
����������
�������

Citation: Pan, Z.; Pan, G.; Monti, A.

Semantic-Similarity-Based Schema

Matching for Management of

Building Energy Data. Energies 2022,

15, 8894. https://doi.org/10.3390/

en15238894

Academic Editor: Constantinos S.

Psomopoulos

Received: 31 October 2022

Accepted: 20 November 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Semantic-Similarity-Based Schema Matching for Management
of Building Energy Data

Zhiyu Pan 1,*, Guanchen Pan 1 and Antonello Monti 1,2

1 Institute for Automation of Complex Power Systems, RWTH Aachen University, 52074 Aachen, Germany
2 Fraunhofer Institute for Applied Information Technology FIT, 53757 Sankt Augustin, Germany
* Correspondence: zhiyu.pan@eonerc.rwth-aachen.de

Abstract: The increase in heterogeneous data in the building energy domain creates a difficult
challenge for data integration. Schema matching, which maps the raw data from the building
energy domain to a generic data model, is the necessary step in data integration and provides a
unique representation. Only a small amount of labeled data for schema matching exists and it is
time-consuming and labor-intensive to manually label data. This paper applies semantic-similarity
methods to the automatic schema-mapping process by combining knowledge from natural language
processing, which reduces the manual effort in heterogeneous data integration. The active-learning
method is applied to solve the lack-of-labeled-data problem in schema matching. The results of the
schema matching with building-energy-domain data show the pre-trained language model provides
a massive improvement in the accuracy of schema matching and the active-learning method greatly
reduces the amount of labeled data required.

Keywords: semantic similarity; schema matching; active learning

1. Introduction

There are millions of buildings (residential, institutional, industrial buildings, etc.)
around the world and they form a major part of the human energy footprint. Improving
the energy efficiency of buildings helps reduce operational costs and curb carbon emis-
sions [1]. To achieve this goal, coordination and cooperation between all companies in the
building life cycle, from conceptualisation to refurbishment, is essential. Many building
energy-efficiency solutions have been developed, tested and deployed [2]. With the rapid
development and widespread application of advanced technologies such as computer
technology, Internet of Things (IoT) technology, cloud-computing technology and sens-
ing technology, the building energy sector is set to see comprehensive innovation and
restructuring [3].

Smart buildings have emerged from this development. Smart buildings rely on
new technologies such as IoT, big data, cloud computing and artificial intelligence in
all the life stages of the building. In the last decade, the integration of intelligence (e.g.,
microcontrollers and microcomputers), sensors and networks (i.e., IoT connectivity) has
become increasingly common in all types of buildings [4]. With the dramatic growth in
building-energy-domain data over the past few years, individual devices and functional
units generate thousands of terabytes of data per year, as these systems record operating
parameters at second or minute intervals [5]. Building-related systems must handle millions
of terabytes of data, and the next generation of building management systems will handle
vast amounts of data. The data generated by these systems is complex and heterogeneous.
This data, therefore, requires complex data processing before it can be used in a meaningful
way, and the mapping of this metadata onto a semantic-information model requires domain
expertise and is time-consuming.

Despite a number of architectures and underlying technological implementations of
big-data solutions for buildings’ energy management [6], there is a lack of standardisation

Energies 2022, 15, 8894. https://doi.org/10.3390/en15238894 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15238894
https://doi.org/10.3390/en15238894
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-1914-9801
https://doi.org/10.3390/en15238894
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15238894?type=check_update&version=3

Energies 2022, 15, 8894 2 of 23

of the data model representing the meaning of the data [7]. This is referred to as a lack
of semantic interoperability. Semantic interoperability is defined as the ability to use the
information already exchanged between two or more systems or components. A lack of
semantic interoperability is currently a significant problem [8] that hinders the streamlined
integration of interdependent software applications and the development of applications
that can be reused across buildings. To be of full value, digitised information and systems
must be interoperable [9].

The main goal of this paper is to map raw data from the building energy domain into a
generic data model, which is called schema matching. Schema matching [10] is a technique
for identifying semantically related objects, i.e., finding the semantic correspondence
between elements of two schemas, which is the structure behind the data organization [11].
Schema matching has usually been performed manually, which has significant limitations.
Therefore, defining such mappings is a complex and time-consuming task. Additionally,
only a small amount of labeled data for schema matching exists, especially in the building
energy domain. Moreover, it may not be feasible during the coordination and cooperation
between companies in the whole building life cycle. Therefore, to reduce manual effort and
automate the schema-matching process, considerable research efforts have been made and
techniques have been proposed: structure-based techniques, instance-based techniques
and linguistic-based techniques [12].

As shown in Figure 1, the generic data model consists of multiple entities (also known as
a class). Furthermore, each entity consists of multiple attributes, which are mainly in the form
of a word or phrase. The raw dataset consists of three parts, the name of the dataset, attributes
and instances. Each attribute in raw datasets is also in the form of a word or phrase which
represents the descriptive information of the instances. The dataset’s name and attributes
in the raw datasets and the entity’s name and attributes in the generic data model contain
rich linguistic information to calculate semantic similarity. Therefore, the linguistic-based
technique is very suitable to be applied to the schema matching in this paper. To automate
schema matching, currently, the linguistic-based techniques are mainly implemented based
on WordNet [13] or word-embedding techniques, such as Word2Vec [14]. However, with the
development of the field of natural language processing (NLP), such as the BERT pre-training
model in 2018 [15], which has successfully achieved state-of-the-art accuracy on 11 common
NLP tasks, and other models based on BERT such as the Sentence-BERT model [16], etc.,
the field of schema matching has not been updated with these new techniques. Especially
in the field of building energy, the level of digitalisation is relatively low. The technologies
related to schema matching are even more outdated in this field. For example, Building
Information Modelling (BIM) uses manual mapping or basic linguistic-based techniques to
generate mapping candidates such as cosine similarity and Jaccard coefficients [17–19].

Figure 1. Data model and raw data structure.

Energies 2022, 15, 8894 3 of 23

The schema-matching process uses two-step processes consisting of a dataset-level
matching-process step followed by an attribute-level matching-process step. The dataset-
level process is used to find the matching between datasets and entities in the generic data
model, while the second process is used to obtain the final matching relationships between
attributes in the raw datasets and attributes in the entities. In both processes, we use various
semantic-similarity methods at different levels to perform experimental comparisons. These
methods are divided into three main parts, string-based, knowledge-based and corpus-
based, which include some classical similarity methods and new developments in the field
of NLP. In addition, another approach based on active learning has been proposed and
allows the selective aggregation of a number of similarity methods. This approach is also
analysed in comparison with the previous methods. More specifically, the paper provides
the following contributions:

• Proposes an overview of existing semantic-similarity approaches and applies a pre-
trained language model for the schema-matching task;

• Introduces the active-learning method to solve the lack of labeled data in the building
energy domain;

• Provides the evaluation of the existing semantic-similarity approach and pre-trained
language model with datasets from the building energy domain in terms of accuracy.

The rest of this paper is structured as follows. Section 2 focuses on a literature review
of schema matching, semantic-similarity calculation methods and active learning. Section 3
describes the implementation of the whole methodology in detail. Section 4 focuses on the
performance of the developed method in the schema-matching process. Finally, Section 5
provides a summary of the work and an outlook for the future.

2. Literature Review

In this section, the existing approaches for schema mapping and the available methods
to calculate semantic similarity are presented.

2.1. Schema Matching

Schema matching is a technique for finding semantic correspondence between ele-
ments of two schemas. In order to reduce the manual effort involved in schema matching,
a number of solutions have been developed to automatically determine schema correspon-
dences. Many linguistic-based similarity calculation methods have also been applied to
schema matching, which is performed by calculating the semantic-similarity values of
elements between the original data and the generic data model.

Erhard Rahm and Philip A. Bernstein [12] present a taxonomy covering a number
of existing approaches, which they describe in some detail. They distinguish between
schema-level and instance-level, element-level and structure-level, and language-based
and constraint-based matchers. Based on their classification, they review some previous
matchmaking implementations and, thus, indicate which part of the solution space they
cover. Their taxonomy, alongside a review of past work, are helpful when selecting
approaches to schema matching and developing new matching algorithms.

Giunchiglia and Yatskevich [20] propose an element-level semantic-matching approach
by WordNet. The matchers use WordNet as a source of background knowledge and obtain
semantic conceptual relationships from the database. The experimental results derived
by the element-level matchers reflect as good a matching quality as that achieved by the
matching systems of the Ontology Alignment Evaluation Initiative (OAEI 2006). The main
limitation is this method based on WordNet, which contains only a limited amount of
vocabulary for the building energy domain.

To solve the limitation of WordNet, Raul Castro Fernandez et al. [14] propose SEM-
PROP, which finds links based on syntactic and semantic similarities. SEMPROP is com-
manded by a semantic matcher which uses word embeddings to find semantically related
objects. They also introduce coherent groups, a technique for combining word embeddings

Energies 2022, 15, 8894 4 of 23

which works better than other state-of-the-art combination methods. However, this method
ignores the different-granularities problem in schema matching.

Ayman Alseraf et al. [21] perform schema matching by collecting different types of
content metadata and schema metadata about the dataset. They first propose a pre-filtering
approach based on different granularities, in which they use data-analysis techniques to
collect metadata. Their approach collects metadata at two different levels: the dataset and
the attribute level. The proximity between the datasets is then calculated based on their
metadata, their relationships are found based on the overall proximity and then similar
pairs of datasets are obtained. Next, they introduce a supervised mining method to improve
the effectiveness of this task to detect similar datasets that were used for pattern matching.
They then conduct a number of experiments to demonstrate the success of their approach in
effectively detecting similar datasets used for pattern matching. This work focuses more on
general dataset matching. The performance of this method in the building energy domain
data was not tested. Additionally, the pre-trained language model is not used to capture
the semantic similarity between the datasets.

Benjamin Hättasch et al. [22] present a novel end-to-end schema-matching method
based on a pre-trained language model. The main idea is to use a two-step approach
consisting of a table-matching step and an attribute-matching step. With these two steps,
they use embeddings at different levels, representing either whole tables or individual
attributes. Their results show that this method is able to determine correspondences in a
stable way. However, the lack-of-labeled-data problem was not considered in this work.

2.2. Semantic Similarity

Semantic similarity is used to identify concepts that share a common ’feature’ [23].
Semantic-similarity matching is essentially a measure of similarity between text data. The
purpose is to capture the strength of semantic interactions between semantic elements
(e.g., words, concepts) according to their meaning. It has many application scenarios,
such as QA, automated customer service, search engines, semantic understanding, and
automated marking, etc. To address this problem, various semantic-similarity methods
have been proposed over the years. From traditional NLP techniques, such as string-
based approaches, to the latest research work in the field of artificial intelligence, they are
categorised into string-based methods [24], knowledge-based methods and corpus-based
methods according to their underlying principles [25], which are summarised in Table 1.

2.2.1. String-Based-Method

In mathematics and computer science, a string metric (also known as a string similarity
metric or string distance function) is a metric which measures the distance between two
text strings for approximate string matching or comparison and in fuzzy string searching.
A requirement for a string metric (e.g., in contrast to string matching) is the fulfillment of
the triangle inequality. For example, the strings “Sam” and “Samuel” can be considered to
be close [26]. A string metric provides a number indicating an algorithm-specific indication
of distance.

Energies 2022, 15, 8894 5 of 23

Table 1. Semantic-similarity methods.

Types Methods Reference Features

String-based
Edit distance [27] Based on features of glyphs, without semantics.

Jaccard [28] Similarities and differences between finite
sample sets, without semantics.

Knowledge-based
Wordnet [29] Structured words ontology, but too few words.

Wikipedia [30] A rich and updated corpus, but require
networking and time-consuming.

Corpus-based

Word2vec [31] Fast and generalized considering the context, but
cannot solve polysemy.

Glove [32] Fast and generalized considering the context and
global corpus, but cannot solve polysemy.

Fasttext [33] Fast and represents rare words and
out-of-lexicon words by n-gramm.

BERT [15] Effectively extracts contextual information,but
unsuitable for semantic-similarity search.

Sentence-bert [16] Fast and over 100 languages.

Edit distance: This method [27] is a quantitative measure of the degree of difference
between two strings. Suppose a string a and a string b. The measure is to calculate how
many operations are needed to change string a into string b. The operations include
addition, deletion and replacement. Edit distance has applications in natural language
processing, where automatic spelling correction can determine a candidate correction for a
misspelled word by selecting words from the dictionary which have a low distance from
the word.

Jaccard [28] index is a classical measure of set similarity with many practical applica-
tions in information retrieval, data mining, and machine learning, etc. [34]. The Jaccard
distance, which measures the dissimilarity between sample sets, complements the Jaccard
coefficient and is obtained by subtracting the Jaccard coefficient from 1 or, alternatively,
by dividing the size of the union by the difference between the sizes of the union and the
intersection of the two sets [35].

2.2.2. Knowledge-Based Method

In many applications dealing with textual data, such as natural language processing,
knowledge acquisition and information retrieval, the estimation of semantic similarity
between words is of great importance. Semantic-similarity measures make use of knowl-
edge sources as a basis for estimation. The knowledge-based semantic-similarity approach
calculates the semantic similarity between two terms based on information obtained from
one or more underlying knowledge sources (e.g., ontology/lexical databases, thesauri, and
dictionaries, etc.). The underlying knowledge base provides a structured representation of
terms or concepts connected by semantic relations for these methods, further providing
a semantic measure that is free of ambiguity, as the actual meaning of the terms is taken
into account.

Wordnet [29] is characterized by a wide coverage of the English lexical–semantic
network by organizing lexical information according to word meaning rather than word
form. Nouns, verbs, adjectives and adverbs are each organized into a network of synonyms,
each synonym set represents a basic semantic concept and these sets are also connected by
various relations; a polysemantic word will appear in each of its meaning synonym sets. A
synonymy set can be seen as a semantic relationship between word forms with a central
role. Given a synonymy set, the Wordnet network can be traversed to find synonymy sets of
related meanings. Each synonym set has one or more superordinate word paths connected
to a root superordinate word. Two synonym sets connected to the same root may have

Energies 2022, 15, 8894 6 of 23

some superordinates in common. If two synonym sets share a particular superlative, i.e.,
are at the lower level of the superlative hierarchy, they must be closely related. Therefore,
we can perform the semantic-similarity calculation between words based on Wordnet, an
ontology library.

In general, WordNet is a well-structured knowledge base, which includes not only
general dictionary functions but, additionally, word-classification information. Therefore,
based on Wordnet, similarity calculation methods are provided [36], such as the calculation
of the shortest path between two words. The shortest distance between two words is
obtained by calculating the relative position of each word in Wordnet and its closest
common ancestor, and this distance is used to calculate the magnitude of similarity between
them. However, its disadvantages cannot be ignored. It has only a limited number of
words, so domain-specific words cannot be recognized, and, secondly, it cannot reflect the
meaning of words in context.

Wikipedia is a large-scale knowledge resource built by Internet users who contribute
freely and collaborate together in a way that creates a very practical ontology repository.
In addition, it is completely open; the basic unit of information in Wikipedia is an article.
Each article describes a single concept, and each concept has a separate article. Since each
article focuses on a single issue and discusses that issue in detail, each Wikipedia article
describes a complete entity.

Since articles contain, for example, titles, tables of contents, categories, text summaries,
sections, citations, and hyperlinks, these can be considered as features of the concept.
Therefore, it is natural to think of using Wikipedia’s conceptual features to measure the
similarity between words. Since the titles of Wikipedia articles are concise phrases, similar
to the terms in traditional thesauri, we can also think of the title as the name of the concept.
To calculate the similarity value between two concepts, we can select some features to
represent the concept. For example, the four parts of the Wikipedia concept—synonyms,
glosses, anchors, and categories—can be considered as features representing the Wikipedia
concept.

Jiang et al. [30] propose a feature-based approach which relies entirely on Wikipedia,
which provides a very large domain-independent encyclopedic repository and semantic
network for computing the semantic similarity of concepts with broader coverage than the
usual ontology. To implement feature-based similarity assessment using Wikipedia, first,
they present a formal representation of Wikipedia concepts. Then, a framework for feature
similarity based on the formal representation of Wikipedia concepts is given. Finally, they
investigate several feature-based semantic-similarity measures that emerge from instances
of this framework and evaluate them. In general, several of their proposed methods have
good human relevance and constitute some effective methods for determining similarities
between Wikipedia concepts.

Knowledge-based systems are highly dependent on the underlying resources, result-
ing in the need for frequent updates, which require time and significant computational
resources. While powerful ontologies such as WordNet exist in English, similar resources
are not available in other languages, which necessitates the creation of robust, structured
knowledge bases to enable knowledge-based approaches in different languages as well as
in different domains.

2.2.3. Corpus-Based Method

Natural language is a complex system for expressing the thoughts of the human brain.
In this system, words are the basic units of meaning. The technique of mapping words to
real vectors is known as word embedding. Word embeddings use the distributional hypoth-
esis to construct vectors and rely on information retrieved from large corpora; thus, word
embeddings are part of a corpus-based approach to semantic similarity. The distribution
hypothesis presents a view in which words with the same meaning are grouped together
in a text. This view examines the meanings of words and their distribution throughout
the text and then compares them with the distribution of words with similar or related
meanings, the basic principle of which is simply summarised as ’similar words occur

Energies 2022, 15, 8894 7 of 23

together frequently’. In recent years, word embeddings have gradually become essential
knowledge for natural language processing. Word embeddings take a vector representation
of words and provide a vector of meaning for them, preserving the underlying linguis-
tic relationships between words. Methods for word embedding include artificial neural
nets [31], dimensionality reduction in word co-occurrence matrices, and explicit representa-
tion of the context in which words occur.

Word2vec takes a text corpus as input, first constructs a vocabulary from the train-
ing text data, and then learns a vector representation of the words. It maps each word
to a vector of fixed length, which better expresses the similarity and contrast between
words. Tomas Mikolov et al. [31] propose two new model structures, the CBOW and
Skip-gram models, for computing continuous vector representations of words from very
large datasets. The quality of these representations was measured in word and syntactic-
similarity tasks, and the results were compared with previous best-presentation techniques
based on different types of neural networks which can be trained to produce high-quality
word vectors using very simple model architectures. They show that it is possible to com-
pute very accurate high-dimensional word vectors from much larger datasets at much lower
computational costs.

In summary, Word2vec can be trained to obtain its weight matrix through two different
structures, and this weight matrix is the word-vector dictionary we want to obtain in the
end. In this, each word has its corresponding word vector to represent. Therefore, when
calculating the similarity between different words, the similarity can be calculated using
their word vectors. In the Google Word2vec model used in this matcher, the word-vector
table is mainly composed of some phrases and words, in which the words are basically
lowercase words and the upper case words are not recognized; therefore, the words to
be calculated need to be preprocessed when using this model. Moreover, this method
can be regarded as a word-vector dictionary based on corpus training; thus, for some
special abbreviations or words that are not in the word-vector dictionary, the word vector it
represents cannot be queried, and it cannot be used for the calculation of lexical similarity.
In addition, since the word-vector relationship is one-to-one, the problem cannot be solved
for words with multiple meanings, such as “bank”.

Glove: Jeffrey Pennington et al. [32] constructed a new global log-linear regression
model, which they call GloVe, for unsupervised lexical-representation learning which out-
performs other models on lexical-analogy, lexical-similarity and named-entity-recognition
tasks because the statistics of the global corpus are captured directly by the model. The
model combines the strengths of two major families of models: the global matrix-
decomposition method and the local context-window method. The model makes effective
use of statistical information by training only the non-zero elements of the word–word co-
occurrence matrix, rather than the entire sparse matrix or a single context window in a large
corpus. The model produces a vector space with meaningful substructures. In addition, it
outperforms the correlation model on similarity tasks and named-entity recognition.

Fasttext: In linguistics, morphology studies word formation and lexical relation-
ships. However, Word2vec and GloVe do not explore the internal structure of words. The
fastText [33] model proposes a subword insertion method, which assumes that a word
consists of n characters, which is an n-gram. There are some advantages of using n-grams,
which can generate better word vectors for rare words. For character-level n-grams, that is,
the word appears very few times, but the characters that make up the word share parts
with other words, so this can optimize the generated word vectors, and, in the case of
lexical words, it is still possible to construct word vectors for words from character-level
n-grams even if the words do not appear in the training corpus. In addition to this, the
n-gram allows the model to learn partial information about the local word order.

Neither word2vec nor GloVe can provide word vectors for words that do not exist
in the dictionary. Compared to them, fastText has the following advantages: first of all,
it works better for word vectors generated from low-frequency words. This is because
their n-grams can be shared with other words. Secondly, for words outside the training
lexicon, their word vectors can still be constructed. We can superimpose their character-

Energies 2022, 15, 8894 8 of 23

level n-gram vectors. Thus, when using it for lexical similarity computation, an important
feature of fastText is its ability to generate word vectors for any word, even for words that
do not occur, assembled words and some specialized domain abbreviations. This is mainly
because fastText builds word vectors from substrings of characters contained in words, so
this way of training the model allows fastText to generate word vectors for misspelled or
concatenated words. In addition, fasttext is also faster than other methods, which makes it
more suitable for computing on small data sets.

BERT [15] is the Bidirectional Encoder Representation from Transformers pre-trained
model. The BERT model has achieved excellent results in various NLP tests; the network
architecture of BERT uses the encoder-side structure of the multilayer transformer proposed
in this work. Attention is all you need, and the overall framework of BERT consists of two
phases: pre-train and fine tune. In contrast to Word2vec or GloVe, for example, “bank”,
the same word has different meanings in different contexts. However, embedding such
as Word2Vec will only provide the same word embedding for “bank” in these different
contexts. Compared with Word2vec, it can also obtain word meanings according to the
sentence context, thus avoiding ambiguity.

Sentence-BERT: Due to the excellent performance of the BERT model, many scholars
later conducted much research based on BERT. Sentence-BERT is also based on the BERT
model by extending its application.

Nils Reimers and Iryna Gurevych [16] proposed Sentence-BERT (SBERT), a modifi-
cation of the BERT network using siamese and triplet networks, which is able to derive
semantic sentence embeddings. This allows BERT to be used for certain new tasks. This
framework can be used to compute sentence/text embeddings in over 100 languages. These
embeddings can then be compared, for example, using cosine similarity to find sentences
with similar meanings. This is useful for semantic text similarity, semantic searching or
paraphrase mining. This model is trained on all available training data (over 1 billion train-
ing pairs) and is designed to be a general-purpose model. It is not only fast but maintains
high quality.

3. Methodology

In Figure 2, the schema-matching approach and implementation process are described
in detail. The large-scale pilot (LSP) raw datasets and the data model were the input for the
schema-matching process. To calculate the semantic similarity between raw datasets and
data model, the pairs set is generated through data processing. The pairs set is the attribute
pairs between raw data and the data model. The calculated similarity is used to process
dataset-level matching and generate the matching between dataset and the entity in the
data model. The attribute-level matching takes the dataset-level matching as input and
generates the final mapping table.

Figure 2. Schema mapping process overview.

3.1. Data Preprocessing

The data preprocessing step, which can be used in a selective combination to automate
the pre-processing of raw data, is necessary. As the data are mainly from the field of
building energy domain, they have their own specificity in that the attribute contains special
symbols (e.g., _, -, (,), &) and directly connects words together, such as ’alternateName’,
’floorHeight’ and ’energySource’. In addition, similarity calculation methods have different
applicability requirements for their input data, which is described in Section 2.2. Therefore,
it is important to pre-process these metadata before the semantic-similarity matching

Energies 2022, 15, 8894 9 of 23

calculation. The data preprocessing is summarised in three categories: symbol handling,
phrase handling and word landing.

Symbol handling: Although most data attributes consist of only letters, words, and
phrases, there may be special symbols interspersed. Therefore, before performing the
semantic-similarity calculation, it is necessary to remove them according to the require-
ments of similarity-matching calculation methods, which were described in the previous
section. For example, ’Energy_Source’ is converted to ’Energy Source’.

Phrase handling: Some words or phrases in the metadata may be misspelled, so it
is necessary to correct the misspelling of the words. In addition, some metadata in the
field of building energy have special features, for example, some words in the phrase
are directly connected together, such as ’alternateName’, ’floorHeight’ and ’energySource’
and so on. These linked phrases cannot be directly utilized in some lexical-similarity
calculation methods because their semantics cannot be identified. Therefore, the lexical
segmentation of such phrases is performed to automatically separate their words. For
example, ’energySource’, is corrected to ’energy Source’.

Word handling: The word handling consists of three parts: word cases, tokenization
and stemming. Word-case handling ensures uniformity of the words to be matched by
coverting all the words to lower case; word tokenization splits a correctly spelled phrase
into individual words, e.g., ’energy Source’ is split into two words in the form of ’energy’
and ’source’. The stemming is performed on the split words, which will have different word
forms, such as different tenses of verbs, singular or plural nouns, etc. Therefore, the root of
words is found and used for further semantic-similarity calculation. These operations can
be used in selective combinations to meet the requirements of different semantic-similarity
calculation methods. For example, the Wiki-cons-based matcher is sensitive to word cases
and the tenses of verbs.

3.2. Dataset Level

The dataset-level matching process produces the matching of pairs between datasets
and entities. The goal is to find the matching entity for each dataset and to reduce the
computation effort of semantic-similarity calculation.

Generation of pairs: A matrix of dataset-pairs matching similarity scores each other is
generated as in Table 2, where the DS = {dataset 1, dataset 2, dataset 3, ...}, DM = {entity 1,
entity 2, entity 3, ...}. The similarity score of each dataset pair is sim(dataset, entity) ∈ DS, DM.

Table 2. Datasets to entities pairs.

Entity 1 Entity 2 Entity 3 Entity 4

dataset 1 Sim(d_1, e_1) Sim(d_1, e_2) Sim(d_1, e_3) Sim(d_1, e_4)
dataset 2 Sim(d_2, e_1) Sim(d_2, e_2) Sim(d_2, e_3) Sim(d_2, e_4)
dataset 3 Sim(d_3, e_1) Sim(d_3, e_2) Sim(d_3, e_3) Sim(d_3, e_4)
dataset 4 Sim(d_4, e_1) Sim(d_4, e_2) Sim(d_4, e_3) Sim(d_4, e_4)

Algorithm: The matrix of the overall similarity scores of all dataset pairs can be
calculated through the most efficient matcher. Each dataset is matched with possible
related entities in the dataset-level matching process, which is a one-to-many matching
process. Some datasets may not match any entity. In this regard, a threshold value is set to
0.1, and when the overall similarity between a pair of datasets is less than the threshold
value, the similarity score of this pair will be set to zero. The dataset-level schema matching
is summarised in Algorithm 1.

Energies 2022, 15, 8894 10 of 23

Algorithm 1 Dataset level schema matching

Input: The set of datasets and the set of entities
DS = {dataset1, dataset2, data3, ...}
DM = {entity1, entity2, entity3, ...}

Output: Mappingdataset(DS, DM) matching result of DS and DM and similarity scores
1: Matrixdataset = NULL, Mappingdataset(DS, DM) = NULL
2: for dataset ∈ DS do
3: for entity ∈ DM do
4: score = sim(dataset, entity) # based on a certain matcher
5: if score > theshold then
6: Matrixdataset ← score
7: end if
8: end for
9: end for

10: # tup = (dataset, entity)
11: for tup ∈ sorted(Matrixdataset) do
12: Mappingdataset(DS, DM)← tup # according to dataset-matching principle
13: end for
14: return Mappingdataset(DS, DM)

3.3. Attribute Level

Generation of pairs: The matching process at the attribute level only focuses on
an individual dataset. Each dataset is composed of multiple attributes, dataset = {attr_1,
attr_2, attr_3, ...}. Each entity in the data model is also composed of multiple attributes,
entity = {attr_1, attr_2, attr_3, ...}. The attribute-pairs matrix is obtained as in Table 3, accord-
ing to this data structure. The similarity value between each attribute pair is sim(dattr, eattr).

Table 3. Attributes- pairs matrix.

Dataset\Entity E_Attr1 E_Attr2 E_Attr3 E_Attr4

D_Attr1 sim(d_attr1,e_attr1) sim(d_attr1,e_attr2) sim(d_attr1,e_attr3) sim(d_attr1,e_attr4)
D_Attr2 sim(d_attr2,e_attr1) sim(d_attr2,e_attr2) sim(d_attr2,e_attr3) sim(d_attr2,e_attr4)
D_Attr3 sim(d_attr3,e_attr1) sim(d_attr3,e_attr2) sim(d_attr3,e_attr3) sim(d_attr3,e_attr4)
D_Attr4 sim(d_attr4,e_attr1) sim(d_attr4,e_attr2) sim(d_attr4,e_attr3) sim(d_attr4,e_attr4)

Algorithm: the attribute-pairs matrix generated by one dataset and entity pair is
computed based on different matchers, as shown in Table 4, to obtain a matrix of similarity
values between attribute pairs.

Table 4. Example 1: Attributes-pairs matrix with similarity scores calculated by one matcher.

Dataset\Entity E_Attr1 E_Attr2 E_Attr3 E_Attr4

D_Attr1 0.42 0.26 0.68 0.38
D_Attr2 0.88 0.26 0.61 0.25
D_Attr3 0.65 0.55 0.92 0.48
D_Attr4 0.34 0.29 0.16 0.91

Next, the attribute pairs are filtered based on the similarity scores in the matrix.
The matching principle is that each dattr ∈ dataset matches at most one eattr ∈ entity,
but each eattr ∈ entity can match multiple attributes in the same dataset at the same
time. However, each eattr ∈ entity can match multiple attributes of the same dataset
at the same time. According to this matching principle, all attribute pairs are ranked
according to their similarity scores, and filtered according to the highest similarity score.
For (dattr, eattr) ∈ DS, DM that have already been selected, the attribute pairs containing
dattr will not be considered in the next matching step. When all pair combinations are
selected, a matching table of attributes is obtained, as shown in Table 5.

Energies 2022, 15, 8894 11 of 23

Table 5. Example 1: Attributes-pairs matching result.

Dataset\Entity E_Attr1 E_Attr2 E_Attr3 E_Attr4
D_Attr1 0.42 0 0.68 0.38
D_Attr2 0.88 0 0.61 0
D_Attr3 0.65 0.55 0.92 0.48
D_Attr4 0.34 0 0 0.91

In addition, in the process of calculating the similarity of the matched matrices, a
threshold value can be set, which means that if the similarity score of an attribute pair is
less than the threshold value of 0.3, the score will be 0, and it is directly determined as no
match. Finally, the overall similarity sim(dataset, entity) between the respective dataset
and entity is calculated using Equation (1) from the similarity scores of these attribute pairs,
which is averaged here. n is the number of attributes in the dataset. The attribute-level
schema matching is described in Algorithm 2.

sim(dataset, entity) = ∑n
i=1 sim(dattr ,eattr)i

n (1)

Algorithm 2 Attribute-level similarity calculation

Input: Attributes set of a dataset and the attributes set of an entity
Dataset = {dattr1, dattr2, dattr3, ...}
Entity = {eattr1, eattr2, eattr3, ...}

Output: Mapping result of attributes between Dataset and Entity in form of DataFrame,
which contains scores and matching relationships of Attributes
Mappingattr(Dataset, Entity)

1: Matrixattr = NULL, Mappingattr(Dataset, Entity) = NULL
2: for dattr ∈ Dataset do
3: for eattr ∈ Entity do
4: score = sim(dattr, eattr)
5: if score > theshold then
6: Matrixattr(dattr, eattr)← score
7: else
8: Matrixattr(dattr, eattr)← 0
9: end if

10: end for
11: end for
12: # tup = (dattr, eattr)
13: for tup ∈ sorted(Matrixattr) do
14: Mappingattr(Dataset, Entity)← tup # according to the attribute-matching principle
15: end for
16: return Mappingattr(Dataset, Entity)

3.4. Matching Process at the Combined Dataset and Attribute Level

The matching work at the attribute-level and dataset-level granularity are described
above. The matching between attribute pairs is performed at the attribute level, and the
matching between dataset pairs is performed at the dataset level. Therefore, the two are
combined to build the whole dataset-matching computational model.

Algorithm 3 is divided into two parts: dataset-level and attribute-level matching
processing. The dataset-level matching processing focuses on the similarity relationship
between datasets and uses unsupervised matching. First, the similarity scores of dataset
pairs formed by the datasets and entities are calculated by the most efficient matcher,
which is presented and tested in Section 4. Then, the dataset pairs are initially selected
by combining the top-k strategy to select potentially similar dataset pairs. The top-k
strategy selects the k entities with the highest similarity score for one dataset. This is a
relatively simple and rapid way of calculating semantic similarity at the dataset level. In

Energies 2022, 15, 8894 12 of 23

the attribute-level matching processing, only these k entities are matched separately for
detailed calculation. With this model, the overall computation can be effectively reduced,
the computational efficiency can be improved, and the matching process can be accelerated.

Algorithm 3 Matching process combined dataset and attribute level

Input: The set of datasets, the set of entities and different matchers
DS = {dataset1, dataset2, dataset3, ...}
DM = {entity1, entity2, entity3, ...}
Matcher = {matcher1, mather2, matcher3, ...}

Output: After two levels of matching, the final matching result in form of DataFrame
based on different matchers
{matcherx : Mappingresult}

1: Dictmatcher = NULL, Mappingresult = NULL
2: # Dataset-Level Matching processing
3: topk(Mappingdataset) = Algorithm 1 # based on a certain matcher
4: # Attribute-Level Matching processing
5: for m ∈ Matcher do
6: for (dataseti, entityk) ∈ topk do
7: Mappingattr(dataseti, entity) = Algorithm 2
8: Mappingresult ← Mappingattr(dataseti, entity)
9: end for

10: Dictmatcher ← Mappingresult
11: return Dictmatcher
12: end for

3.5. Active Learning

As shown in Table 1, each method has its advantages and disadvantages. In order to
make better use of the features of different methods and to bring out the advantages of
different matchers, we aggregated these methods.

The relevant aggregation methods are maximum, minimum and standard average.
Maximum (minimum) means that the similarity scores between the terms are calculated
using different matchers, and the maximum (minimum) is taken as the overall similarity
value between the two terms. Standard average means that the similarity scores calculated
by different matchers are averaged as the overall similarity score between the terms.
However, in cases in which some methods have features that go well with the specifics of
the problems and others do not, the averaging appears detrimental. Therefore, if different
matchers can be assigned different weights, the characteristics of different matchers can be
fully exploited. To achieve the assignment of the weights, the active-learning method is
applied. Another reason for using active learning is that it reduces the amount of labeled
data significantly. Especially for the building energy domain, only very limited labeled
data is available for schema mapping.

Active learning is a method of machine learning which takes data from samples that
are “hard” to classify. These data are then manually labeled and then trained with machine-
learning models to gradually improve the effectiveness of the model. In general, we do
not know how much labeled data is needed to obtain the expected results, so we want to
obtain as many labeled samples as possible. However, in fact, the performance of the model
does not increase wirelessly with the amount of labeled data, and there is a corresponding
bottleneck in the performance of the model; therefore, we focus precisely on how to use as
little labeled data as possible to reach this bottleneck.

Therefore, using active learning, we can actively select the most valuable samples for
labeling and achieve the best performance of the model using as few high-quality samples
as possible. According to the literature [37], active-learning models require only a small
amount of labeled data to achieve higher performance compared to other models that
require all training data for training. It is important to state that active learning is not

Energies 2022, 15, 8894 13 of 23

guaranteed to improve the accuracy of classification models and is still mainly used to
minimize the cost of labeling while ensuring that the model achieves the expected accuracy.

With active learning, the training and validation data required for the same machine-
learning model are significantly reduced and achieve the same performance, as the candi-
date set extraction of the data to be labeled relies on the query function in active learning.
The overall process of active learning is described in Figure 3. The first three steps are
the same as in the schema-matching process, which obtains the input and calculates the
attribute similarity. The attribute similarity is formed as a feature vector and used as input
for the training process for active learning. The active learner is a machine-learning model,
which is a classifier for schema matching. The active-learning model starts learning with a
small number of initially labeled samples, selects one or a batch of the most useful samples
by a certain query function, asks the oracle for labels, and then uses the new knowledge
gained to train the classifier and perform the next round of queries. Active learning is a
cyclical process performed until a certain stopping criterion is reached.

Figure 3. Active-learning workflow.

3.5.1. Similarity Feature Vector

Attributes from the original datasets and attributes from the data model are combined
to form a dataset consisting of vocabulary pairs through the pre-processing step described
in Section 3.1. The similarity scores of these pre-processed pairs are calculated by matchers.
Therefore, assume that the lexical similarity score between the vocabulary dattr and the
vocabulary eattr is sim(dattr ,eattr) = {matcheri}. In order to aggregate the matchers, we first
compute the similarity of (dattr, eattr) using different matchers. By treating the similarity
score of each matcher as a feature, a pair of attributes can, thus, produce an n-dimensional
similarity feature vector with Equation (2), where n is the number of matchers. By comput-
ing the entire dataset of vocabulary pairs, a dataset consisting of n-dimensional similarity
feature vectors can be obtained, where the number of feature vectors is equal to the number
of attribute pairs, and each feature vector represents the similarity relationship between
two attributes.

simvector(dattr, eattr) = {matcher1, matcher2, ..., matchern} (2)

3.5.2. Query Strategy

In general, labeling data is actually a tricky problem. The oracle needs to have relevant
domain expertise, and, secondly, it is very costly and has a long lead time. Therefore,
it is a meaningful task to train the model with a small amount of labeled data. In the
field of active learning, the key is how to select the appropriate annotation candidates for
manual annotation, and the method of selection is the so-called query strategy. Suppose the

Energies 2022, 15, 8894 14 of 23

matching between the dataset attribute and entity attribute takes the value of 0 or 1, where
0 means two words do not match and 1 means they match each other. Therefore, this type
of problem can be transformed into a problem of binary classification. Therefore, for any
n-dimensional similarity feature vector, 0 or 1 is its corresponding manual annotation. The
active-learning model used is “Pool-based Active Learning”. Initially, only the unlabeled
data are available, and the query strategy needs to select data from the pool of unlabeled
data and send it to an oracle for labeling. In the field of active learning, the key is how to
select the appropriate annotation candidates for manual annotation, and the method of
selection is the so-called query strategy.

The most commonly used query strategy is “uncertainty sampling”. The uncertainty-
sampling query method extracts the indistinguishable sample data from the model; the
algorithm only needs to query the most uncertain samples to oracle labeling. Usually,
the model can quickly improve its performance by learning the labels of samples with
high uncertainty. The key of the uncertainty-sampling method is how to describe the
uncertainty of the sample or data. There are usually the following ways: least confident,
margin sampling, and entropy methods. Compared to least confident and margin sample,
the entropy approach considers all categories of the binary classification task. Therefore,
the entropy method is selected as the query strategy.

3.5.3. Classifier

The classifier is a machine-learning model which consists of two parts: training and
prediction. The similarity-feature-vector dataset computed by matchers is used as input.
The data selected from the pool of unlabeled data by query strategy is labeled by oracle. The
labeled data is then used to train the classifier. The two processes of querying the unlabeled
data for manual labeling and training the model work alternately, and the performance of
the benchmark classifier will gradually improve after several cycles. The process terminates
when the preset conditions are satisfied. The preset conditions are generally information
such as the amount of query data, i.e., the amount of manually labeled data, or the expected
model accuracy. The classifier selected in this paper is a random forest model.

The random forest model is a supervised machine-learning algorithm. It is a classifier
which contains multiple decision trees and its output is determined by the majority voting
of the classes output by the individual trees. Training can be highly parallelized and can
run efficiently on large data sets. Due to its accuracy, simplicity and flexibility, it has become
one of the most commonly used algorithms. The fact that it can be used for classification
and regression tasks, combined with its nonlinear nature, makes it highly adaptable to a
variety of data and situations. In theory, a large number of unrelated decision trees will
produce more accurate predictions than a single decision tree. This is because a large
number of decision trees working in concert can protect each other from individual errors
and over-fitting. In addition, because of the sampling of the decision-tree candidates to
divide the attributes, the model can still be trained efficiently when the sample features are
of high dimensionality. The final trained model has a high generalization capability.

After the training of the active-learning model, the model is used as a matcher in our
schema-matching task. This is evaluated in the next section.

4. Results

In this chapter, based on the various matchers introduced in the previous chapter and
combined with experimental data, experiments were set up to evaluate their performance
in the schema-matching task. The device configuration used to conduct these experiments
is the processor with an Intel(R) Core(TM) i5-8500 CPU @ 3.00 GHz, 8 GB of RAM and a
64-bit operating system. The details of these experiments are described in the following.

4.1. Setup

Dataset : the experimental datasets come from 11 different city administrations, net-
work operators, suppliers, building management companies, and the building construction
and renovation sectors. The data model was created based on the existing data model (e.g.,

Energies 2022, 15, 8894 15 of 23

FIWARE [38] and EPC4EU [39]). In the previous section, a brief description of the structure
of the data model was given. A total of 28 entities are in the data model, they come from
12 different categories, and the number of attributes in all the entities is 755. The raw data
to be matched are 25 datasets, of which there are 140 attributes.

Ground truth: to evaluate the computational results of the model, it is necessary to
know the correct matching objects for the data to be matched. After manual annotation
and classification, these 25 original datasets were assigned to the appropriate entity, and
140 of these attributes were assigned to the corresponding attribute in the corresponding
entity. This was to find suitable matches for the dataset and attributes in the data model.

MRR, known as mean reciprocal rank, evaluates the top-k results. MRR is used to
confirm that there is only one match and its correlation level is only relevant and irrelevant.
It is very suitable for the determination of dataset-level matching processing in the model
because each dataset has only one entity that is its correct match. Therefore, the ranking
of the correct matching object among the k objects can be calculated for each dataset and
its top-k entities. Equation (3) is shown in the following, where ranki denotes the ranking
position of the first relevant result, |Q| denotes the number of queries, and MRR denotes
the average inverse ranking of the search system under the query set Q.

MRR(Q) = 1
|Q|∑

|Q|
i=1

1
ranki

(3)

F1-score is a statistical measure of the accuracy of a binary classification model, which
takes into account both the precision and recall of the classification model. Equation (4) of
f1 scores can be considered as a harmonic average of the accuracy and recall of the model,
with its maximum value being 1 and minimum value being 0.

f 1 = 2 · precision·recall
precision+recall (4)

In the evaluation process, there are four common cases: true positive (TP), false
negative (FN), false positive (FP) and true negative (TN). The first true and false modify
the later positive/negative, and the later positive and negative are the judgments of our
methods. TP means that our method predicts positive, which is right, i.e., factually positive
and predicted by our method as positive; FN means that our method predicts negative,
which is wrong, i.e., factually positive but predicted by our method as negative. FP means
that our method is predicted to be true, which is a wrong judgment, i.e., a situation which
is not in fact true but is misjudged to be true by our method; TN means that our method
predicted to be negative, which is a right judgment, i.e., a situation which is, in fact, negative
and is predicted to be negative by our method.

Equation (5) is precision, which is the ratio of the number of facts that are positive
and predicted to be positive as well as the number of results predicted to be positive,
including those that are not correctly identified. Precision is also referred to as the positive
predictive value.

precision = TP
TP+FP (5)

Equation (6) is recall, which is the ratio of the number of samples in which the fact is
positive and the judgment is also positive to the number of samples in which all facts are
positive. The recall is also referred to as sensitivity in diagnostic binary classification.

recall = TP
TP+FN (6)

4.2. ALmatcher

In addition to using different matchers for schema matching, we also propose active
learning based on the aggregation of different machers, and then using the trained model
to perform schema matching. “Active learning" (sometimes called “query learning” or
“optimal experimental design” in the statistics literature) is a subfield of machine learning

Energies 2022, 15, 8894 16 of 23

and, more generally, artificial intelligence [40]. In order to train the active-learning model,
i.e., ALmatcher, the process is as follows.

4.2.1. Preparation of Training Data

Based on the actual dataset for this project, a total of 49,815 pairs could be generated,
of which a total of 103 pairs were correctly matched, while there were 49,712 pairs that
did not match. This is a typical problem for unbalanced categories, as the data is from
a real-world sample. An unbalanced dataset is one in which the difference in number
between the two categories of the dataset, the major and minor categories, reaches 100:1,
1000:1 or even 10,000:1 in a classification problem. Such a dataset will largely limit the
accuracy of our classification models. When a standard learning algorithm encounters
unbalanced data, the rules generalised to describe the smaller category are usually fewer
and weaker than those describing the larger category. With this class of dataset, our goal
becomes making the classification accuracy of the minor class as good as possible without
seriously compromising the accuracy of the major class [41]. Therefore, we consider the
use of a random-sampling-based approach, which is divided into random oversampling
and random undersampling. The idea of random oversampling is to replicate a number of
random-sample points from a minor class and add them to the original set to equalise the
dataset. Random undersampling, on the other hand, removes a number of sample points at
random from a major class to equalise the distribution of the dataset. Random undersam-
pling may result in the loss of important information, while random oversampling risks
overfitting. In order not to lose important information, random oversampling is used here
to equalise the sample set.

After a relatively balanced sample set is then obtained, different matchers are used
to generating similarity feature vectors as described in Section 3. Since nine matchers are
used in this method, the whole data sample set consists of a nine-dimensional similarity
feature vector. In order to train the active-learning model, the obtained sample set was
divided into training and validation sets according to the ratio of 70% and 30%, where
the training set was 69,598 and the validation set was 29,826. The following, Figure 4,
shows the distributions of the similarity feature vectors of training samples and validation
samples. They are represented by principal component analysis (PCA) with a dimension-
ality reduction process, where purple points represent mismatches with a label of ’0’ and
yellow points represent matches with a label of ’1’. The training set is used to train the
active-learning model, while the validation set is used to check its accuracy. The level of
accuracy represents the evaluation parameter of the model’s ability to distinguish between
the two categories.

(a) Training samples (b) Validation samples

Figure 4. Similarity feature vectors distribution.

4.2.2. Training and Validation

The initial basic model is obtained by first initialising the learner to be trained. Its
machine-learning model is a random forest model. The validation set was used to test

Energies 2022, 15, 8894 17 of 23

its accuracy. As shown in Figure 5a, below, it can be seen that the prediction accuracy of
the untrained model on the validation set is 71.80%, where the green dot means that the
predicted category of the classification is the same as the actual category of the label, i.e.,
the prediction is correct. The red dots indicate that the predicted results do not match the
actual ones, i.e., the prediction is wrong.

Figure 5. Class prediction. (a) Untrained model: class predictions of validation samples (accuracy:
71.80%), (b) trained model: class predictions of validation samples (accuracy: 90.47%), (c) trained
model: class predictions of rest (accuracy: 90.08%).

The query strategy is entropy sampling, whereby the data with the highest uncertainty
are selected from the pool of data in the training set and manually annotated. The process
is repeated until the model fulfills the stop criteria. The stop criteria is usually the number
of queries, time or target performance. Here, valacc is used as the stopping condition,
and valacc represents the accuracy of the training model in the validation set. From the
experimental results, as shown in Figure 5b, it can be seen that using active learning only
requires 2485 annotated data, i.e., 2485 queries to achieve valacc of 90.47%, which constitutes
a significant reduction in sample annotation cost and improvement in the performance of
the classifier. Even if the trained model is used to predict the remaining unqueried data, as
shown in Figure 5c, the accuracy can still reach 90.08%.

The results are analysed and the active-learning approach efficiently selects unclas-
sified samples with high classification contribution for the annotation and training of the
model. In practical application scenarios, active learning can significantly reduce the cost
of labeling by selecting the most difficult samples for the relevant domain experts through
some selection strategies. The trained model, i.e., ALmatcher, can be used in the schema-
matching process to perform matching calculations and compare with other matchers.

4.3. Schema Matching

As shown in Algorithm 3, schema matching is divided into two processes: dataset-
level matching processing and attribute-level matching process. The dataset-level matching
process performs the initial filtering of pairs of datasets, using a top-k strategy, where
for each dataset to be matched, k similar entities are first filtered out. The attribute-level
matching process is a more detailed calculation. For the k candidate entities, the matching
calculation is performed by comparing a number of different matchers.

4.3.1. Dataset-Level Matching Process

In this process, there are 700 pairs of dataset pairs to be computed formed by
25 datasets and 28 entities, of which there are approximately 100,000 attribute pairs. As
this is an initial screening, the computational time of the method and its performance
needs to be considered in this process. In addition, the choice of k-worthiness is debatable.
Therefore, a number of experiments were set up here for evaluation.

Experiment 1: in preliminary screening, time consumption is a relatively important
parameter. Therefore, in this process of preliminary screening, experiments based on
different similarity calculation methods can be performed to obtain the time consumption
of different similarity methods, as shown in Table 6.

Energies 2022, 15, 8894 18 of 23

Table 6. The time consumption of different similarity calculation matchers in dataset-level match-
ing process.

Edit Dis-
tance Jaccard Wordnet-

Pathsim
Wiki-
Cons word2vec Glove Fasttext BERT sBERT

time
(min) 2.45 2.10 16.22 2331.8 3.36 2.57 2.58 171.20 1.41

The shortest of these is Sentence-BERT, which takes only 1.41 min. The construction of
BERT makes it unsuitable for unsupervised tasks such as semantic-similarity search and
clustering. The longest is the Wikipedia-based approach, which takes over 2300 min. The
reason is that it is based on the features of Wikipedia entries for similarity computation,
so the network is heavily influenced by the query, and, in addition to this, the amount of
information contained in the feature points of the entries can lead to long computation times.
The knowledge-based approach is also wordnetpathsim, which takes about 16 min in the
schema-matching process, and is calculated using synonym set features from the existing
knowledge graph Wordnet, and, therefore, takes a little longer. In addition to sBERT and
BERT, Word2vec, GloVe and fastText are also used for word vector-based computation,
as they are based on the generated word vector model and, therefore, take less time. The
remaining string-based methods, edit distance and Jaccard, also take less time to compute
matches as they only take into account the morphological features of the words.

Experiment 2: the dataset-level matching processing focuses on the matching process
between pairs of datasets, where a top-k strategy is chosen to select the k potential matching
entities of the target dataset, and, therefore, in addition to the computation time, the
performance of the matching results of the different matchers is the focus of reference. In
this case, we aim to reduce the computational effort of the next attribute-level matching
process and retain more information through the top-k initial filtering. Therefore, the choice
of k is also crucial, as too large a number of items can retain more information, but it does
not reduce the computational effort of the initial screening, while too small a number of
key items will be lost. Therefore, here we choose k = 3 and k = 1 for comparison. As shown
in Table 7, the MRR evaluation function and the F1-score evaluation function are used to
evaluate the matching results of the dataset pairs, respectively. For the MRR evaluation
function, where sum(1

ranki
) represents the sum of the reciprocal of the ranking of the correct

match among the k entities that have a potential relationship with the target dataset that
lie among these k entities. MRR is the quotient of the sum of its rank inverse and its total
number of query objects, i.e., datasets. For the f1 score, it is an equilibrium function of
PRECISION and RECALL. If the k entities matched by each dataset are considered as
a whole, a match is considered successful in the dataset-level matching process if there
is a correct match for its corresponding dataset in the k entities. Thus, where precision
represents the ratio of the number of successful matches in the prediction to the number
of all predictions that are true, recall represents the number of successful matches in the
prediction to the number of correct matches in reality.

Table 7. Evaluation of dataset-level matching process.

Dataset Level Edit Distance Jaccard Wordnet-Pathsim Wiki-Cons word2vec GloVe FastText BERT sBERT
k = 1 k = 3 k = 1 k = 3 k = 1 k = 3 k = 1 k = 3 k = 1 k = 3 k = 1 k = 3 k = 1 k = 3 k = 1 k = 3 k = 1 k = 3

sum 1
ranki

11.0 14.2 9.0 11.7 9.0 11.8 9.0 12.2 10.0 13.7 12.0 15.3 9.0 13.2 11 13.2 17.0 19.5

MRR 0.440 0.567 0.360 0.467 0.360 0.473 0.360 0.487 0.400 0.547 0.480 0.613 0.360 0.527 0.440 0.527 0.680 0.780
r 0.355 0.581 0.290 0.484 0.290 0.484 0.290 0.516 0.323 0.581 0.387 0.645 0.290 0.581 0.355 0.516 0.548 0.710
p 0.440 0.720 0.360 0.600 0.375 0.625 0.429 0.762 0.417 0.750 0.522 0.870 0.391 0.783 0.440 0.640 0.680 0.880
f1 0.393 0.643 0.321 0.536 0.327 0.546 0.346 0.615 0.364 0.755 0.444 0.741 0.333 0.667 0.393 0.571 0.607 0.786

correct top-k 11 18 9 15 9 15 9 16 10 18 12 20 9 18 11 16 17 22

It can be seen that when k = 3, the performance is significantly improved compared to
k = 1. In addition, in general, the former involved 75 pairs of dataset pairs in the next step
and the latter 25 pairs. Compared to the original 700 pairs, although both are reduced by
an order of magnitude in computation and serve as an initial filter, the former also retains

Energies 2022, 15, 8894 19 of 23

relatively more critical information. Therefore, in the subsequent attribute-level matching
process, experiments were conducted based on a k value of 3.

Based on the experimental results of the top-k strategy and the computation time
consumption, the matcher based on sentence BERT is a better choice in the dataset-level
matching-process, not only is the computation time consumption short, but also its perfor-
mance is excellent. Therefore, in the next attribute-level matching process, we can compare
the results of schema matching based on different matchers in detail, based on the top-three
results of sentence BERT.

4.3.2. Attribute-Level Matching Process

In order to obtain an intuitive picture of the matching performance of the attribute-
level matching process, the benchmark for the evaluation process is, therefore, based on the
results of the dataset level, i.e., the evaluation of a total of 123 attributes for the 22 datasets
that were initially matched correctly at the dataset level. The evaluation function is used to
judge the performance of the different matchers in schema matching.

Experiment 3 The f1-score evaluation function is used to evaluate the results for the
attribute-level matching process. As shown in Table 8, below, TP represents the number
of correct attributes matched by different matchers in the matching process; TP + FN
represents the number of attributes that are in fact correct in the standard answer, where
the number of correct answers is not the same as the number of attributes involved in the
matching process; 108 for correct and 123 for involved. TP + FP represents the number of
attributes predicted to be positive by different matchers in the matching process.

Table 8. Evaluation of attribute-level matching process.

Attribute Level Edit
Distance Jaccard Wordnet-

Pathsim Wiki-Cons word2vec GloVe FastText BERT sBERT ALmatcher

TP 24 19 22 15 30 29 37 22 59 76
TP+FN 108 108 108 108 108 108 108 108 108 108
TP+FP 123 122 82 63 97 79 92 123 123 97

r 0.222 0.176 0.204 0.139 0.278 0.269 0.343 0.204 0.546 0.704
p 0.195 0.156 0.268 0.238 0.309 0.367 0.402 0.179 0.48 0.784
f1 0.208 0.165 0.232 0.176 0.293 0.31 0.37 0.191 0.511 0.742

These values are used to calculate the f1 score for different matchers. The data in
the building energy domain in this project has its own peculiarities, not only in terms of
special abbreviations and non-English words but also in terms of special matches, such
as ’power’ which may be matched with ’value’. This experiment analyzes the evaluation
results of different matchers in the application of schema matching. In particular, this
schema matching process uses an unsupervised matching approach, based only on the
similarity values between their words for schema matching.

The edit distance and Jaccard are calculated only from the lexical glyph features.
Therefore, the results are better only for cases where the lexical features in the dataset
are similar, e.g., using edit distance ’DATE’ may be more similar to ’NAME’ than to
’DateCreated’. Jaccard is calculated based only on the number of letters in common between
the two words. When two words are synonymous or have fewer letters in common, Jaccard
will not match correctly. The wordnet calculation is based on the set of synonyms in the
dictionary. It is difficult to apply this method when the whole word is queried directly as
a whole in the process. Therefore, here, individual words from their phrases are used for
the query, and, finally, their mean value is used to represent the similarity between the two
phrases. The Wiki-cons are calculated mainly based on the features of Wikipedia entries on
the web. Experiment 1 shows that this approach is very time-consuming, so the calculation
is performed directly using the phrase to query the entries, rather than querying individual
words in the phrase; otherwise, the time spent would increase exponentially. However,
due to the specific nature of the data, many words are not actually available on Wikipedia
and, therefore, as can be seen from the evaluation results, do not perform well, even worse
than the wordnet-based approach for the word-embedding-based approach to similarity

Energies 2022, 15, 8894 20 of 23

matching calculations. Among the two approaches Word2vec and GloVe, GloVe gives
slightly better results than Word2vec because it takes into account the global nature, but
the overall results are not very different. FastText, because it uses the n-gramm approach,
will have some better results for specific words in the dataset, and this is reflected in the
evaluation results. Applying the basic BERT to schema matching, the results are found
to be not good, and the analysis of the literature [22] and matching results shows that
since this method adopts unsupervised matching based on similarity values, the BERT
approach is very high for all similarity values between different words and lacks significant
differentiation. The sentence-BERT approach, when calculating the similarity between
different words, shows that the distinction between similar words and dissimilar words
is very obvious, and it is also very good for the calculation of word groups. However,
it can only be used for matching between the same language, not across languages, and,
secondly, it is not able to match correctly for specific matching relationships. ALmatcher is
based on this experimental dataset using active learning, which has the highest f1 score.
It combines the previous matchers and trains a model with a query strategy using only
2485 annotations with uncertainty. The trained model was applied to the actual schema
matching and good results were achieved. Although the model is only annotated with a
very small amount of data, it shows that this is a good direction, which does reduce the
cost of manual annotation and has a good performance.

4.3.3. Matching Process at the Combined Dataset and Attribute Level

Experiment 4: the overall matching results are analysed through the above two pro-
cesses. Data integration is where each dataset in the original dataset is matched to an entity
in the generic data model, where their attributes are also matched to each other. As seen
above, there are 25 raw data datasets and 140 attributes. The results are shown in Table 9,
below. Comparing the results of all the matchers, we can see that the best performance is
achieved by ALmatcher and sentence-BERT, which have 19 and 16 correct matches, respec-
tively, and 76 and 59 correct matches for attributes during data harmonization. The rest of
the matches were relatively poor, but it can be seen that some matchers had a lower number
of correct matches for the datasets, but the number of correct matches for the attributes
they contained was higher than those with a higher number of matches for the other
datasets. In addition, the overall performance of the word-embedding-based matchers is
relatively good.

Table 9. Result of the overall schema matching.

Edit
Distance Jaccard Wordnet-

Pathsim Wiki-Cons word2vec GloVe FastText BERT sBERT ALmatcher

The number of
correctly matched

attributes
24 19 22 15 30 29 37 22 59 76

The number of
correctly matched

datasets
13 12 8 9 10 11 11 13 16 19

This section focuses on the specific performance of different matchers, including
method aggregation, in schema matching through various experimental comparisons. From
these experimental comparisons, the strengths and weaknesses of the different matchers
for building energy-domain applications are evaluated.

5. Conclusions

This paper successfully implemented the existing semantic-similarity calculation
method for the schema-matching task in the building energy domain by combining
knowledge from the natural language processing domain. Based on the semantic sim-
ilarity between their attributes, schema matching was performed to integrate the raw data
from the building energy domain into a common standard data model. Three types of
lexical-similarity calculation methods, string-based methods (edit distance and Jaccard),

Energies 2022, 15, 8894 21 of 23

knowledge-based methods (wordnet and Wikipedia-based methods) and corpus-based
methods (word2vec, GloVe, fastText, BERT and sentence BERT) were implemented. After
comparing the experimental results, the pre-trained language-model-based matcher per-
formed better than the other matchers in terms of accuracy. The sentence-BERT performed
especially well in schema matching, both in terms of computational time and accuracy.
Through active learning, different similarity approaches were aggregated based on the
lexical similarity vectors, which were obtained by the different approaches. Based on the
experiment result, the active-learning method provides better performance than other
matches with a small amount of labeled data in the building energy domain. Therefore, it
is recommended to use sentence-BERT, if there is no labeled data available. If it is possible
to have a domain expert label a small amount of data, the active-learning matcher is better
than all other unsupervised matchers.

In the future, the problem of unbalanced data sets remains ; random sampling was
chosen to solve this problem in this paper, but other approaches and text can be chosen.
The current work focus on the attribute level and dataset level. The value of a dataset,
which belongs to the instance level, was not utilized. The integration of instance-level
schema mapping utilizes all the information from the dataset and has the potential to
improve the overall performance. Furthermore, the similarity feature vector utilised by
the active-learning training model is computed from each of the previously mentioned
matchers. However, in future specific applications, for example, certain features in the sim-
ilarity feature vector can be used or replaced selectively depending on time-consumption
requirements. It is not limited to the matchers used in this paper but can be replaced using
other similarity calculation methods depending on actual needs.

Author Contributions: Conceptualization, Z.P.; methodology, Z.P.; software, G.P.; validation, G.P.
and Z.P.; formal analysis, Z.P.; investigation, Z.P.; resources, Z.P. and A.M.; data curation; writing—
original draft preparation, Z.P. and G.P.; writing—review and editing, Z.P. and G.P.; visualization,
G.P. and Z.P.; supervision, A.M.; project administration, A.M.; funding acquisition, A.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by MATRYCS, which is a European project funded by the Euro-
pean Union’s Horizon 2020 research and innovation program under Grant Agreement
No. 1010000158.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank all the MATRYCS consortium partners.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lucon, O.; Urge-Vorsatz, D.; Ahmed, A.Z.; Akbari, H.; Bertoldi, P.; Cabeza, L.; Liphoto, E. Gadgil Chapter 9—Buildings. Clim.

Chang. 2014.
2. Balaji, B.; Bhattacharya, A.; Fierro, G.; Gao, J.; Gluck, J.; Hong, D.; Johansen, A.; Koh, J.; Ploennigs, J.; Agarwal, Y.; et al. Brick :

Metadata schema for portable smart building applications. Appl. Energy 2018, 226, 1273–1292. [CrossRef]
3. Makridakis, S. The forthcoming information revolution: Its impact on society and firms. Futures 1995, 27, 799–821. [CrossRef]
4. Pritoni, M.; Weyandt, C.; Carter, D.; Elliott, J. Towards a Scalable Model for Smart Buildings. Lawrence Berkeley National

Laboratory. 2021. Available online: https://escholarship.org/uc/item/5b7966hh (accessed on 19 November 2022).
5. Benndorf, G.A.; Wystrcil, D.; Réhault, N. Energy performance optimization in buildings: A review on semantic interoperability,

fault detection, and predictive control. Appl. Phys. Rev. 2018, 5, 041501. [CrossRef]
6. Pau, M.; Kapsalis, P.; Pan, Z.; Korbakis, G.; Pellegrino, D.; Monti, A. MATRYCS—A Big Data Architecture for Advanced Services

in the Building Domain. Energies 2022, 15, 2568. [CrossRef]
7. Bergmann, H.; Mosiman, C.; Saha, A.; Haile, S.; Livingood, W.; Bushby, S.; Fierro, G.; Bender, J.; Poplawski, M.; Granderson,

J.; et al. Semantic Interoperability to Enable Smart, Grid-Interactive Efficient Buildings; Lawrence Berkeley National Lab. (LBNL):
Berkeley, CA, USA, 2020. [CrossRef]

http://doi.org/10.1016/j.apenergy.2018.02.091
http://dx.doi.org/10.1016/0016-3287(95)00046-Y
https://escholarship.org/uc/item/5b7966hh
http://dx.doi.org/10.1063/1.5053110
http://dx.doi.org/10.3390/en15072568
http://dx.doi.org/10.20357/B7S304

Energies 2022, 15, 8894 22 of 23

8. Pritoni, M.; Paine, D.; Fierro, G.; Mosiman, C.; Poplawski, M.; Saha, A.; Bender, J.; Granderson, J. Metadata schemas and
ontologies for building energy applications: A critical review and use case analysis. Energies 2021, 14, 2024. [CrossRef]

9. Greer, C.; Wollman, D.; Prochaska, D.; Boynton, P.; Mazer, J.; Nguyen, C.; FitzPatrick, G.; Nelson, T.; Koepke, G.; Hefner,
A.; et al. NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0, 2014. Available online:
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=916755 (accessed on 19 November 2022).

10. Do, H.H.; Rahm, E. Chapter 53-COMA—A system for flexible combination of schema matching approaches. In Proceedings of
the VLDB ’02: Proceedings of the 28th International Conference on Very Large Databases, Hong Kong, China, 20–23 August
2002; Bernstein, P.A., Ioannidis, Y.E., Ramakrishnan, R., Papadias, D., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 2002;
pp. 610–621. [CrossRef]

11. Peukert, E.; Maßmann, S.; König, K. Comparing Similarity Combination Methods for Schema Matching. In Proceedings of the GI
Jahrestagung, Leipzig, Germany, 27 September–1 October 2010.

12. Rahm, E.; Bernstein, P. A Survey of Approaches to Automatic Schema Matching. VLDB J. 2001, 10, 334–350. [CrossRef]
13. Chen, N.; He, J.; Yang, C.; Wang, C. A node semantic similarity schema-matching method for multi-version Web Coverage

Service retrieval. Int. J. Geogr. Inf. Sci. 2012, 26, 1051–1072. [CrossRef]
14. Fernandez, R.C.; Mansour, E.; Qahtan, A.A.; Elmagarmid, A.K.; Ilyas, I.F.; Madden, S.; Ouzzani, M.; Stonebraker, M.; Tang, N.

Seeping Semantics: Linking Datasets Using Word Embeddings for Data Discovery. In Proceedings of the 34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France, 16–19 April 2018; Computer Society: Washington, DC, USA, 2018;
pp. 989–1000. [CrossRef]

15. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. arXiv 2018, arXiv:1810.04805.

16. Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. arXiv 2019, arXiv:1908.10084.
17. Cheng, J.; Deng, Y.; Anumba, C. Mapping BIM schema and 3D GIS schema semi-automatically utilizing linguistic and text

mining techniques. ITcon 2015, 20, 193–212.
18. Mannino, A.; Dejaco, M.C.; Re Cecconi, F. Building Information Modelling and Internet of Things Integration for Facility

Management—Literature Review and Future Needs. Appl. Sci. 2021, 11, 3062. [CrossRef]
19. Charef, R.; Emmitt, S.; Alaka, H.; Foucha, F. Building Information Modelling adoption in the European Union: An overview. J.

Build. Eng. 2019, 25, 100777. [CrossRef]
20. Giunchiglia, F.; Yatskevich, M.; Shvaiko, P. Semantic Matching: Algorithms and Implementation. J. Data Semant. IX 2007, 9, 1–38.

[CrossRef]
21. Alserafi, A.; Abelló, A.; Romero, O.; Calders, T. Keeping the Data Lake in Form: Proximity Mining for Pre-Filtering Schema

Matching. ACM Trans. Inf. Syst. 2020, 38, 1–30. [CrossRef]
22. Hättasch, B.; Truong-Ngoc, M.; Schmidt, A.; Binnig, C. It’s AI Match: A Two-Step Approach for Schema Matching Using

Embeddings. arXiv 2022, arXiv:2203.04366.
23. Slimani, T. Description and evaluation of semantic similarity measures approaches. arXiv 2013, arXiv:1310.8059.
24. Caldarola, E.G.; Rinaldi, A.M. An approach to ontology integration for ontology reuse. In Proceedings of the 2016 IEEE 17th

International Conference on Information Reuse and Integration (IRI), Pittsburgh, PA, USA, 28–30 July 2016; pp. 384–393.
25. Chandrasekaran, D.; Mago, V. Evolution of semantic similarity—A survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–37. [CrossRef]
26. Lu, J.; Lin, C.; Wang, W.; Li, C.; Wang, H. String Similarity Measures and Joins with Synonyms. In Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data, New York, NY, USA, 22–27 June 2013; Association for Computing
Machinery: New York, NY, USA, 2013; SIGMOD ’13, pp. 373–384. [CrossRef]

27. Levenshtein, V.I. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Sov. Phys. Dokl. 1966, 10, 707.
28. Jaccard, P. The distribution of the flora in the alpine zone 1. New Phytol. 1912, 11, 37–50. [CrossRef]
29. Miller, G.A. WordNet: A Lexical Database for English. Commun. ACM 1995, 38, 39–41. [CrossRef]
30. Jiang, Y.; Zhang, X.; Tang, Y.; Nie, R. Feature-based approaches to semantic similarity assessment of concepts using Wikipedia.

Inf. Process. Manag. 2015, 51, 215–234. [CrossRef]
31. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,

arXiv:1301.3781.
32. Pennington, J.; Socher, R.; Manning, C. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational
Linguistics: Doha, Qatar, 2014; pp. 1532–1543. [CrossRef]

33. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput.
Linguist. 2017, 5, 135–146. [CrossRef]

34. Kosub, S. A note on the triangle inequality for the Jaccard distance. arXiv 2016, arXiv:1612.02696.
35. Rajaraman, A.; Ullman, J.D. Mining of Massive Datasets; Cambridge University Press, Cambridge, UK, 2011.
36. Rada, R.; Mili, H.; Bicknell, E.; Blettner, M. Development and application of a metric on semantic nets. IEEE Trans. Syst. Man

Cybern. 1989, 19, 17–30. [CrossRef]
37. Zhou, Z.; Shin, J.; Zhang, L.; Gurudu, S.; Gotway, M.; Liang, J. Fine-tuning convolutional neural networks for biomedical image

analysis: Actively and incrementally. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 7340–7351.

38. Fiware Smart-Data-Models. Available online: https://www.fiware.org/smart-data-models/ (accessed on 19 November 2022).

http://dx.doi.org/10.3390/en14072024
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=916755
http://dx.doi.org/10.1016/B978-155860869-6/50060-3
http://dx.doi.org/10.1007/s007780100057
http://dx.doi.org/10.1080/13658816.2011.647821
http://dx.doi.org/10.1109/ICDE.2018.00093
http://dx.doi.org/10.3390/app11073062
http://dx.doi.org/10.1016/j.jobe.2019.100777
http://dx.doi.org/10.1007/978-3-540-74987-5_1
http://dx.doi.org/10.1145/3388870
http://dx.doi.org/10.1145/3440755
http://dx.doi.org/10.1145/2463676.2465313
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1145/219717.219748
http://dx.doi.org/10.1016/j.ipm.2015.01.001
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.1109/21.24528
 https://www.fiware.org/smart-data-models/

Energies 2022, 15, 8894 23 of 23

39. Serna-González, V.; Hernández Moral, G.; Miguel-Herrero, F.; Valmaseda, C.; Martirano, G.; Pignatelli, F.; Vinci, F. ELISE Energy
& Location Applications: Use Case “Harmonisation of Energy Performance Certificates of Buildings Datasets across EU”—Final Report;
Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-40827-7, JRC124887. [CrossRef]

40. Settles, B. Active Learning Literature Survey. University of Wisconsin-Madison Department of Computer Sciences 2009. Available
online: https://minds.wisconsin.edu/bitstream/handle/1793/60660/TR1648.pdf?sequence=1 (accessed on 19 November 2022).

41. He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [CrossRef]

http://dx.doi.org/10.2760/500135
https://minds.wisconsin.edu/bitstream/handle/1793/60660/TR1648.pdf?sequence=1
http://dx.doi.org/10.1109/TKDE.2008.239

	Introduction
	Literature Review
	Schema Matching
	Semantic Similarity
	String-Based-Method
	Knowledge-Based Method
	Corpus-Based Method

	Methodology
	Data Preprocessing
	Dataset Level
	Attribute Level
	Matching Process at the Combined Dataset and Attribute Level
	Active Learning
	Similarity Feature Vector
	Query Strategy
	Classifier

	Results
	Setup
	ALmatcher
	Preparation of Training Data
	Training and Validation

	Schema Matching
	Dataset-Level Matching Process
	Attribute-Level Matching Process
	Matching Process at the Combined Dataset and Attribute Level

	Conclusions
	References

