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Abstract: In this study, we propose the use of a short-distance and fixed-type wireless power
transmission transformer via a half-bridge LLC resonant converter. A ceramic insulating layer
was used instead of an air gap, meaning that the heat generated from the transformer core and the
PCB winding was quickly transferred to the external metal case, with the ceramic insulating layer
acting as a heat pipe. In order to stabilize the output voltage, we proposed the use of IR photo tunnel
technology, and it was applied to two ceramic insulating layers so that the voltage error signal of
the secondary output voltage could be transmitted as light to the primary side. As a result, it was
possible to physically separate the primary and secondary sides of the power circuit centering on the
ceramic insulating layer. The experiment was carried out with the input voltage of 400 V, the output
voltage of 54 V, the maximum output power of 1 kW, and the switching frequency of 1.3 MHz or
higher. As a result, the maximum operating frequency was 1.83 MHz, and the output voltage stability
to the load was 0.49% or lower. The power density of the experimental circuit was 380 W/in3 or
higher, and the maximum power conversion efficiency was approximately 93% or higher.

Keywords: switching frequency characteristics of an experimental converter; LLC resonant con-
verter; ceramic isolation transformer; primary and secondary separable transformer; IR photo tunnel
structure; high-power-density converter; laminated PCB winding structure

1. Introduction

Recently, a rapid increase in the use of data by companies and individuals has been
observed, and the storage and movement of data are becoming more important. The
demand for high-speed communication devices that deliver massive data quickly is in-
creasing. In miniaturization and high-efficiency technology, a DC–DC converter which
supplies a stable DC voltage to communication devices is required to reduce the required
installation space and maintenance costs. The miniaturization and high efficiency of the
power supply are only possible when the device packaging technology is accompanied
by power circuit design technology with low power loss. In particular, the power supply
for communication devices operating in a limited space could be inefficient because the
level of heat is increased if the internal power loss of the power system increases, and if the
internal heat is not effectively handled, the maximum output power is limited. One of the
indicators for the miniaturization of the power supply is power density, which represents
the maximum output power per unit volume. In order to increase the power density, it is
necessary to reduce the internal power loss, increase the power conversion efficiency, and
simultaneously take comprehensive measures against heat dissipation [1–4]. A transformer
is a typical element of a concentrated heat source in a power supply. It is technically easy to
increase the switching frequency in order to increase the power density, and in particular,
the size of the transformer core is inversely proportional to the operating switching fre-
quency. On the other hand, the power dissipation of the transformer is proportional to the
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operating frequency. The loss of the magnetic material of the core and the loss of winding
due to the skin effect are directly related to the operating frequency. Although most of the
power loss of the transformer occurs as heat loss, in a miniaturized transformer, all of the
windings are inside the core, making it difficult for the heat in the windings to dissipate
outside of the transformer [5,6].

In general, a semiconductor device for power, which is essential in the composition
of a power supply circuit, has switching loss and conduction loss due to high-frequency
switching. The failure to effectively dissipate heat from the device due to power loss affects
the lifespan of the power supply. The technical factors that hinder high power density in
the power supply design stage are the increase in device heat generation and the limitation
of the heat dissipation structure.

On the other hand, wireless power transmission technology is applied in various
fields and enables power to be transmitted and received at a certain distance. In the case of
magnetic induction, efficient wireless power transmission is possible at a relatively short
distance, from several millimeters to several centimeters. The basic circuit method, which
is suitable for wireless power transmission, should enable efficient power transmission
even if the primary and secondary spaces of the transformer exist, and the LLC resonant
converter is a basic circuit type [7–10]. A general wireless power transmission topology
uses one or more L and C resonances centered on a transformer, and many studies have
been actively conducted in the meantime. In this paper, an LLC resonant converter suitable
for applications with a wide load range was used as the basic topology [11].

Figure 1 shows a basic circuit of a half-bridge LLC resonant converter. In the figure,
the main switches of the converter are S1 and S2, and the output voltage is controlled by
changing the switching frequencies of the two switches. The primary side of the converter
has a resonant capacitor, CR, a resonant inductor, LR, and a magnetizing inductor, LM; the
secondary side has a rectifying diode, an output voltage smoothing capacitor, Co, and a load
resistor, RL. Figure 2 shows the ideal operating waveform of the LLC resonant converter
operating in a steady-state. Figure 2a displays a case in which the switching frequency
and resonant frequency are similar, and Figure 2b shows a case in which the switching
frequency is smaller than the resonant frequency. From the top of the figure, the resonant
inductor current, iLR, magnetizing inductor current, iLM, transformer secondary current, iS,
and transformer primary voltage, vp, are depicted. As can be seen from the figure, although
the switching frequency changes depending on the operating conditions, the waveforms of
the resonant inductor current, LR, the primary current of the transformer, and the secondary
current, iS, of the transformer maintain a shape similar to a sine wave. In LLC resonant
converters, by adding an air gap to the transformer core, the resonant inductor, LR, and the
magnetizing inductor, LM, can be replaced by parasitic inductors [12,13].
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Figure 1. A basic circuit structure of an LLC resonant converter.
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frequency and the resonant frequency are similar and (b) when the switching frequency and resonant
frequency are large.

In this paper, a short-distance and fixed wireless power transmission transformer is
proposed by modifying the transformer structure of a half-bridge LLC resonant converter.
A ceramic insulating layer was used instead of an air gap, meaning the heat generated
from the transformer and windings could be quickly transferred to the external metal
case via the ceramic insulating layers, which acted as a heat pipe. In order to stabilize
the output voltage, we proposed the use of infrared (IR) photo tunnel technology, which
was applied to the multilayer ceramic insulation to transmit the voltage error signal of
the secondary output voltage to the primary side, as light. As a result, it was possible
to physically separate the primary and secondary power circuits with ceramic insulating
layers as a center. The proposed technologies were applied to a power supply module for
use in communication devices that require high power density, and an experimental circuit
with an input voltage of 400 V, an output voltage of 54 V, and a maximum output of 1 kW
was designed and constructed. We aimed to ensure that the height of the experimental
power supply module was 10 mm or less, the power density was 380 W/in3 or higher, and
the maximum power conversion efficiency was 93% or higher.

2. Wireless Power Transmission Converter
2.1. Wireless Power Transmission Transformer

Figure 3 shows the basic structure of a wireless power transmission transformer in
which the core of the transformer is separated into primary and secondary sides in the
basic circuit of a half-bridge LLC resonant converter, and a relatively large air gap is added.
As shown in the figure, if the transformer core can be separated by a large air gap, the LLC
resonant converter can physically separate the primary circuit and the secondary circuit.
Figure 4 shows the transformer structure and equivalent circuit in a state in which the
core of the transformer is separated by an insulator with no permeability. In Figure 4a, the
transformer core is separated by an insulator of a certain thickness, d, and the primary-
side core and the secondary-side core are attached to the insulator [14–17]. The equivalent
circuit of the transformer is shown in Figure 4b. At this time, the equivalent circuit has
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the equivalent resistances, rs1 and rs2, of the windings, the leakage inductances, LR, the
magnetizing inductances, LM, and the turns ratios, Na and Nb, of the ideal transformer.
In general, the coupling ratio of the transformer varies according to the thickness of
the insulator of the core. As a result, because the leakage inductance and magnetizing
inductance of the transformer are varied, the leakage inductance can be determined by
adjusting the appropriate insulator thickness. In general, if the leakage inductance and
magnetizing inductance of the transformer are used as resonant elements of the LLC
resonant converter, the two resonant inductors outside the transformer can be removed [18].
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Figure 3. LLC resonant converter with wireless power transmission transformer.
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Figure 4. Wireless power transmission transformer, (a) structure of wireless power transmission
transformer, (b) equivalent circuit of the wireless power transmission transformer.

Figure 5 shows the basic circuit of an LLC resonant converter using the parasitic
inductance of a transformer with an air gap added as a resonant inductor. In particular, if
an insulator such as ceramic and a material with low magnetic permeability is used as an
air gap between the primary and secondary cores of the transformer, a magnetic-induction-
type wireless power transmission transformer structure is obtained. Figure 6 shows the
thermal diffusion structure of a wireless power transmission transformer using ceramic
sheets as an air gap. In general, the thermal conductivity of ceramics is approximately
20 W/mK or higher, and the insulation voltage is 12 kV/mm, which is very high, meaning
ceramics have high heat dissipation and insulation properties [19–21]. In Figure 6, it can
be seen that as the core and the windings of the transformer are attached to the ceramic
insulating layers, the heat from the core and the windings passes through the ceramic
insulating layers and has a structure similar to a heat pipe, where the heat can easily
diffuse outside.
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2.2. DC Voltage Gain in Steady-State

As the LLC resonant converter with the wireless power transmission transformer
shown in Figure 5 has the same equivalent circuit structure as the conventional LLC reso-
nant converter, the steady-state characteristics are also the same. Many studies have been
carried out regarding the input and output DC voltage gain of LLC resonant converters, but
in these studies, the voltage gain considering the internal loss resistance was not applied. In
this paper, the optimal design was achieved using the steady-state characteristic equation
which considered the internal loss equivalent resistance [22–24]. First, the steady-state
input and output voltage gain equation, considering the internal loss resistance, r, of an
LLC resonant converter, can be obtained as shown in Equation (1). Assuming that the
internal equivalent resistance, RK, is 0 in the equation, it is the same as the conventional
DC voltage gain result. It is known that the resonant element and transformer design
results using Equation (1) are relatively accurate compared to the existing lossless design
results. In this paper, the main resonant elements and transformer were designed using the
steady-state result equation considering the internal equivalent resistance [25].

M =
2NVo

VIN
=

√
1 +

(
RK

ωnKL

)2

√
(2QRK + 1)2

[
1 + 1
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(
1− 1
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n
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+
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−ωn

)2
Q2

(1)

where Zo is a characteristic impedance; LM is a magnetizing inductance; LR is a resonant
inductance; KL is an inductance ratio; CR is a resonant capacitor; ωo is a resonant angular
frequency; ωn is an angular normalized frequency; ω f is an angular switching frequency.

RAC =
8N2

π2 RL (2)
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KL =
LM
LR

(3)

Zo =

√
LR
CR

(4)

ωo =
1√

LR CR
(5)

ωn =
ω f

ωo
(6)

Q =
Zo

RAC
(7)

RK =
r

Zo
(8)

3. Design of Wireless Power Transmission (WPT) Converter
3.1. Optimal Design Process

For the design of the LLC resonant converter with the wireless power transmission
transformer shown in Figure 5, the electrical specifications shown in Table 1 were es-
tablished. The power supply module in a communication device uses a DC voltage of
approximately 390 V (which is a rectified AC voltage) as an input, and the output voltage
is 54 V to charge the battery. The maximum output power is approximately 1 kW, and
in order to reduce the size of the transformer and capacitor, the switching frequency is
operated at 1 MHz or more. The inductance ratio, KL, is an important factor in the design
process of the LLC resonant converter. In this paper, the target value of the inductance ratio,
KL, was approximately 3, considering the characteristics of a transformer with a ceramic
insulating layer.

Table 1. Design conditions for LLC resonant converters.

Parameter Variable Value Unit

Input voltage range VIN 360–400 V
Nominal input voltage VIN (nom) 390 V
Output voltage Vo 54 V
Maximum output power Po max 1.0 kW
Maximum output current Io max 18.5 A
Resonant frequency fo 1.1 MHz
Inductance ratio KL 3 -

The turns ratio of the transformer was calculated as in Equation (9), and in this
design, the secondary winding of the transformer was determined as four turns because
the minimum natural number was set. The equivalent AC resistance of the converter was
the same as Equation (10), and the maximum and minimum voltage gain according to the
input voltage range were as shown in Equations (11) and (12). Figure 7 shows the operating
area that meets the electrical specifications of the converter. The graph in Figure 7 can be
expressed by the normalized angular velocity and voltage gain equations in Equation (1).
In the figure, the maximum value of Q which satisfies the range of the maximum and
minimum input/output voltage ratio was 0.7, but, in consideration of the component errors
and as shown in Equation (13) it was set to 0.63, which was 90% of the ratio [26–28]. The
characteristic impedance was the same as that in Equation (14), and using this result, the
main resonant element was as shown in Equations (15)–(17). The operating area of the
LLC converter in Figure 7 was inside the rectangle connecting points A–B–C–D, and the
range of normalized angular velocity can be seen in the figure. Figure 8 is a graph of the
frequency characteristics of voltage gain. Figure 8a shows the frequency characteristics
for the maximum and minimum loads, and Figure 8b is a graph of the inductance ratio
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and voltage gain. The inductance ratio, KL, may have deviated from the original design
range due to component errors during the transformer manufacturing process. From
Figure 8b, it can be seen that the voltage gain changed according to the inductance ratio in
three cases [29–31].
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Figure 8. Frequency characteristics of the DC voltage gain, M. (a) DC voltage gain over load range,
Q, and (b) DC voltage gain, M, in accordance with inductance ratio, KL.

Figure 9 is a graph showing the change in the switching frequency according to the
load current range using the steady-state characteristic expression, Equation (1). At this
time, the output voltage was fixed at 54 V. Figure 9a shows the relationship between the
switching frequency and the input voltage as a graph. Figure 9b shows the normalized
angular velocity, ωn, and the voltage gain, M, as a graph. The figure shows the turns ratio
of the transformer, including the resonant element, which was properly designed within
the electrical specification range of the LLC resonant converter to which the wireless power
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transmission transformer was applied. The figure shows that the output voltage stabilized
in a certain range of switching frequencies [32].

N =
VIN(nom)

2Vo
=

390
2× 54

= 3.6 = 4.0 (9)

RAC =
8N2V2

o
π2Po(max)

=
8× 4.02 × 542

π2 × 1000
= 37.8 Ω (10)

Mmin =
2NVo

VIN(max)
=

2× 4.0× 54
400

= 1.08 (11)

Mmax =
2NVo

VIN(min)
=

2× 4.0× 54
360

= 1.20 (12)

Qmax = 0.63 (13)

Zo = QRAC = 23.9 Ω (14)

CR =
1

2π foZo
= 6.1 nF (15)

LR =
Zo

2π fo
= 3.5 µH (16)

LM = KLLR = 9.3 µH (17)
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3.2. Circuit Simulation Results

In order to verify the LLC resonant converter designed in the previous section, a circuit
simulation was performed. PSIM 11.0 was used for the simulation, and the designed circuit
diagram is shown in Figure 10. In the figure, the abovementioned designed values were
used for the main component values of the converter, and the main switches and rectifier
diodes were modeled as ideal switches. To stabilize the output voltage, a voltage-controlled
oscillator (VCO) circuit with a limited control frequency was applied. Figure 11 shows the
resultant waveform of PSIM simulation when the converter operated in the steady-state. In
Figure 11a, the load current is approximately 1 A, and in Figure 11b, the load current is
approximately 13.5 A. These current values correspond to the approximate output power
of 54 W and 730 W, respectively. In the figure, at the normal input voltage of 400 V, the
switching frequency is close to the resonant frequency, and both the resonant inductor
current, iLR, and the transformer secondary current, iS, show stable waveforms [33,34].
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3.3. Wireless Power Transmission Transformer Design

Figure 12 shows the basic structure of the converter with the wireless power trans-
mission transformer. In the figure, the LLC resonant converter is used as the basic circuit
structure, and the air gap is formed using ceramic sheets for the transformer. To stabilize the
output voltage, an IR photo tunnel was created in the ceramic insulating layers to transmit
the error information regarding the output voltage and the reference voltage to the primary
side. In order to miniaturize the wireless power transmission transformer proposed in
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this paper, a multilayered PCB winding, as shown in Figure 13, was applied. Figure 13a
shows that there was a PCB winding composed of six layers between the magnetic core
of the transformer and separated by ceramic insulating layers in the center. The winding
of the multilayer structure was designed with a multilayer PCB pattern, the thickness of
the copper foil for the PCB pattern was 4oz, and the winding resistance was reduced by
applying the windings to each layer in parallel. Figure 13b shows how the primary and sec-
ondary magnetic flux inside the core of the wireless power transmission transformer were
shared. Figure 14 shows the cross section of a multilayer PCB winding constructed with
transformer windings. The total winding required on the primary side of the transformer
was four turns, and each layer consisted of four turns. The PCB winding was a six-layer
paralleled structure. The winding required on the secondary side was one turn, and as
there was a relatively large current flow, it was designed in a parallel structure with a total
of six layers [35–37].
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Figure 12. Basic structure of a high-power-density converter using a wireless power
transmission transformer.
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Figure 15 shows the cross section of the converter to which the wireless power trans-
mission transformer proposed in this paper was applied. The primary and secondary sides
were separated around the ceramic insulating layers. To increase the mechanical strength,
a thick ceramic layer was applied to the center, and a ceramic insulating layer was applied
as the air gap of the transformer with a pre-designed thickness. Therefore, a total of two
ceramic insulating layers, which were 0.38 mm and 1.0 mm in thickness, were used and
overlapped with each other.
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Figure 15. Insulated signal transmission method using an IR photodiode.

The converter in Figure 12 must deliver the error voltage information regarding
the output voltage to the primary control element to stabilize the output voltage. As a
photocoupler device for signal isolation generally used in a power supply has a horizontal
structure, it is not suitable for use in a vertical structure of wireless power transmission. In
this paper, we proposed the use of an IR photo tunnel structure, as shown in Figure 15, to
solve this problem. First, a tunnel was created vertically on a ceramic insulating substrate,
and the IR photo transmitter and receiver were designed facing each other through the
ceramic tunnel so that the control signal could be transmitted [38]. The transmitting diode
used in this experiment was a 940 nm class GaAlAs IR light-emitting diode. A light-
blocking cap was added to block external light that have might interfered with the signal.
Therefore, the DC–DC converter to which the wireless power transmission transformer
was applied operated at a high switching frequency to reduce the size of the transformer,
and had a structure that could diffuse the heat of the transformer to the ceramic insulating
layer with high thermal conductivity. Figure 16 shows the internal structure and external
appearance of the experimental converter constructed in this paper. Figure 16a shows
the function and appearance of each layer separated vertically. From the top, the upper
metal case, the primary-side PCB, the ceramic insulating layer as the air gap, the ceramic
insulating layer for heat dissipation, the secondary-side PCB, and the bottom metal case are
shown. The ferrite core of the transformer was directly attached to the ceramic insulating
layer and the metal case. Therefore, the ceramic insulating layer and the metal case were
thermally connected and served as a heat pipe, meaning internal heat could easily move
to the case. Figure 16b shows the outline and size of the DC–DC converter to which the
wireless power transmission transformer in the assembled state was applied [39]. The
height of the power module was 10 mm, and terminals for input/output power and control
signals were added. The power semiconductor switch was placed on a wide pattern of
a multilayer PCB, heat-conductive tape was fixed inside the case to dissipate heat to the
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metal case, and the empty space inside the case was filled with a thermal-conductive epoxy
encapsulating and potting compound [40,41].
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4. Experimental Results

An experimental circuit was made to verify the effectiveness of the wireless power
transmission transformer structure and IR photo tunnel structure proposed in this paper.
Table 2 shows the main components and electrical specifications used in the experimen-
tal circuit. As the experimental circuit operated at a switching frequency of 1 MHz or
higher, a GaN FET suitable for high-frequency driving was applied as the main switch.
The low-profile TDK ELT25 suitable for the PCB winding structure was used as the trans-
former ferrite core. To reduce the rectification loss of the secondary-side rectifier diode,
two 170 V-class Schottky diodes were applied in parallel. The control IC of the converter
used a 16-pin structure NCP1395 capable of achieving an operating frequency of 1 MHz or
higher, and the IR photo transceiver was applied in a small package with a size of 2.3 mm
in width and length.

Table 2. Electrical ratings of the main components used in the experimental circuit.

Parameter Variable Value Specifications

Main switch model S1,2 LMG3410 GaN 600 V, 12 A, 70 mΩ
Resonant capacitor CR 6 nF 2 nF× 3
Resonant inductor LR 3.5 µH TDK ELT25 X 8.6
Magnetizing inductor LM 9.5 µH TDK ELT25 X 8.6
Transformer turns ratio N 8:2 TDK ELT25 X 8.6
Rectifier switch model D1,2,3,4 STPS30170DJF 170 V, 30 A
PFM controller IC NCP1395 1.0 MHz, 20 V
IR coupler IC VEMT2003X 20 V, 50 mA
Output capacitance Co 8.8 µF 2.2 µF × 4

Table 3 shows the power density of the experimental circuit. The maximum output
of the DC–DC converter module to which the wireless power transmission transformer
was applied was 1 kWm and the volume was 2.62 in3, meaning that the power density
was approximately 382 W/in3. Figure 17 shows the internal structure of the primary-
side PCB and secondary-side PCB of the experimental circuit. The transformer core with
PCB windings was physically separated from the primary and secondary sides by the
ceramic insulating layer, and a relatively wide PCB pattern was designed for the power
semiconductor switches to facilitate thermal diffusion. Figure 18 is a photograph of the
assembled experimental circuit. Inside the aluminum metal case, a 4oz, six-layer PCB
winding wireless power transmission transformer and an IR photo tunnel structure power
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circuit were connected to each layer, and the empty space inside was filled with thermally
conductive epoxy so that the internal heat could easily be diffused.

Table 3. External size and power density of the experimental module.

Parameter Variable Value (cm) Value (in)

Maximum power Po max 1 kW 1 kW
Width lW 5.5 cm 2.17 in
Length lL 7.8 cm 3.07 in
Height lH 1.0 cm 0.39 in
Volume V 42.9 cm3 2.62 in3

Power density PD 23 W/cm3 382 W/in3
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Figure 19 shows the test environment of the experimental circuit, and the test equip-
ment used for the test were as follows: Oscilloscopes HDO6104 and 44MXs-B, input
power PCR4000L and PCR4000LE, electronic loads PLZ1004WH and PLA5K-600-30, and
input/output power meter WT1800 and WT1802E. Figure 20 shows the main waveforms
of the experimental circuit operating in the steady-state. The waveforms are the resonant
inductor current, iLR, and the voltages of the two main switches, vS1 and vS2, from the top.
At this time, the input voltage was 400 V, the output voltage was 54 V, and each waveform
was observed by adjusting the output power. The output power was observed by dividing
it into four sections from a minimum of 10 W to a maximum of 1 kW. The peak current of
the resonant inductor was proportional to the output power and had a shape similar to
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a sine wave, and a relatively stable resonant current waveform was maintained over the
entire load range.

Energies 2022, 15, x FOR PEER REVIEW 14 of 19 
 

 

Figure 19 shows the test environment of the experimental circuit, and the test equip-

ment used for the test were as follows: Oscilloscopes HDO6104 and 44MXs-B, input power 

PCR4000L and PCR4000LE, electronic loads PLZ1004WH and PLA5K-600-30, and in-

put/output power meter WT1800 and WT1802E. Figure 20 shows the main waveforms of 

the experimental circuit operating in the steady-state. The waveforms are the resonant 

inductor current, 𝑖𝐿𝑅, and the voltages of the two main switches, 𝑣𝑆1 and 𝑣𝑆2, from the 

top. At this time, the input voltage was 400 V, the output voltage was 54 V, and each 

waveform was observed by adjusting the output power. The output power was observed 

by dividing it into four sections from a minimum of 10 W to a maximum of 1 kW. The 

peak current of the resonant inductor was proportional to the output power and had a 

shape similar to a sine wave, and a relatively stable resonant current waveform was main-

tained over the entire load range. 

 
 

(a) (b) 

Figure 19. Experimental circuit and experiment configuration photograph. (a) Load testing of con-

verters and (b) steady-state test of the converter. 

Figure 21 shows the loss breakdown analysis of the experimental converter at 0.5 kW 

and 1 kW of output power. There were six major components involved in power loss in 

the converter: the main switches, transformer primary winding, transformer secondary 

winding, rectifier switches, transformer core and auxiliary power. Regardless of the out-

put power, the rectifier switches on the secondary side caused the most power loss. At 0.5 

kW of the load power, the total power loss of the major components was 36.08 W when 

the rectifier power loss was 15.98 W, which is approximately 44.3% of the total power loss. 

At 1 kW of the load power, the total power loss of the major components was 84.55 W 

when the rectifier power loss was 15.98 W, which is approximately 37.8% of the total 

power loss. Figure 22 shows the power conversion efficiency and loss of the experimental 

circuit in the steady-state. As can be seen from the graph of power conversion efficiency 

according to load power, when the output power was approximately 200 W or higher, the 

efficiency became more than 90%, and at the maximum load power, the efficiency was 

91.9%. In the graph, the maximum power conversion efficiency was measured as approx-

imately 93.4% at the output power of 600 W. The internal power dissipation ranged from 

a minimum of 13 W to a maximum of 86 W. Figure 23 shows a graph measuring the output 

voltage and switching frequency characteristics. The output voltage was measured as a 

maximum of 54.98 V and a minimum of 54.71 V over the full load range, resulting in an 

output voltage stability of less than approximately 0.49%. The switching frequency was 

inversely proportional to the load power, and in particular, the maximum switching fre-

quency of 1.83 MHz at no load and 1.367 MHz at the maximum load was measured. 

The experimental circuit for use in a communication device using the wireless power 

transmission transformer structure and IR photo tunnel structure proposed in this paper 

showed a high power density of over 380 W/in3 and a high power conversion efficiency 

of up to 93.4%. From this result, it was considered to be practical as a basic structure of a 

Figure 19. Experimental circuit and experiment configuration photograph. (a) Load testing of
converters and (b) steady-state test of the converter.

Energies 2022, 15, x FOR PEER REVIEW 15 of 19 
 

 

modular power supply. In particular, as the primary side and the secondary side were 

physically separated by a ceramic insulating substrate, the manufacturing process could 

be simplified when a PCB winding was used. The two ceramic layers acted as heat pipes 

that transferred heat from the main components of the converter circuit to the aluminum 

metal case. As a result, most of the heat of the internal components could be easily bal-

anced, which increased the reliability of the power supply. 

  
(a) (b) 

  
(c) (d) 

Figure 20. Experimental closed-loop waveform in steady-state. (a) Output power of 10 W, (b) output 

power of 400 W, (c) output power of 600 W, (d) output power of 1 kW. Figure 20. Experimental closed-loop waveform in steady-state. (a) Output power of 10 W, (b) output
power of 400 W, (c) output power of 600 W, (d) output power of 1 kW.



Energies 2022, 15, 9006 15 of 19

Figure 21 shows the loss breakdown analysis of the experimental converter at 0.5 kW
and 1 kW of output power. There were six major components involved in power loss in
the converter: the main switches, transformer primary winding, transformer secondary
winding, rectifier switches, transformer core and auxiliary power. Regardless of the output
power, the rectifier switches on the secondary side caused the most power loss. At 0.5 kW
of the load power, the total power loss of the major components was 36.08 W when the
rectifier power loss was 15.98 W, which is approximately 44.3% of the total power loss. At
1 kW of the load power, the total power loss of the major components was 84.55 W when
the rectifier power loss was 15.98 W, which is approximately 37.8% of the total power loss.
Figure 22 shows the power conversion efficiency and loss of the experimental circuit in
the steady-state. As can be seen from the graph of power conversion efficiency according
to load power, when the output power was approximately 200 W or higher, the efficiency
became more than 90%, and at the maximum load power, the efficiency was 91.9%. In the
graph, the maximum power conversion efficiency was measured as approximately 93.4%
at the output power of 600 W. The internal power dissipation ranged from a minimum
of 13 W to a maximum of 86 W. Figure 23 shows a graph measuring the output voltage
and switching frequency characteristics. The output voltage was measured as a maximum
of 54.98 V and a minimum of 54.71 V over the full load range, resulting in an output
voltage stability of less than approximately 0.49%. The switching frequency was inversely
proportional to the load power, and in particular, the maximum switching frequency of
1.83 MHz at no load and 1.367 MHz at the maximum load was measured.
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Figure 21. Loss breakdown analysis of an experimental converter. (a) Output power of 0.5 kW,
(b) output power of 1 kW.
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Figure 22. Efficiency and loss characteristics of an experimental converter. (a) Power conversion effi-
ciency characteristics of the experimental converter and (b) internal power dissipation characteristics
of the experimental converter.
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Figure 23. Load characteristics and switching frequency of the experimental converter. (a) Load
characteristics of the experimental converter and (b) switching frequency characteristics of an experi-
mental converter.

The experimental circuit for use in a communication device using the wireless power
transmission transformer structure and IR photo tunnel structure proposed in this paper
showed a high power density of over 380 W/in3 and a high power conversion efficiency
of up to 93.4%. From this result, it was considered to be practical as a basic structure of
a modular power supply. In particular, as the primary side and the secondary side were
physically separated by a ceramic insulating substrate, the manufacturing process could be
simplified when a PCB winding was used. The two ceramic layers acted as heat pipes that
transferred heat from the main components of the converter circuit to the aluminum metal
case. As a result, most of the heat of the internal components could be easily balanced,
which increased the reliability of the power supply.

5. Conclusions

In this study, we created a short-distance and fixed-type wireless power transmission
transformer by modifying the transformer structure of a half-bridge LLC resonant converter.
A ceramic insulating layer was used instead of an air gap, meaning the heat generated
from the transformer core and the PCB winding was quickly transferred to the external
metal case via the ceramic insulating layer, which acted as a heat pipe. In addition, in order
to stabilize the output voltage, we proposed the use of the IR photo tunnel technology,
and it was applied to two ceramic insulating layers so that the voltage error signal of the
secondary output voltage could be transmitted as light to the primary side. As a result, it
was possible to physically separate the primary and secondary side of the power circuit,
centering on the ceramic insulating layer.

An experimental circuit was constructed to verify the effectiveness of the wireless
power transmission transformer structure and IR photo tunnel structure proposed in this
paper. The experimental circuit was applied to the power supply for communication
devices that require high power density, and it was operated under the input voltage of
400 V, the output voltage of 54 V, the maximum output power of 1 kW, and the switching
frequency of 1.3 MHz or higher. The optimal design was found using the steady-state
characteristic equation with internal loss, and the optimal design process of the main
components and the transformer was determined. In the experimental circuit, the power
supply circuit including the transformer was put in a metal case, and the ceramic insulating
layer was bonded inside the metal case for heat dissipation. As the primary and secondary
sides of the power modules were physically separated by a ceramic insulating substrate,
each could be produced separately, and the manufacturing process was simplified when
PCB windings were used. In addition, the two ceramic layers acted as heat pipes which
transferred heat from the main components of the converter circuit to the aluminum metal
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case. As a result, most of the heat in the internal components could easily be balanced,
which increased the reliability of the power supply.

In the experimental circuit, the switching loss was reduced by applying GaN FETs,
which has low loss characteristics in high switching frequency operation, for the two main
switches. The control circuit was simplified by using the NCP1395 in the SO16 package
which could operate over 1 MHz. The experiment showed stable operating waveforms
with up to 1 kW output power in the steady-state. The maximum operating frequency
was 1.83 MHz, and the output voltage stability to the load was 0.49% or less. The power
density of the experimental circuit was 380 W/in3 or higher, and the maximum power
conversion efficiency was approximately 93% or higher. From these results, we consider
the wireless power transmission transformer, IR photo tunnel, and ceramic heat pipe
technology proposed in this paper to have practical value in designing high-power density
modular power supplies.
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