies trending roughly parallel with the strike of
the slope (SWW–NEE and SW-NE). The height of the mounds varies from about 70~210 m,
and they are about 0.9~2.4 km in width. The internal reflectors within the mounds were
truncated by the reflector T4 which is in turn overlain by seismic strata corresponding to
the Huangliu Fm. Since the late Miocene (ca. 10.5 Ma), under the influence of magmatism,
rapid subsidence occurred, which was manifested by the decreasing of subsidence from the
center to the south of the depression. Such differential subsidence induced fault reactivation
and steepened the slope. These tectonic events triggered the gliding of the uppermost
deposits, which generated a series of listric detachment faults that ceased downwards a
unified detachment surface. The top of tilted fault blocks that were constrained by these
faults formed the rudiment of mounded topography. The downfaulted troughs steered the
gravity flows and leveled by the lag deposits or bathyal–abyssal muds. The genetic model
of the mounds established in this study accentuates the decisive contribution of tectonic
activities to the creation of the mounded topography.
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