
Citation: Paszula, J.; Maranda, A.;

Kukfisz, B.; Putko, P. Investigation of

the Explosive Characteristics of

Ammonium Nitrate and

Aluminium-Magnesium Alloy

Powder Mixtures. Energies 2022, 15,

8803. https://doi.org/10.3390/

en15238803

Academic Editor: Ernesto Salzano

Received: 21 October 2022

Accepted: 18 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Investigation of the Explosive Characteristics of Ammonium
Nitrate and Aluminium-Magnesium Alloy Powder Mixtures
Józef Paszula 1,* , Andrzej Maranda 2, Bożena Kukfisz 1,* and Paulina Putko 1
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Abstract: This paper presents the results of detonation and explosion characteristics for ammonium
nitrate, aluminium, and aluminium-magnesium alloy powder mixtures. The following parameters
were determined: detonation velocities, blast waves overpressure and their specific impulses. The
emission of radiation was recorded, and the history of temperature of the detonation products cloud
was established. It was shown that addition of aluminium-magnesium alloy powder increases blast
waves’ characteristics. Moreover, it increases the time of the afterburning reaction after detonation
and increases the temperature of detonation products.

Keywords: ammonium nitrate; aluminium-magnesium alloy powder; detonation velocity; modified
ammonal; blast waves’ characteristics; temperature of the detonation products cloud

1. Introduction

Ammonium nitrate explosives belong to high-energy mixtures, the essential ingredient
of which is ammonium nitrate complemented by other organic or inorganic substances.
Depending on the degree of surface development of its grains, ammonium nitrate (AN)
can be an inertial fertilizer or an explosive. It is commonly used in the following forms:

• a comminuted form (e.g., powdered explosives);
• granulated in ammonium nitrate and fuel oil (ANFO);
• saturated (in suspension explosives);
• supersaturated aqueous solutions (e.g., emulsion explosives).

It was used as a replacement for high-energy individual explosives during World Wars
I and II.

Ammonium nitrate is a substance with poorly indicated explosive properties, but
its detonation parameters can be modified by introducing various additives, changing
the grain shape or water content. Of the various substances increasing the detonation
capacity of AN, the best turned out to be aluminium, a small content of which effectively
increases the detonation parameters and the detonation capacity of ammonals. Aluminium–
magnesium powder can also be a potentially effective additive.

Even though ammonium nitrate has been used in mining explosives for about 150 years,
the research on detonation parameters and functional properties of ammonium nitrate
explosives is still being carried out, mainly concerning ANFO [1–6] and emulsion explo-
sives [7–27], but also loose explosives [28–31].

The presented results of the research on ammonium detonation parameters, knowl-
edge of AN decomposition conditions, and the factors determining the ignition and combus-
tion of aluminium dust form the basis for determining the potential detonation mechanism.
Three determining processes dominate the detonation process in ammonium: ammonium
nitrate decomposition, ignition, and combustion of aluminium dust in oxidant decomposi-
tion products. In the first phase of the process, an exothermic decomposition of ammonium
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nitrate takes place—the products heated to high temperatures diffuse to the surface of
flakes or granules of aluminium powder. A necessary condition to initiate ignition of
aluminium is discontinuity of the outer oxide layer. This layer may be due to the effect
of thermal stresses, as Al2O3 has a lower thermal expansion than aluminium. Another
explanation may be the impact of the unload wave, which is generated after the shock
wave passes. It can damage the oxide layer and thus accelerate the ignition of aluminium
powder. The high-temperature characteristic for the explosive transformation reduces the
ignition induction time.

The last but not less important step in the ammonium detonation process is the burning
of aluminium in the stream of AN decomposition products, which may proceed according
to the following reactions:

Al + 0.75 O2 → 0.5 Al2O3 + 839 kJ (1)

Al + 1.5 NO→ 0.5 Al2O3 + 0.75 N2 + 976 kJ (2)

Al + 1.5 H2O→ 0.5 Al2O3 + 1.5 H2 + 839 kJ (3)

Under normal conditions, the process of aluminium burning is diffusive and occurs in
the gas phase near the metal surface. On the other hand, under the pressure prevailing in
the detonation wave, the process of aluminium burning probably occurs according to the
mechanism typical for metals with a very high boiling point at the solid–liquid interface,
ignoring the gas phase of the metal. As a result of smoking, mainly aluminium(III) oxide is
formed, as shown by the above reactions (1)–(3). In the case of mixtures containing large
amounts of other aluminium compounds, aluminium(I) oxide or aluminium nitride may
be formed. Al2O and AlN have a much lower combining heat than Al2O3. Therefore, their
appearance is energetically unfavourable [32].

2. Materials and Methods
2.1. Materials
2.1.1. Ammonium Nitrate

The mixtures used ground ammonium nitrate obtained by grinding PULAN N34-type
ammonium nitrate produced by GRUPA AZOTY PUŁAWY. Sieve analysis was performed
on a Retsch As 200 shaker to determine its fragmentation. The percentage content of
individual fractions is shown in Figure 1.
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2.1.2. Metal Powders

The tested explosive mixtures contained two types of metal powders: flaked alu-
minium (Alf) and aluminium-magnesium alloy powder (PAM). The flaked aluminium was
powdered BLITZ Aluminium DEPUVAL 3083 produced by Benda-Lutz from aluminium
with a minimum purity of 99.7%, a water coverage of 29,000 cm2/g, a residue on a 45 µm
sieve (~325 mesh) of max. 0.8%, medium-sized flakes of 12 µm, and a bulk density of
0.4 kg/dm3. For AN/Al mixtures modification, powder PAM was used. Benda-Lutz
produces an AlMg 50/75 powder containing Al and Mg, with approxi kg/dm3mately 50%
of both. The PAM powder has a residue on a 75 µm sieve (~200 mesh) of max. 10%.

The structures of the powders used in this research are shown in Figure 2a,b. Figure 2a
shows thin aluminium flakes surrounded by a small amount of inert matrix. The shape of
aluminium particles allows good contact with ammonium nitrate. On the other hand, the
matrix made of inert material protects flaked aluminium against dusting. A homogeneous
mixture is obtained by mixing ammonium nitrate and aluminium powder. Figure 2b shows
powder particles of the aluminium–magnesium alloy. The powder particles are of various
sizes and irregular shapes. The larger particles have sharp edges, while the smaller ones
mostly have oval shapes. The presence of small PAM powder particles may allow the
oxidation reaction of Al and Mg to be accelerated.
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Figure 2. SEM images of the powders: (a) Alf; (b) PAM.

2.2. Methods
2.2.1. Preparation of the Tested Explosives

The mixtures were prepared in two stages. In the first stage, Alf was mixed with the
PAM powder, and the obtained mixture was added to the previously weighed AN and
mixed until a homogenous mass was obtained. After mixing, the material was manually
loaded onto PVC pipes. The height of the charges was adjusted to each mixture so that its
weight was 400 g. The material was added in small portions and lightly tamped to obtain
an even density of the charges. Small differences in height with a constant diameter do not
significantly affect the measurement results.

Two ammonals with 3% and 7% Alf modified with the addition of the PAM powder
were selected for the tests. The compositions of the tested mixtures are presented in Table 1.
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Table 1. Names and compositions of the tested explosives and detonation velocity results.

Explosives Alf (%) AN (%) PAM (%) Density (g/cm3) Detonation Velocity (m/s)

A3-0 3 97 0 0.81 2640 ± 40

A3-5 3 92 5 0.78 2870 ± 50

A3-10 3 87 10 0.82 2960 ± 20

A3-15 3 82 15 0.84 2870 ± 40

A3-20 3 77 20 0.85 2620 ± 60

A3-25 3 72 25 0.86 2380 ± 50

A7-0 7 93 0 0.79 3020 ± 50

A7-5 7 88 5 0.78 2980 ± 60

A7-10 7 83 10 0.82 2970 ± 70

A7-15 7 78 15 0.82 2790 ± 60

A7-20 7 73 20 0.84 2540 ± 80

A7-25 7 68 25 0.86 ND

2.2.2. Detonation Velocity Measurement

Assessment of detonation velocities was performed utilizing the short circuit method.
Shells of the studied explosive materials were made of polyvinyl chloride (PVC) pipes with
an inner diameter and a wall thickness of 46 and 1.8 mm, respectively. Four short circuit
sensors were located in the shells at a distance of 40 mm (from one another) and 15 mm
from the last sensor to the bottom of the charge. At least two tests were performed for each
investigated mixture.

2.2.3. Measurement of Air Blast Waves Overpressure

Blast waves overpressure values were measured utilizing piezoelectric sensors pro-
vided by PCB Piezotronics Europe GMBH (Huckelhoven, Germany). The measuring
station included four 137A series sensors connected to an oscilloscope with a signal condi-
tioner. Location of the sensors assured 2 and 2.5 m distance between the charge and the
sensors’ pairs.

It should be noted that the measurement results obtained utilizing this approach
are influenced by disturbances that may originate from the measuring system’s electrical
disruptions, electrical network or mechanical interferences originating from vibrations of
the pressure sensors’ mounting system. To normalise blast wave pressure histories and
minimise any disturbances and incidental disruptions on the measured characteristics
of blast waves, the overpressure histories obtained were approximated with a modified
Friedlander Equation (4):

P = PSe−at
(

1− t
t+

)
(4)

where PS stands for the peak overpressure immediately after the primary shock wave,
t corresponds to the time after the arrival of the primary shock at the gauge location, and
a and t+ are constants.

2.2.4. Measurement of the Temperature of a Cloud of Detonation Products

A cloud of detonation products formed after the explosion oxidises in the presence of
atmospheric oxygen, which results in the release of large amounts of thermal energy. Finally,
the fireball spectrum was recorded by an Ocean Optics Inc. (Ostfildern, Germany) USB2000+
spectrometer following the same procedure and experimental conditions described by Maiz
et al. [33,34].
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Fireball temperatures were determined from the recorded fireball spectra using linear
polychromatic fitting of the continuous part by Wien’s relation. The method was described
in detail by Maiz et al. [33].

Experiments were performed in a semi-closed bunker. A scheme presenting the
locations of the charges, piezoelectric sensors, and optic fibre is shown in Figure 3. The
bunker was about 40 m3 in volume and had four small 0.05 m2 openings and a frontage-
opened door with a surface of ca. 1.3 m2. The studied charges were placed in the bunker
at a height of 1.7 m (above the ground) and the optic fibre was guided to the centre of the
charge. A standard electrical detonator was utilized to initiate detonation.
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Figure 3. Diagram of the system for air blast waves overpressure and temperature measurement:
1—explosive charge, 2—pencil probes, 3—time meter, 4—signal conditioner, 5—oscilloscope, 6—the
wall of the bunker, 7—spectrometer, 8—signal generator.

3. Results
3.1. Results of the Detonation Velocity Measurements

The results of the detonation velocity measurements with the mean deviation are
presented in Table 1. The table also includes the designations and compositions of the
tested explosives. For the A7-25 composition, no detonation was observed and neither the
detonation velocity nor the blast wave characteristics were measured.

3.2. Blast Wave Characteristics

For each test, four blast waves overpressure values were obtained. Two histories are
for the sensors located at distances of 2 and 2.5 m. Figure 4 illustrates exemplary blast
waves overpressure histories obtained for the A3-0 and A3-20 compositions.
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Figure 4. Blast waves overpressure for compositions (a) A3-0 and (b) A3-20.

The obtained overpressure histories were approximated using a modified Friedlander
equation. The obtained maximum overpressure and positive phase impulse values were
averaged. Measurements were performed for all the tested materials. Tables 2 and 3 present
the determined characteristics of the air blast wave.

Table 2. Results of the measurements of blast wave characteristics for ammonals with 3% Alf.

2.0 m 2.5 m 2.5 m 2.0 m

Explosives Ps (kPa) I+ (Pa × s)

A3-0 58.41 ± 1.56 42.58 ± 0.79 31.06 ± 3.48 21.36 ± 1.73

A3-5 87.66 ± 1.39 59.67 ± 0.63 39.22 ± 1.13 33.81 ± 1.02

A3-10 87.85 ± 2.53 60.80 ± 1.37 43.65 ± 3.41 34.97 ± 3.73

A3-15 100.57 ± 0.71 68.41 ± 4.13 49.10 ± 1.72 39.12 ± 2.94

A3-20 105.92 ± 1.37 73.96 ± 1.35 55.78 ± 2.64 43.37 ± 1.35

A3-25 111.25 ± 0.01 78.06 ± 1.16 73.60 ± 0.09 69.91 ± 1.16

Table 3. Results of the measurements of blast wave characteristics for ammonals with 7% Alf.

2.0 m 2.5 m 2.5 m 2.0 m

Explosives Ps (kPa) I+ (Pa × s)

A7-0 71.58 ± 2.88 54.23 ± 4.84 31.44 ± 2.44 29.63 ± 2.56

A7-5 98.84 ± 2.35 69.56 ± 0.80 45.53 ± 1.14 41.94 ± 0.52

A7-10 108.54 ± 4.18 70.91 ± 5.33 52.13 ± 4.84 44.95 ± 2.72

A7-15 103.42 ± 6.19 64.26 ± 4.11 60.07 ± 2.30 40.98 ± 5.58

A7-20 99.25 ± 4.03 69.96 ± 5.84 61.30 ± 1.56 43.45 ± 2.99

3.3. Detonation Products Cloud Spectra Analysis

Figure 5 shows typical light-intensity spectra from an explosion in the bunker recorded
using a spectrometer. As seen in the figure, the spectra from the explosion of the tested
A3-25 material in the bunker exhibit several broad emission lines with minuscule intensities
and sharp intense lines at 589, 766, and 769 nm. The broad emission lines might be
considered the sum of the contribution of several species. The sharp lines at 589, 766, and
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769 nm are assigned to sodium and potassium impurities, respectively. Furthermore, a
few more atomic lines are observed—a single band line at 670 nm characteristic of double-
ionised aluminium. A few low-intensity lines characteristic of single-ionised chlorine at
618 and 619 nm and single-ionised magnesium at 518 nm are observed in the spectrum.
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For the analysis of experimental spectra, recordings were linear polychromatic fitting
for temperature estimation [32]. This method is based on fitting spectral radiance variation
with the wavelength using Wien’s relation. Spectral radiance can be expressed as follows:

Lλ =
a

λ5 exp(b/λ)
(5)

where Lλ is the spectral radiance, a is a constant, λ is the wavelength, b = 1439·104µmK/T,
and T is the temperature.

Equation (5) is equivalent to Equation (6):

ln
(

Lλλ5
)
=
−b
λ

+ ln(a) (6)

Figure 6 shows the experimental variation of ln
(

Lλλ5) in the function of 1⁄λ for the
A3-25 tested explosive.
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Removing the intensive spectral line was necessary to determine temperature using
linear fitting of the spectra recordings.

4. Discussion
4.1. Detonation Velocity

From the obtained results, it can be seen that the introduction of aluminium-magnesium
alloy powder in place of ammonium nitrate in ammonal containing 7% flaked aluminium
powder causes a continuous decrease in the detonation velocity. However, for the ammonal
containing 3% flaked aluminium powder, the detonation velocity firstly increases, and after
exceeding the 10% PAM addition, decreases proportionally to the content of PAM in the
tested mixture. Figure 7 depicts the results of detonation velocity measurements for the
explosive mixtures tested.
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The curves of detonation velocity as a function of the aluminium-magnesium alloy
powder content of the two tested ammonals are similar and typical for nonideal explosives.
However, for the ammonal containing 7% flaked aluminium dust, the maximum detonation
velocity is shifted towards the lower PAM powder content compared to the ammonal
with a lower flaked aluminium content, which is related to the different amounts of Alf
powder addition.

Such changes in detonation velocity as a function of PAM powder content are typical
for mixtures of ammonium nitrate with metal powders. Initially, addition of a metal
powder positively affects the increase in the heat of the detonation of the mixture through
additional oxidation reactions in the chemical reaction zone of the detonation wave. An
increase in the heat of the detonation causes an increase in the velocity of the detonation.
By increasing the amount of the additive further, this positive effect is limited by the heat
absorbed by the additional powder. In this case, adding a metal powder has an inert effect
in the chemical reaction zone and reduces the detonation velocity.

The inert effect of metal powder addition is achieved earlier for the A7 mixture with
a higher content of flaked Al. Therefore, the maximum value of the detonation velocity
moves towards lower PAM contents.

4.2. Blast Waves Characteristics

The maximum overpressure results are shown in Figure 8. The results show that the
addition of aluminium-magnesium alloy powder increases the air blast wave parameters
proportionally to its content in the ammonal. The highest overpressure was obtained at a
distance of 2 m for the ammonal containing 3% Alf and 25% PAM.
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In addition, the maximum overpressure of the air blast wave at a distance of 2 m first
increases with an increasing PAM content to reach the maximum, then decreases slightly
and maintains a stable pressure value in the range of 15% to 20% of the additive’s content.
Similar behaviour is observed for the overpressure at a distance of 2.5 m.

Changes in the blast waves overpressure have a different character for both mixtures.
For the A3 mixture, a slow increase in overpressure is visible at a distance of 2 m and 2.5 m.
The fine Alf powder reacts in the chemical reaction zone and releases enough heat energy
to heat the PAM powder. Unreacted Alf and PAM react behind the chemical reactions zone
of the detonation wave, affecting the maximum overpressure of the blast wave.

In the case of the A7 mixture, due to the constant decrease in detonation parameters
(Figure 7), after the initial increase in the maximum overpressure after the addition of 5%
PAM, slight changes are observed.

Figure 9 shows the curves of the positive phase impulse as a function of the PAM
powder content. The impulse of the ammonal containing 3% Alf increases with the increas-
ing PAM content, but for a distance of 2.5 m, a stable value of the impulse is noticeable in
the range of 10% to 20% of the additive’s content. In contrast, the impulse value for the
ammonal containing 7% of Alf initially increases until the first maximum is reached, and
then a slight decrease from the 15% PAM content is observed.
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This steady increase in the blast wave pulse with increasing PAM content may result
from the oxidation reaction of unreacted hot particles of the Alf and PAM powders. Heated
metal powders release additional heat energy as a result of these reactions. The additional
heat energy released behind the reaction zone of the detonation wave increases the blast
wave impulse.

In order to confirm the further course of maximum overpressure and air blast wave
impulse, additional tests need to be carried out on mixtures containing a higher PAM
powder content to observe what maximum values for these parameters could be obtained.
However, the decrease in detonation velocity at 25% PAM content indicates that a further
increase of the PAM powder content related to the reduction of AN content may result in
the inability to detonate.

4.3. Results of the Detonation Products Cloud Temperature

Changes in the temperature of the detonation products cloud as a function of time are
presented in Figure 10. For the mixtures with the addition of Alf powder (A3-0 and A7-0)
and the mixtures with 5% PAM powder, it was not possible to record irradiation spectra
of the clouds of explosion products. For these mixtures, too low clouds radiation power
was observed. Only one spectral measurement was obtained for the mixtures with the
addition of 10% and 15% PAM. For other mixtures, it was possible to record 2 or 3 spectra
and calculate the average temperature of the outer layers of the cloud as a function of time.
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As can be seen, as the content of the PAM powder additive increases, the glow time
of the explosion products and the average temperature of the outer layers of the product
cloud increase for successive spectra measurement times.

For the temperature changes for the A7-25 mixture, the spectrum of explosion prod-
ucts was recorded in the absence of detonation of the mixture. It can be assumed that
initiation of the explosion and extinction of the process took place, going from explosive to
rapid combustion.

5. Conclusions

Mixtures containing different amounts of aluminium-magnesium alloy powder were
investigated in this study. The results showed that addition of up to 10% of the tested
additive to ammonal containing 3% flaked aluminium causes an increase in the detonation
velocity, while contents above 10% result in a proportional decrease of the detonation
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velocity. It should be highlighted that a continuous decrease of detonation velocity was
observed for the ammonal containing 7% flaked aluminium.

Introduction of PAM increases the air blast wave parameters. The highest results were
obtained for the ammonal containing 25% of aluminium–magnesium powder. The tested
mixtures exhibited a slight increase in density, even though the addition of 5% PAM caused
a slight decrease in density compared to the initial ammonals.

It can be concluded that according to the test results, ammonals modified with PAM
powders can be used for explosive welding of metals, blasting in rocks of low compactness,
or demolition works. In addition, it seems promising to conduct a study of the effect of
the content of aluminium–magnesium powder addition on the detonation parameters of
ammonals containing less than 3% flaked aluminium or to continue research of the mixtures
studied in this paper with a higher PAM content. However, increasing the amount of alloy
powder in mixtures may result in the disappearance of detonation and the highest value
of overpressure and pulse of the air blast wave, which may be indicative of doping of the
alloy powder additive outside the chemical reaction zone of the detonation wave.

As the PAM powder content exceeded 10%, an increase in the glow time and average
temperature of the outer layers of the explosion products cloud was observed.

Tests of mixtures of AN with Alf powder and the addition of various amounts of PAM
powder allow the following conclusions to be drawn:

- Introduction of more than 10% aluminium–magnesium powder into mixtures of
ammonium nitrate and flaked aluminium decreases the detonation velocity.

- Introduction of less than 10% PAM into the tested ammonal mixtures with 3% alu-
minium powder increases the detonation velocity.

- Addition of PAM powder to ammonals increases the parameters of the air blast
wave, indicating that the powder burns outside the chemical reaction zone of the
detonation wave.

- Addition of PAM powder to the tested ammonal mixtures increases the glow time of
the explosion products cloud by at least 2.5 times.

- Addition of PAM powder to the tested ammonal mixtures causes an increase in the
average temperature of the explosion products cloud.

Interesting results for mixtures of ammonium nitrate with the addition of flaked
aluminium and PAM powder allow the assumption that hybrid materials can be widely
used in technical works. Therefore, additional tests of such mixtures are planned to
determine other detonation parameters, such as the calorimetric heat of the explosion and
detonation pressure. Due to the high fuel content in the form of metal powders, it is worth
measuring the quasistatic pressure of the explosion in a closed chamber. It is also necessary
to perform a series of thermochemical calculations to determine the theoretical parameters
of detonation.
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